1
|
Galey L, Olanrewaju A, Nabi H, Paquette JS, Pouliot F, Audet-Walsh É. PSA, an outdated biomarker for prostate cancer: In search of a more specific biomarker, citrate takes the spotlight. J Steroid Biochem Mol Biol 2024; 243:106588. [PMID: 39025336 DOI: 10.1016/j.jsbmb.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
The prevailing biomarker employed for prostate cancer (PCa) screening and diagnosis is the prostate-specific antigen (PSA). Despite excellent sensitivity, PSA lacks specificity, leading to false positives, unnecessary biopsies and overdiagnosis. Consequently, PSA is increasingly less used by clinicians, thus underscoring the imperative for the identification of new biomarkers. An emerging biomarker in this context is citrate, a molecule secreted by the normal prostate, which has been shown to be inversely correlated with PCa. Here, we discuss about PSA and its usage for PCa diagnosis, its lack of specificity, and the various conditions that can affect its levels. We then provide our vision about what we think would be a valuable addition to our PCa diagnosis toolkit, citrate. We describe the unique citrate metabolic program in the prostate and how this profile is reprogrammed during carcinogenesis. Finally, we summarize the evidence that supports the usage of citrate as a biomarker for PCa diagnosis, as it can be measured in various patient samples and be analyzed by several methods. The unique relationship between citrate and PCa, combined with the stability of citrate levels in other prostate-related conditions and the simplicity of its detection, further accentuates its potential as a biomarker.
Collapse
Affiliation(s)
- Lucas Galey
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Ayokunle Olanrewaju
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hermann Nabi
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Jean-Sébastien Paquette
- Laboratoire de recherche et d'innovation en médecine de première ligne (ARIMED), Groupe de médecine de famille universitaire de Saint-Charles-Borromée, CISSS Lanaudière, Saint-Charles-Borromée, QC, Canada; VITAM Research Centre for Sustainable Health, Québec, QC, Canada; Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Frédéric Pouliot
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Department of surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada.
| |
Collapse
|
2
|
Zhu S, He J, Yin L, Zhou J, Lian J, Ren Y, Zhang X, Yuan J, Wang G, Li X. Matrix metalloproteinases targeting in prostate cancer. Urol Oncol 2024; 42:275-287. [PMID: 38806387 DOI: 10.1016/j.urolonc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Prostate cancer (PCa) is one of the most common tumors affecting men all over the world. PCa has brought a huge health burden to men around the world, especially for elderly men, but its pathogenesis is unclear. In prostate cancer, epigenetic inheritance plays an important role in the development, progression, and metastasis of the disease. An important role in cancer invasion and metastasis is played by matrix metalloproteinases (MMPs), zinc-dependent proteases that break down extracellular matrix. We review two important forms of epigenetic modification and the role of matrix metalloproteinases in tumor regulation, both of which may be of significant value as novel biomarkers for early diagnosis and prognosis monitoring. The author considers that both mechanisms have promising therapeutic applications for therapeutic agent research in prostate cancer, but that efforts should be made to mitigate or eliminate the side effects of drug therapy in order to maximize quality of life of patients. The understanding of epigenetic modification, MMPs, and their inhibitors in the functional regulation of prostate cancer is gradually advancing, it will provide a new technical means for the prevention of prostate cancer, early diagnosis, androgen-independent prostate cancer treatment, and drug research.
Collapse
Affiliation(s)
- Shuying Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jing He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Liliang Yin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiawei Zhou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiayi Lian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xinling Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jinghua Yuan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Xiaoping Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China.
| |
Collapse
|
3
|
Charlton PV, O'Reilly D, Philippou Y, Rao SR, Lamb ADG, Mills IG, Higgins GS, Hamdy FC, Verrill C, Buffa FM, Bryant RJ. Molecular analysis of archival diagnostic prostate cancer biopsies identifies genomic similarities in cases with progression post-radiotherapy, and those with de novo metastatic disease. Prostate 2024; 84:977-990. [PMID: 38654435 PMCID: PMC11253896 DOI: 10.1002/pros.24715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND It is important to identify molecular features that improve prostate cancer (PCa) risk stratification before radical treatment with curative intent. Molecular analysis of historical diagnostic formalin-fixed paraffin-embedded (FFPE) prostate biopsies from cohorts with post-radiotherapy (RT) long-term clinical follow-up has been limited. Utilizing parallel sequencing modalities, we performed a proof-of-principle sequencing analysis of historical diagnostic FFPE prostate biopsies. We compared patients with (i) stable PCa (sPCa) postprimary or salvage RT, (ii) progressing PCa (pPCa) post-RT, and (iii) de novo metastatic PCa (mPCa). METHODS A cohort of 19 patients with diagnostic prostate biopsies (n = 6 sPCa, n = 5 pPCa, n = 8 mPCa) and mean 4 years 10 months follow-up (diagnosed 2009-2016) underwent nucleic acid extraction from demarcated malignancy. Samples underwent 3'RNA sequencing (3'RNAseq) (n = 19), nanoString analysis (n = 12), and Illumina 850k methylation (n = 8) sequencing. Bioinformatic analysis was performed to coherently identify differentially expressed genes and methylated genomic regions (MGRs). RESULTS Eighteen of 19 samples provided useable 3'RNAseq data. Principal component analysis (PCA) demonstrated similar expression profiles between pPCa and mPCa cases, versus sPCa. Coherently differentially methylated probes between these groups identified ~600 differentially MGRs. The top 50 genes with increased expression in pPCa patients were associated with reduced progression-free survival post-RT (p < 0.0001) in an external cohort. CONCLUSIONS 3'RNAseq, nanoString and 850k-methylation analyses are each achievable from historical FFPE diagnostic pretreatment prostate biopsies, unlocking the potential to utilize large cohorts of historic clinical samples. Profiling similarities between individuals with pPCa and mPCa suggests biological similarities and historical radiological staging limitations, which warrant further investigation.
Collapse
Affiliation(s)
- Philip Vincent Charlton
- Department of OncologyUniversity of OxfordOxfordUK
- Department of OncologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Yiannis Philippou
- Department of UrologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Srinivasa Rao Rao
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Alastair David Gordon Lamb
- Department of UrologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | | | - Geoff Stuart Higgins
- Department of OncologyUniversity of OxfordOxfordUK
- Department of OncologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Freddie Charles Hamdy
- Department of UrologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Clare Verrill
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
- Department of PathologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Richard John Bryant
- Department of UrologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Nazir SU, Mishra J, Maurya SK, Ziamiavaghi N, Bodas S, Teply BA, Dutta S, Datta K. Deciphering the genetic and epigenetic architecture of prostate cancer. Adv Cancer Res 2024; 161:191-221. [PMID: 39032950 DOI: 10.1016/bs.acr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer, one of the most frequently diagnosed cancers in men, leads to significant mortality worldwide. Its study is important due to the complexity and diversity in its progression, highlighting the urgent need for improved therapeutic strategies. This chapter probes into the genetic and epigenetic factors influencing prostate cancer progression, underscoring the importance of understanding the disease's molecular fundamentals for the development of targeted therapies. It specifically reviews the role of key genetic mutations in genes such as Androgen Receptor, TP53, SPOP, FOXA1 and PTEN which are crucial for the disease onset and a progression. Furthermore, it examines the impact of epigenetic modifications, including DNA methylation and histone modification, which contribute to the cancer's progression by affecting gene expression and cellular behavior. Further, in this chapter we delve into the underlying signaling mechanism, the advancements in targeting genetic and epigenetic alterations in prostate cancer. These findings have revealed promising targets for therapeutic advancements, aiming to understand and identify promising avenues for future therapies. This chapter improves our current understanding of prostate cancer genetic and epigenetic landscape, emphasizing the necessity of advancing our knowledge to refine and expand treatment options for prostate cancer patients.
Collapse
Affiliation(s)
- Sheeraz Un Nazir
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Negin Ziamiavaghi
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Sanika Bodas
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benjamin A Teply
- Internal Medicine, Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
5
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
6
|
Pedace L, Pizzi S, Abballe L, Vinci M, Antonacci C, Patrizi S, Nardini C, Del Bufalo F, Rossi S, Pericoli G, Gianno F, Besharat ZM, Tiberi L, Mastronuzzi A, Ferretti E, Tartaglia M, Locatelli F, Ciolfi A, Miele E. Evaluating cell culture reliability in pediatric brain tumor primary cells through DNA methylation profiling. NPJ Precis Oncol 2024; 8:92. [PMID: 38637626 PMCID: PMC11026496 DOI: 10.1038/s41698-024-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
In vitro models of pediatric brain tumors (pBT) are instrumental for better understanding the mechanisms contributing to oncogenesis and testing new therapies; thus, ideally, they should recapitulate the original tumor. We applied DNA methylation (DNAm) and copy number variation (CNV) profiling to characterize 241 pBT samples, including 155 tumors and 86 pBT-derived cell cultures, considering serum vs serum-free conditions, late vs early passages, and dimensionality (2D vs 3D cultures). We performed a t-SNE classification and identified differentially methylated regions in tumors compared to cell models. Early cell cultures recapitulate the original tumor, but serum media and 2D culturing were demonstrated to significantly contribute to the divergence of DNAm profiles from the parental ones. All divergent cells clustered together acquiring a common deregulated epigenetic signature suggesting a shared selective pressure. We identified a set of hypomethylated genes shared among unfaithful cells converging on response to growth factors and migration pathways, such as signaling cascade activation, tissue organization, and cellular migration. In conclusion, DNAm and CNV are informative tools that should be used to assess the recapitulation of pBT-cells from parental tumors.
Collapse
Affiliation(s)
- Lucia Pedace
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Luana Abballe
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Celeste Antonacci
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Patrizi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Nardini
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Pericoli
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | | | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Angela Mastronuzzi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Franco Locatelli
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| | - Evelina Miele
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
7
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
8
|
Banerjee A, Bardhan A, Sarkar P, Datta C, Pal DK, Saha A, Ghosh A. Dysregulation of DNA epigenetic modulators during prostate carcinogenesis in an eastern Indian patient population: Prognostic implications. Pathol Res Pract 2024; 253:154970. [PMID: 38056136 DOI: 10.1016/j.prp.2023.154970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The role of epigenetic alteration in prostate cancer pathogenesis was reported. We aimed to analyze dysregulation of DNA methylase (DNA methyl transferase/DNMT) and demethylase (ten eleven translocase/TET) and the associated interplay between them during prostate tumorigenesis. Promoter methylation and RNA/protein expression of selected DNMT and TETs were analysed in normal prostate, benign prostatic hyperplasia (BPH), and prostate cancer (PCa). Genomic 5-hydroxymethylcytosine (5hmC) level was detected and correlated with DNMT and TET proteins. Clinicopathological association of molecular data was done. Our data revealed a very low frequency of promoter methylation for DNMT1 (5-3% and high frequency for TET1 (22-38%), TET2 (68-90 %), and TET3 (43-32 %) in BPH and PCa. The promoter methylation of DNMT1 (p = 0.019) showed a significantly decreasing trend, while that of TET1 (p = 0.0005) and TET2 (p < 0.0001) showed an increasing trend from normal prostate to BPH to PCa, indicating their epigenetic dysregulation during prostate tumorigenesis. RNA/protein overexpression of DNMT1 and reduced expression of TET1 and TET2 in PCa compared to BPH were associated with the promoter methylation status of genes. The 5hmC level was significantly lower in PCa than in BPH and correlated negatively with DNMT1 but positively with TET1 and TET2 proteins, suggesting dysregulation of DNA methylase and de-methylase activities during prostate tumorigenesis. Lastly, tumors having methylated TET1 and TET2 promoters showed advanced clinicopathological features (a higher PSA level/Gleason score) and increased risk of bone metastasis. In conclusion, DNMT1 upregulation and epigenetic silencing of TET1 and TET2 was seen during PCa development. TET1 and TET2 promoter methylation has prognostic importance.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Abhishek Bardhan
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Purandar Sarkar
- Institute of Health Sciences, Presidency University, New Town, Kolkata, West Bengal, India
| | - Chhanda Datta
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | | | - Abhik Saha
- Institute of Health Sciences, Presidency University, New Town, Kolkata, West Bengal, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
9
|
Jin S, Seonu S, Yin J, Son S, Choi J, Oh J, Kim K, Lee M. Antiproliferative, apoptosis-inducing, and GSTP1 demethylation activities of Ellagitannins isolated from Cornus alba L. Nat Prod Res 2023:1-7. [PMID: 38135905 DOI: 10.1080/14786419.2023.2295918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to prove the prostate cancer chemopreventive activity of compounds isolated from CA. We evaluated these compounds using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and evaluated their NF-κB inhibitory activity and apoptosis-inducing activity using western blot analysis and flow cytometry, respectively. Their DNA methylation activity was also evaluated via a methylation-specific polymerase chain reaction in androgen-dependent (LNCaP) and androgen-independent (PC-3) prostate cancer cell lines. Camptothin B (1), cornusiin B (2), and cornusiin A (3), which were isolated in our previous work, relatively reduced the protein expression levels in PCa cells. Among them, cornusiin B (2) exhibited excellent NF-κB inhibitory activity. Also, concentration-dependently increased the unmethylated DNA content and decreased the methylated DNA content in both PC-3 and LNCaP cells. Therefore, cornusiin B (2), which was isolated from CA, has the potential to act as a chemopreventive agent for prostate cancer.
Collapse
Affiliation(s)
- Siyeon Jin
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Seoyeon Seonu
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jun Yin
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Seyeon Son
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jinhyeok Choi
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jaeyoon Oh
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Kyungmi Kim
- Life Science Research Institute, NOVAREX Co., Ltd., Cheongju, South Korea
| | - Minwon Lee
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
10
|
Creighton CJ, Zhang F, Zhang Y, Castro P, Hu R, Islam M, Ghosh S, Ittmann M, Kwabi-Addo B. Comparative and integrative analysis of transcriptomic and epigenomic-wide DNA methylation changes in African American prostate cancer. Epigenetics 2023; 18:2180585. [PMID: 37279148 PMCID: PMC9980641 DOI: 10.1080/15592294.2023.2180585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
African American (AA) men have the highest incidence and mortality rate from Prostate cancer (PCa) than any other racial/ethnic group. To date, PCa genomic studies have largely under-represented tumour samples from AA men. We measured genome-wide DNA methylation in benign and tumor prostate tissues from AA men using the Illumina Infunium 850 K EPIC array. mRNA expression database from a subset of the AA biospecimen were used to assess correlation of transcriptome and methylation datasets. Genome-wide methylation analysis identified 11,460 probes that were significant (p < 0.01) and differentially methylated in AA PCa compared to normal prostate tissues and showed significant (p < 0.01) inverse-correlation with mRNA expression. Ingenuity pathway analysis and Gene Ontology analysis in our AA dataset compared with TCGA dataset showed similarities in methylation patterns: top candidate genes with significant hypermethylation and corresponding down-regulated gene expression were associated with biological pathways in hemidesmosome assembly, mammary gland development, epidermis development, hormone biosynthesis, and cell communication. In addition, top candidate genes with significant hypomethylation and corresponding up-regulated gene expression were associated with biological pathways in macrophage differentiation, cAMP-dependent protein kinase activity, protein destabilization, transcription co-repression, and fatty acid biosynthesis. In contrast, differences in genome-wide methylation in our AA dataset compared with TCGA dataset were enriched for genes in steroid signalling, immune signalling, chromatin structure remodelling and RNA processing. Overall, differential methylation of AMIGO3, IER3, UPB1, GRM7, TFAP2C, TOX2, PLSCR2, ZNF292, ESR2, MIXL1, BOLL, and FGF6 were significant and uniquely associated with PCa progression in our AA cohort.
Collapse
Affiliation(s)
- Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Flora Zhang
- Center for Women’s Studies, Colgate University, Hamilton, New York, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Patricia Castro
- Department of Pathology and Immunology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Rong Hu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Md Islam
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Somiranjan Ghosh
- Department of Biology, Howard University, Washington, Columbia, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, Howard University, Washington, Columbia, USA
| |
Collapse
|
11
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
12
|
Ge Q, Li J, Yang F, Tian X, Zhang M, Hao Z, Liang C, Meng J. Molecular classifications of prostate cancer: basis for individualized risk stratification and precision therapy. Ann Med 2023; 55:2279235. [PMID: 37939258 PMCID: PMC10653710 DOI: 10.1080/07853890.2023.2279235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Tumour classifications play a pivotal role in prostate cancer (PCa) management. It can predict the clinical outcomes of PCa as early as the disease is diagnosed and then guide therapeutic schemes, such as active monitoring, standalone surgical intervention, or surgery supplemented with postoperative adjunctive therapy, thereby circumventing disease exacerbation and excessive treatment. Classifications based on clinicopathological features, such as prostate cancer-specific antigen, Gleason score, and TNM stage, are still the main risk stratification strategies and have played an essential role in standardized clinical decision-making. However, mounting evidence indicates that clinicopathological parameters in isolation fail to adequately capture the heterogeneity exhibited among distinct PCa patients, such as those sharing identical Gleason scores yet experiencing divergent prognoses. As a remedy, molecular classifications have been introduced. Currently, molecular studies have revealed the characteristic genomic alterations, epigenetic modulations, and tumour microenvironment associated with different types of PCa, which provide a chance for urologists to refine the PCa classification. In this context, numerous invaluable molecular classifications have been devised, employing disparate statistical methodologies and algorithmic approaches, encompassing self-organizing map clustering, unsupervised cluster analysis, and multifarious algorithms. Interestingly, the classifier PAM50 was used in a phase-2 multicentre open-label trial, NRG-GU-006, for further validation, which hints at the promise of molecular classification for clinical use. Consequently, this review examines the extant molecular classifications, delineates the prevailing panorama of clinically pertinent molecular signatures, and delves into eight emblematic molecular classifications, dissecting their methodological underpinnings and clinical utility.
Collapse
Affiliation(s)
- Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Jiawei Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Feixiang Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | | | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
13
|
Gonthier K, Weidmann C, Berthiaume L, Jobin C, Lacouture A, Lafront C, Harvey M, Neveu B, Loehr J, Bergeron A, Fradet Y, Lacombe L, Riopel J, Latulippe É, Atallah C, Shum M, Lambert J, Pouliot F, Pelletier M, Audet‐Walsh É. Isocitrate dehydrogenase 1 sustains a hybrid cytoplasmic-mitochondrial tricarboxylic acid cycle that can be targeted for therapeutic purposes in prostate cancer. Mol Oncol 2023; 17:2109-2125. [PMID: 37086156 PMCID: PMC10552900 DOI: 10.1002/1878-0261.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 04/23/2023] Open
Abstract
The androgen receptor (AR) is an established orchestrator of cell metabolism in prostate cancer (PCa), notably by inducing an oxidative mitochondrial program. Intriguingly, AR regulates cytoplasmic isocitrate dehydrogenase 1 (IDH1), but not its mitochondrial counterparts IDH2 and IDH3. Here, we aimed to understand the functional role of IDH1 in PCa. Mouse models, in vitro human PCa cell lines, and human patient-derived organoids (PDOs) were used to study the expression and activity of IDH enzymes in the normal prostate and PCa. Genetic and pharmacological inhibition of IDH1 was then combined with extracellular flux analyses and gas chromatography-mass spectrometry for metabolomic analyses and cancer cell proliferation in vitro and in vivo. In PCa cells, more than 90% of the total IDH activity is mediated through IDH1 rather than its mitochondrial counterparts. This profile seems to originate from the specialized prostate metabolic program, as observed using mouse prostate and PDOs. Pharmacological and genetic inhibition of IDH1 impaired mitochondrial respiration, suggesting that this cytoplasmic enzyme contributes to the mitochondrial tricarboxylic acid cycle (TCA) in PCa. Mass spectrometry-based metabolomics confirmed this hypothesis, showing that inhibition of IDH1 impairs carbon flux into the TCA cycle. Consequently, inhibition of IDH1 decreased PCa cell proliferation in vitro and in vivo. These results demonstrate that PCa cells have a hybrid cytoplasmic-mitochondrial TCA cycle that depends on IDH1. This metabolic enzyme represents a metabolic vulnerability of PCa cells and a potential new therapeutic target.
Collapse
Affiliation(s)
- Kevin Gonthier
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Cindy Weidmann
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Line Berthiaume
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Cynthia Jobin
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Aurélie Lacouture
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Camille Lafront
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Mario Harvey
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Bertrand Neveu
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Oncology AxisCentre de recherche du CHU de Québec – Université LavalCanada
| | - Jérémy Loehr
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Alain Bergeron
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Oncology AxisCentre de recherche du CHU de Québec – Université LavalCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuébecCanada
| | - Yves Fradet
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Oncology AxisCentre de recherche du CHU de Québec – Université LavalCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuébecCanada
| | - Louis Lacombe
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Oncology AxisCentre de recherche du CHU de Québec – Université LavalCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuébecCanada
| | - Julie Riopel
- Anatomopathology Service, Department of Laboratory MedicineCHU de Québec – Université LavalCanada
| | - Éva Latulippe
- Department of PathologyCHU de Québec – Université LavalCanada
| | - Chantal Atallah
- Department of PathologyCHU de Québec – Université LavalCanada
| | - Michael Shum
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
| | - Jean‐Philippe Lambert
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Big Data Research CenterUniversité LavalQuébecQCCanada
| | - Frédéric Pouliot
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Oncology AxisCentre de recherche du CHU de Québec – Université LavalCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuébecCanada
| | - Martin Pelletier
- Infectious and Immune Disease AxisCHU de Québec‐Université Laval Research CenterCanada
- ARThrite Research CenterUniversité LavalQuébecQCCanada
- Department of Microbiology‐Infectious Diseases and Immunology, Faculty of MedicineUniversité LavalQuébecQCCanada
| | - Étienne Audet‐Walsh
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| |
Collapse
|
14
|
Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J. Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. Int J Mol Sci 2023; 24:12797. [PMID: 37628978 PMCID: PMC10454494 DOI: 10.3390/ijms241612797] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Epidemiological data highlight prostate cancer as a significant global health issue, with high incidence and substantial impact on patients' quality of life. The prevalence of this disease is associated with various factors, including age, heredity, and race. Recent research in prostate cancer genetics has identified several genetic variants that may be associated with an increased risk of developing the disease. However, despite the significance of these findings, genetic markers for prostate cancer are not currently utilized in clinical practice as reliable indicators of the disease. In addition to genetics, epigenetic alterations also play a crucial role in prostate cancer development. Aberrant DNA methylation, changes in chromatin structure, and microRNA (miRNA) expression are major epigenetic events that influence oncogenesis. Existing markers for prostate cancer, such as prostate-specific antigen (PSA), have limitations in terms of sensitivity and specificity. The cost of testing, follow-up procedures, and treatment for false-positive results and overdiagnosis contributes to the overall healthcare expenditure. Improving the effectiveness of prostate cancer diagnosis and prognosis requires either narrowing the risk group by identifying new genetic factors or enhancing the sensitivity and specificity of existing markers. Immunological biomarkers (both circulating and intra-tumoral), including markers of immune response and immune dysfunction, represent a potentially useful area of research for enhancing the diagnosis and prognosis of prostate cancer. Our review emphasizes the need for developing novel immunological biomarkers to improve the diagnosis, prognosis, and management of prostate cancer. We highlight the most recent achievements in the identification of biomarkers provided by circulating monocytes and tumor-associated macrophages (TAMs). We highlight that monocyte-derived and TAM-derived biomarkers can enable to establish the missing links between genetic predisposition, hormonal metabolism and immune responses in prostate cancer.
Collapse
Affiliation(s)
- Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
| |
Collapse
|
15
|
Eismann L, von Walter P, Jung A, Chaloupka M, Rodler S, Westhofen T, Buchner A, Stief CG, Stadler T, Schlenker B. Methylation status of various gene loci in localized prostate cancer: Novel biomarkers for diagnostics and biochemical recurrence. Urol Oncol 2023; 41:325.e1-325.e8. [PMID: 37179150 DOI: 10.1016/j.urolonc.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Oncologic outcomes for patients with localized prostate cancer (PCa) undergoing radical prostatectomy (RP) can vary widely. Hypermethylation of tumor-associated genes has potential as a novel diagnostic tool and predictive biomarker in PCa. We investigated the methylation status of tumor-associated genes in patients who underwent RP. METHODS Patients who underwent RP during 2004 to 2008 were matched retrospectively based on post-operative D'Amico risk stratification. Quantitative pyrosequencing was used to analyze methylation status of 10 gene loci in cancerous and adjacent benign tissue from histological specimen. Follow-up was performed according to EAU guideline recommendations. Statistical analyses were performed to correlate methylation levels in cancerous and benign tissue with risk profiles and biochemical recurrence (BCR). RESULTS The cohort included 71 patients: 22 low-risk, 22 intermediate-risk, and 27 high-risk. Mean follow-up time was 74 months. Methylation status differed significantly between cancerous and adjacent benign tissue for the 5 gene loci GSTP1, APC, RASSF1, TNFRFS10c, and RUNX3 (each P < 0.001). Also, the methylation level was significantly higher in high-risk than in low-risk patients for Endoglin2 and APC (P = 0.026; P = 0.032). Using ROC analysis, hypermethylation of APC in PCa tissue was associated with higher risk of BCR (P = 0.005). CONCLUSION Methylation status of various gene loci holds diagnostic and predictive potential in PCa. Hypermethylation of APC, RASSF1, TNFRFS10c and RUNX3 were identified as novel PCa-specific biomarkers. Furthermore, increased methylation levels of APC and Endoglin2 were associated with high-risk PCa. Additionally, hypermethylation of APC was associated with increased risk of BCR after RP.
Collapse
Affiliation(s)
- Lennert Eismann
- Klinik und Poliklinik für Urologie, Klinikum der Universität München, München, Germany.
| | - Philipp von Walter
- Klinik und Poliklinik für Urologie, Klinikum der Universität München, München, Germany
| | - Andreas Jung
- Pathologisches Institut, Ludwig-Maximilians-Universität, München, Germany; German Cancer Consortium (DKTK) Partner Site Munich, Germany
| | - Michael Chaloupka
- Klinik und Poliklinik für Urologie, Klinikum der Universität München, München, Germany
| | - Severin Rodler
- Klinik und Poliklinik für Urologie, Klinikum der Universität München, München, Germany
| | - Thilo Westhofen
- Klinik und Poliklinik für Urologie, Klinikum der Universität München, München, Germany
| | - Alexander Buchner
- Klinik und Poliklinik für Urologie, Klinikum der Universität München, München, Germany
| | - Christian G Stief
- Klinik und Poliklinik für Urologie, Klinikum der Universität München, München, Germany
| | - Thomas Stadler
- Klinik und Poliklinik für Urologie, Klinikum der Universität München, München, Germany
| | - Boris Schlenker
- Klinik und Poliklinik für Urologie, Klinikum der Universität München, München, Germany
| |
Collapse
|
16
|
Zhang S, Shen T, Zeng Y. Epigenetic Modifications in Prostate Cancer Metastasis and Microenvironment. Cancers (Basel) 2023; 15:cancers15082243. [PMID: 37190171 DOI: 10.3390/cancers15082243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gradual evolution of prostate tissue from benign tumor to malignant lesion or distant metastasis is driven by intracellular epigenetic changes and the tumor microenvironment remodeling. With the continuous study of epigenetic modifications, these tumor-driving forces are being discovered and are providing new treatments for cancer. Here we introduce the classification of epigenetic modification and highlight the role of epigenetic modification in tumor remodeling and communication of the tumor microenvironment.
Collapse
Affiliation(s)
- Shouyi Zhang
- Department of Urology, the Cancer Hospital of Dalian University of Technology & Liaoning Cancer Hospital, Shenyang 110042, China
| | - Tao Shen
- Department of Urology, Second Affiliated Hospital of Shenyang Medical College, No. 20 Beijiu Road, Heping District, Shenyang 110001, China
| | - Yu Zeng
- Department of Urology, the Cancer Hospital of Dalian University of Technology & Liaoning Cancer Hospital, Shenyang 110042, China
| |
Collapse
|
17
|
Singh VK, Kainat KM, Sharma PK. Crosstalk between epigenetics and tumor promoting androgen signaling in prostate cancer. VITAMINS AND HORMONES 2023; 122:253-282. [PMID: 36863797 DOI: 10.1016/bs.vh.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - K M Kainat
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
18
|
Unger K, Hess J, Link V, Buchner A, Eze C, Li M, Stief C, Kirchner T, Klauschen F, Zitzelsberger H, Niyazi M, Ganswindt U, Schmidt-Hegemann NS, Belka C. DNA-methylation and genomic copy number in primary tumors and corresponding lymph node metastases in prostate cancer from patients with low and high Gleason score. Clin Transl Radiat Oncol 2023; 39:100586. [PMID: 36935856 PMCID: PMC10014335 DOI: 10.1016/j.ctro.2023.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Purpose In prostate cancer, the indication to irradiate the pelvic lymphatic pathways in clinical node-negative patients is solely based on clinical nomograms. To define biological risk patterns of lymphatic spread, we studied DNA-methylation and genomic copy number in primary tumors and corresponding lymph nodes metastases. Methods/Patients DNA-methylation and genomic copy number profiles of primary tumors (PT) and paired synchronous lymph node metastases (LN) from Gleason Score (GS)-6/7a (n = 20 LN-positive, n = 20 LN-negative) and GS-9/10 patients (LN-positive n = 20) after prostatectomy and lymphonodectomy were analyzed. Results GS-6/7a pN0 PTs and GS-6/7a pN1 PTs differed in histone H3K27me3/H3K9me3 mediated methylation. PTs compared to LNs, in both, GS-6/7a pN1 and GS-9/10 pN1 patients showed large differences in DNA-methylation mediated by histones H3K4me1/2, in addition to copy number changes of chromosomal regions 11q13.1, 14q11.2 and 15q26.1. Between GS-6/7a pN1 and GS-9/10 pN1 patients, methylation levels differed more when comparing LNs than PTs. 16q21-22.1 was specifically lost in GS-9/10 pN0 PTs. Immune system-related pathways characterized the differences between PTs and LNs in both GS-6/7a pN1 and GS-9/10 pN1 patients. Comparing PTs and LKs between GS-6/7a pN1 and GS-9/10 pN1 patients revealed altered transmembrane and G-protein-coupled receptor signaling. Conclusions Our data suggest that progression of prostate cancer, including lymphatic spread, is associated with histone-mediated DNA-methylation and we hypothesize a methylation signature predicting lymphatic spread in GS-6/7a patients from primary tumors. Lymphatic spread in GS-6/7a patients, flanked by DNA-methylation and CNA alterations, appears to be more complex than in GS-9/10 patients, in whom the primary tumors already appear to bear lymph node metastasis-enabling alterations.
Collapse
Affiliation(s)
- Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Corresponding author at: Helmholtz Center Munich, Ingolstädter-Landstr. 1, 85622 Neuherberg, Germany.
| | - Julia Hess
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Vera Link
- Department of Pathology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Alexander Buchner
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Thomas Kirchner
- Department of Pathology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Frederick Klauschen
- Department of Pathology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Horst Zitzelsberger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Ute Ganswindt
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, Innsbruck Medical University, Austria
- Comprehensive Cancer Center Innsbruck (CCCI), Germany
| | - Nina-Sophie Schmidt-Hegemann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Claus Belka
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
- Bavarian Center for Cancer Research (BZKF), Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| |
Collapse
|
19
|
Chu DT, Ngo AD, Wu CC. Epigenetics in cancer development, diagnosis and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:73-92. [PMID: 37225325 DOI: 10.1016/bs.pmbts.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cancer is a dangerous disease and one of the leading causes of death in the world. In 2020, there were nearly 10 million cancer deaths and approximately 20 million new cases. New cases and deaths from cancer are expected to increase further in the coming years. To have a deeper insight into the mechanism of carcinogenesis, epigenetics studies have been published and received much attention from scientists, doctors, and patients. Among alterations in epigenetics, DNA methylation and histone modification are studied by many scientists. They have been reported to be a major contributor in tumor formation and are involved in metastasis. From the understanding of DNA methylation and histone modification, effective, accurate and cost-effective methods for diagnosis and screening of cancer patients have been introduced. Furthermore, therapeutic approaches and drugs targeting altered epigenetics have also been clinically studied and have shown positive results in combating tumor progression. Several cancer drugs that rely on DNA methylation inactivation or histone modification have been approved by the FDA for the treatment of cancer patients. In summary, epigenetics changes such as DNA methylation or histone modification are take part in tumor growth, and they also have great prospect to study diagnostic and therapeutic methods of this dangerous disease.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Anh-Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Dai X, Thompson EW, Ostrikov K(K. Receptor-Mediated Redox Imbalance: An Emerging Clinical Avenue against Aggressive Cancers. Biomolecules 2022; 12:biom12121880. [PMID: 36551308 PMCID: PMC9775490 DOI: 10.3390/biom12121880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer cells are more vulnerable to abnormal redox fluctuations due to their imbalanced antioxidant system, where cell surface receptors sense stress and trigger intracellular signal relay. As canonical targets of many targeted therapies, cell receptors sensitize the cells to specific drugs. On the other hand, cell target mutations are commonly associated with drug resistance. Thus, exploring effective therapeutics targeting diverse cell receptors may open new clinical avenues against aggressive cancers. This paper uses focused case studies to reveal the intrinsic relationship between the cell receptors of different categories and the primary cancer hallmarks that are associated with the responses to external or internal redox perturbations. Cold atmospheric plasma (CAP) is examined as a promising redox modulation medium and highly selective anti-cancer therapeutic modality featuring dynamically varying receptor targets and minimized drug resistance against aggressive cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Erik W. Thompson
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics and Center for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
21
|
Eickelschulte S, Riediger AL, Angeles AK, Janke F, Duensing S, Sültmann H, Görtz M. Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246094. [PMID: 36551580 PMCID: PMC9777028 DOI: 10.3390/cancers14246094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Lisa Riediger
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Magdalena Görtz
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-2603
| |
Collapse
|
22
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
23
|
Liang Y, Chiu PKF, Zhu Y, Wong CYP, Xiong Q, Wang L, Teoh JYC, Cao Q, Wei Y, Ye DW, Tsui SKW, Ng CF. Whole-exome sequencing reveals a comprehensive germline mutation landscape and identifies twelve novel predisposition genes in Chinese prostate cancer patients. PLoS Genet 2022; 18:e1010373. [PMID: 36095024 PMCID: PMC9499300 DOI: 10.1371/journal.pgen.1010373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is the most inheritable cancer with approximately 42% of disease risk attributed to inherited factors by studies of twins, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been investigated thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort (7/25, 28%) and validation cohort (7/28, 25%) with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported (FANCI, ITGA6, PABPC1 and RAD54B). When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes (ADGRG1, CHD4, DNMT3A, ERBB3, GRHL1, HMBS, LDLR, MYH7, MYO6, NT5C2, NUP98 and SUGCT) were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups. Taken together, this study reveals a comprehensive germline mutation landscape in Chinese prostate cancer patients and discovers 12 novel non-DDR predisposition genes to lay the groundwork for the optimization of genetic screening. Prostate cancer is the most inheritable cancer with about 42% of disease risk attributed to inherited factors, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been studied thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort and validation cohort with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported. When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups.
Collapse
Affiliation(s)
- Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter Ka-Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Christine Yim-Ping Wong
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SK-WT); (C-FN)
| | - Chi-Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SK-WT); (C-FN)
| |
Collapse
|
24
|
Qie Y, Zhou D, Wu Z, Liu S, Shen C, Hu H, Zhang C, Xu Y. Low-dose hexavalent chromium(VI) exposure promotes prostate cancer cell proliferation by activating MAGEB2-AR signal pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113724. [PMID: 35660381 DOI: 10.1016/j.ecoenv.2022.113724] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/15/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr(VI)], one common environmental contaminant, has long been recognized as a carcinogen associated with several malignancies, such as lung cancer, but little information was available about the effects of its low-dose environmental exposure in prostate cancer. Our previous study has shown that low-dose Cr(VI) exposure could promote prostate cancer(PCa) cell growth in vitro and in vivo. In the present study, we furthermore found that low-dose Cr(VI) exposure could induce DNA demethylation in PCa cells. Based on our transcriptome sequencing data and DNA methylation database, we further identified MAGEB2 as a potential effector target that contributed to tumor-promoting effect of low-dose Cr(VI) exposure in PCa. In addition, we demonstrated that MAGEB2 was upregulated in PCa and its knockdown restrained PCa cell proliferation and tumor growth in vitro and in vivo. Moreover, Co-IP and point mutation experiments confirmed that MAGEB2 could bind to the NH2-terminal NTD domain of AR through the F-box in the MAGE homology domain, and then activated AR through up-regulating its downstream targets PSA and NX3.1. Together, low-dose Cr(VI) exposure can induce DNA demethylation in prostate cancer cells, and promote cell proliferation via activating MAGEB2-AR signaling pathway. Thus, inhibition of MAGEB2-AR signaling is a novel and promising strategy to reverse low-dose Cr(VI) exposure-induced prostate tumor progression, also as effective adjuvant therapy for AR signaling-dependent PCa.
Collapse
Affiliation(s)
- Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shenglai Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
25
|
Tonmoy MIQ, Fariha A, Hami I, Kar K, Reza HA, Bahadur NM, Hossain MS. Computational epigenetic landscape analysis reveals association of CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1 lncRNAs in prostate cancer progression through aberrant methylation. Sci Rep 2022; 12:10260. [PMID: 35715447 PMCID: PMC9205881 DOI: 10.1038/s41598-022-13381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs), caused by alterations in DNA methylation, is a driving factor in several cancers. Interplay between lncRNAs’ aberrant methylation and expression in prostate cancer (PC) progression still remains largely elusive. Therefore, this study characterized the genome-wide epigenetic landscape and expression profiles of lncRNAs and their clinical impact by integrating multi-omics data implementing bioinformatics approaches. We identified 62 differentially methylated CpG-sites (DMCs) and 199 differentially expressed lncRNAs (DElncRNAs), where 32 DElncRNAs contain 32 corresponding DMCs within promoter regions. Significant negative correlation was observed between 8 DElncRNAs-DMCs pairs. 3 (cg23614229, cg23957912, and cg11052780) DMCs and 4 (CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1) DElncRNAs were identified as high-risk factors for poor prognosis of PC patients. Overexpression of hypo-methylated CACNA1G-AS1, F11-AS1, and NNT-AS1 and down-regulation of hyper-methylated MSC-AS1 significantly lower the survival of PC patients and could be a potential prognostic and therapeutic biomarker. These DElncRNAs were found to be associated with several molecular functions whose deregulation can lead to cancer. Involvement of these epigenetically deregulated DElncRNAs in cancer-related biological processes was also noticed. These findings provide new insights into the understanding of lncRNA regulation by aberrant DNA methylation which will help to clarify the epigenetic mechanisms underlying PC.
Collapse
Affiliation(s)
- Mahafujul Islam Quadery Tonmoy
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ithmam Hami
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Kumkum Kar
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh. .,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh.
| |
Collapse
|
26
|
Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer 2022; 127:1394-1402. [PMID: 35715640 PMCID: PMC9553885 DOI: 10.1038/s41416-022-01881-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsy has been established as a powerful, minimally invasive, tool to detect clinically actionable aberrations across numerous cancer types in real-time. With the development of new therapeutic agents in prostate cancer (PC) including DNA repair targeted therapies, this is especially attractive. However, there is unclarity on how best to screen for PC, improve risk stratification and ultimately how to treat advanced disease. Therefore, there is an urgent need to develop better biomarkers to help guide oncologists' decisions in these settings. Circulating tumour cells (CTCs), exosomes and cell-free DNA/RNA (cfDNA/cfRNA) analysis, including epigenetic features such as methylation, have all shown potential in prognostication, treatment response assessment and detection of emerging mechanisms of resistance. However, there are still challenges to overcome prior to implementing liquid biopsies in routine clinical practice such as preanalytical considerations including blood collection and storage, the cost of CTC isolation and enrichment, low-circulating tumour content as a limitation for genomic analysis and how to better interpret the sequencing data generated. In this review, we describe an overview of the up-to-date clinical opportunities in the management of PC through blood-based liquid biopsies and the next steps for its implementation in personalised treatment guidance.
Collapse
|
27
|
Imre L, Niaki EF, Bosire R, Nanasi P, Nagy P, Bacso Z, Hamidova N, Pommier Y, Jordan A, Szabo G. Nucleosome destabilization by polyamines. Arch Biochem Biophys 2022; 722:109184. [PMID: 35395253 PMCID: PMC10572104 DOI: 10.1016/j.abb.2022.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
Abstract
The roles and molecular interactions of polyamines (PAs) in the nucleus are not fully understood. Here their effect on nucleosome stability, a key regulatory factor in eukaryotic gene control, is reported, as measured in agarose embedded nuclei of H2B-GFP expressor HeLa cells. Nucleosome stability was assessed by quantitative microscopy [1,2] in situ, in close to native state of chromatin, preserving the nucleosome constrained topology of the genomic DNA. A robust destabilizing effect was observed in the millimolar concentration range in the case of spermine, spermidine as well as putrescine, which was strongly pH and salt concentration-dependent, and remained significant also at neutral pH. The integrity of genomic DNA was not affected by PA treatment, excluding DNA break-elicited topological relaxation as a factor in destabilization. The binding of PAs to DNA was demonstrated by the displacement of ethidium bromide, both from deproteinized nuclear halos and from plasmid DNA. The possibility that DNA methylation patterns may be influenced by PA levels is contemplated in the context of gene expression and DNA methylation correlations identified in the NCI-60 panel-based CellMiner database: methylated loci in subsets of high-ODC1 cell lines and the dependence of PER3 DNA methylation on PA metabolism.
Collapse
Affiliation(s)
- Laszlo Imre
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Erfaneh Firouzi Niaki
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Rosevalentine Bosire
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Peter Nanasi
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Nubar Hamidova
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Yves Pommier
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4255, USA
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, 08028, Spain
| | - Gabor Szabo
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary.
| |
Collapse
|
28
|
Prostate cancer histopathology using label-free multispectral deep-UV microscopy quantifies phenotypes of tumor aggressiveness and enables multiple diagnostic virtual stains. Sci Rep 2022; 12:9329. [PMID: 35665770 PMCID: PMC9167293 DOI: 10.1038/s41598-022-13332-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Identifying prostate cancer patients that are harboring aggressive forms of prostate cancer remains a significant clinical challenge. Here we develop an approach based on multispectral deep-ultraviolet (UV) microscopy that provides novel quantitative insight into the aggressiveness and grade of this disease, thus providing a new tool to help address this important challenge. We find that UV spectral signatures from endogenous molecules give rise to a phenotypical continuum that provides unique structural insight (i.e., molecular maps or “optical stains") of thin tissue sections with subcellular (nanoscale) resolution. We show that this phenotypical continuum can also be applied as a surrogate biomarker of prostate cancer malignancy, where patients with the most aggressive tumors show a ubiquitous glandular phenotypical shift. In addition to providing several novel “optical stains” with contrast for disease, we also adapt a two-part Cycle-consistent Generative Adversarial Network to translate the label-free deep-UV images into virtual hematoxylin and eosin (H&E) stained images, thus providing multiple stains (including the gold-standard H&E) from the same unlabeled specimen. Agreement between the virtual H&E images and the H&E-stained tissue sections is evaluated by a panel of pathologists who find that the two modalities are in excellent agreement. This work has significant implications towards improving our ability to objectively quantify prostate cancer grade and aggressiveness, thus improving the management and clinical outcomes of prostate cancer patients. This same approach can also be applied broadly in other tumor types to achieve low-cost, stain-free, quantitative histopathological analysis.
Collapse
|
29
|
Frégeau-Proulx L, Lacouture A, Berthiaume L, Weidmann C, Harvey M, Gonthier K, Pelletier JF, Neveu B, Jobin C, Bastien D, Bergeron A, Fradet Y, Lacombe L, Laverdière I, Atallah C, Pouliot F, Audet-Walsh É. Multiple metabolic pathways fuel the truncated tricarboxylic acid cycle of the prostate to sustain constant citrate production and secretion. Mol Metab 2022; 62:101516. [PMID: 35598879 PMCID: PMC9168698 DOI: 10.1016/j.molmet.2022.101516] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Objective The prostate is metabolically unique: it produces high levels of citrate for secretion via a truncated tricarboxylic acid (TCA) cycle to maintain male fertility. In prostate cancer (PCa), this phenotype is reprogrammed, making it an interesting therapeutic target. However, how the truncated prostate TCA cycle works is still not completely understood. Methods We optimized targeted metabolomics in mouse and human organoid models in ex vivo primary culture. We then used stable isotope tracer analyses to identify the pathways that fuel citrate synthesis. Results First, mouse and human organoids were shown to recapitulate the unique citrate-secretory program of the prostate, thus representing a novel model that reproduces this unusual metabolic profile. Using stable isotope tracer analysis, several key nutrients were shown to allow the completion of the prostate TCA cycle, revealing a much more complex metabolic profile than originally anticipated. Indeed, along with the known pathway of aspartate replenishing oxaloacetate, glutamine was shown to fuel citrate synthesis through both glutaminolysis and reductive carboxylation in a GLS1-dependent manner. In human organoids, aspartate entered the TCA cycle at the malate entry point, upstream of oxaloacetate. Our results demonstrate that the citrate-secretory phenotype of prostate organoids is supported by the known aspartate–oxaloacetate–citrate pathway, but also by at least three additional pathways: glutaminolysis, reductive carboxylation, and aspartate–malate conversion. Conclusions Our results add a significant new dimension to the prostate citrate-secretory phenotype, with at least four distinct pathways being involved in citrate synthesis. Better understanding this distinctive citrate metabolic program will have applications in both male fertility as well as in the development of novel targeted anti-metabolic therapies for PCa. Targeted metabolomics and stable isotope tracer analysis were optimized in mouse and human prostate organoids. Organoids recapitulate the unique citrate-secretory phenotype of the prostate. Glutamine fuels citrate synthesis for secretion by glutaminolysis and reductive carboxylation. Aspartate enters the TCA cycle at different entry points in mouse and human prostate organoids for citrate production. We revealed a much more complex TCA cycle in the prostate than originally anticipated.
Collapse
Affiliation(s)
- Lilianne Frégeau-Proulx
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Aurélie Lacouture
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Line Berthiaume
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Mario Harvey
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Kevin Gonthier
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Jean-François Pelletier
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada
| | - Bertrand Neveu
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada
| | - Cynthia Jobin
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Dominic Bastien
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada
| | - Alain Bergeron
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Louis Lacombe
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Isabelle Laverdière
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Faculty of Pharmacy, Université Laval, Québec, QC, Canada; Department of Pharmacy, CHU de Québec - Université Laval, Québec, QC, Canada
| | - Chantal Atallah
- Department of Pathology, CHU de Québec - Université Laval, Québec, QC, Canada
| | - Frédéric Pouliot
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Oncology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
30
|
Dufresne S, Guéritat J, Wong CP, Isanejad A, Ho E, Serna E, Gomez-Cabrera MC, Rebillard A. Exercise training as a modulator of epigenetic events in prostate tumors. Prostate Cancer Prostatic Dis 2022; 25:119-122. [PMID: 34007020 DOI: 10.1038/s41391-021-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Exercise is increasingly recognized as an effective strategy to improve cancer prevention and prognosis. Several biological mechanisms mediating these benefits have been proposed, but the role of epigenetics remains largely unknown. Since epigenetics is highly susceptible to lifestyle factors, we hypothesized that exercise could affect the epigenome landscape in cancer tissues. METHODS Rats implanted with AT1 prostate tumors were randomized to either control or exercise training. microRNA expression, DNA methylation and histone acetylation were analyzed in the tumor tissue. RESULTS MiR-27a-5p appeared to be differently expressed between sedentary and trained rats. Furthermore, exercise increased global DNA methylation and decreased DNA methyltransferases mRNA expression in the tumor tissue. Histone acetylation however remained unaltered. CONCLUSION Overall, exercise might reverse some of the cancer-related epigenetic alterations in the prostate tumor tissue.
Collapse
Affiliation(s)
| | | | - Carmen P Wong
- School of Biological & Population Health Sciences, College of Public Health & Human Sciences, 211 Milam Hall, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR, USA
| | | | - Emily Ho
- School of Biological & Population Health Sciences, College of Public Health & Human Sciences, 211 Milam Hall, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR, USA
- Moore Family Center for Whole Grain Foods, Nutrition & Preventive Health, Oregon State University, Corvallis, OR, USA
| | - Eva Serna
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Marie-Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | | |
Collapse
|
31
|
Flores-Téllez TDNJ, Baena E. Experimental challenges to modeling prostate cancer heterogeneity. Cancer Lett 2022; 524:194-205. [PMID: 34688843 DOI: 10.1016/j.canlet.2021.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/23/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Tumor heterogeneity plays a key role in prostate cancer prognosis, therapy selection, relapse, and acquisition of treatment resistance. Prostate cancer presents a heterogeneous diversity at inter- and intra-tumor and inter-patient levels which are influenced by multiple intrinsic and/or extrinsic factors. Recent studies have started to characterize the complexity of prostate tumors and these different tiers of heterogeneity. In this review, we discuss the most common factors that contribute to tumoral diversity. Moreover, we focus on the description of the in vitro and in vivo approaches, as well as high-throughput technologies, that help to model intra-tumoral diversity. Further understanding tumor heterogeneities and the challenges they present will guide enhanced patient risk stratification, aid the design of more precise therapies, and ultimately help beat this chameleon-like disease.
Collapse
Affiliation(s)
- Teresita Del N J Flores-Téllez
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG, UK
| | - Esther Baena
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK.
| |
Collapse
|
32
|
Gutiérrez JR, Salgadoa ARM, Arias MDÁ, Vergara HSJ, Rada WR, Gómez CMM. Epigenetic Modulators as Treatment Alternative to Diverse Types of Cancer. Curr Med Chem 2021; 29:1503-1542. [PMID: 34963430 DOI: 10.2174/0929867329666211228111036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023]
Abstract
DNA is packaged in rolls in an octamer of histones forming a complex of DNA and proteins called chromatin. Chromatin as a structural matrix of a chromosome and its modifications are nowadays considered relevant aspects for regulating gene expression, which has become of high interest in understanding genetic mechanisms regulating various diseases, including cancer. In various types of cancer, the main modifications are found to be DNA methylation in the CpG dinucleotide as a silencing mechanism in transcription, post-translational histone modifications such as acetylation, methylation and others that affect the chromatin structure, the ATP-dependent chromatin remodeling and miRNA-mediated gene silencing. In this review we analyze the main alterations in gene expression, the epigenetic modification patterns that cancer cells present, as well as the main modulators and inhibitors of each epigenetic mechanism and the molecular evolution of the most representative inhibitors, which have opened a promising future in the study of HAT, HDAC, non-glycoside DNMT inhibitors and domain inhibitors.
Collapse
Affiliation(s)
- Jorseth Rodelo Gutiérrez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Arturo René Mendoza Salgadoa
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Marcio De Ávila Arias
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Homero San- Juan- Vergara
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Wendy Rosales Rada
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
| | - Carlos Mario Meléndez Gómez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| |
Collapse
|
33
|
Berglund A, Matta J, Encarnación-Medina J, Ortiz-Sanchéz C, Dutil J, Linares R, Marcial J, Abreu-Takemura C, Moreno N, Putney R, Chakrabarti R, Lin HY, Yamoah K, Osterman CD, Wang L, Dhillon J, Kim Y, Kim SJ, Ruiz-Deya G, Park JY. Dysregulation of DNA Methylation and Epigenetic Clocks in Prostate Cancer among Puerto Rican Men. Biomolecules 2021; 12:2. [PMID: 35053153 PMCID: PMC8773891 DOI: 10.3390/biom12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
In 2021, approximately 248,530 new prostate cancer (PCa) cases are estimated in the United States. Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. The objective of this study was to assess DNA methylation patterns between aggressive and indolent PCa along with ancestry proportions in 49 H/L men from Puerto Rico (PR). Prostate tumors were classified as aggressive (n = 17) and indolent (n = 32) based on the Gleason score. Genomic DNA samples were extracted by macro-dissection. DNA methylation patterns were assessed using the Illumina EPIC DNA methylation platform. We used ADMIXTURE to estimate global ancestry proportions. We identified 892 differentially methylated genes in prostate tumor tissues as compared with normal tissues. Based on an epigenetic clock model, we observed that the total number of stem cell divisions (TNSC) and stem cell division rate (SCDR) were significantly higher in tumor than adjacent normal tissues. Regarding PCa aggressiveness, 141 differentially methylated genes were identified. Ancestry proportions of PR men were estimated as African, European, and Indigenous American; these were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation profiles associated with risk and aggressiveness of PCa in PR H/L men will shed light on potential mechanisms contributing to PCa disparities in PR population.
Collapse
Affiliation(s)
- Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Jarline Encarnación-Medina
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Carmen Ortiz-Sanchéz
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Raymond Linares
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Joshua Marcial
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Caren Abreu-Takemura
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Natasha Moreno
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Ryan Putney
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Carlos Diaz Osterman
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Liang Wang
- Department of Molecular Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Seung Joon Kim
- Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Korea;
| | - Gilberto Ruiz-Deya
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
34
|
Mc Auley MT. DNA methylation in genes associated with the evolution of ageing and disease: A critical review. Ageing Res Rev 2021; 72:101488. [PMID: 34662746 DOI: 10.1016/j.arr.2021.101488] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Ageing is characterised by a physical decline in biological functioning which results in a progressive risk of mortality with time. As a biological phenomenon, it is underpinned by the dysregulation of a myriad of complex processes. Recently, however, ever-increasing evidence has associated epigenetic mechanisms, such as DNA methylation (DNAm) with age-onset pathologies, including cancer, cardiovascular disease, and Alzheimer's disease. These diseases compromise healthspan. Consequently, there is a medical imperative to understand the link between epigenetic ageing, and healthspan. Evolutionary theory provides a unique way to gain new insights into epigenetic ageing and health. This review will: (1) provide a brief overview of the main evolutionary theories of ageing; (2) discuss recent genetic evidence which has revealed alleles that have pleiotropic effects on fitness at different ages in humans; (3) consider the effects of DNAm on pleiotropic alleles, which are associated with age related disease; (4) discuss how age related DNAm changes resonate with the mutation accumulation, disposable soma and programmed theories of ageing; (5) discuss how DNAm changes associated with caloric restriction intersect with the evolution of ageing; and (6) conclude by discussing how evolutionary theory can be used to inform investigations which quantify age-related DNAm changes which are linked to age onset pathology.
Collapse
Affiliation(s)
- Mark Tomás Mc Auley
- Faculty of Science and Engineering, University of Chester, Exton Park, Chester CH1 4BJ, UK.
| |
Collapse
|
35
|
Mancini M, Grasso M, Muccillo L, Babbio F, Precazzini F, Castiglioni I, Zanetti V, Rizzo F, Pistore C, De Marino MG, Zocchi M, Del Vescovo V, Licursi V, Giurato G, Weisz A, Chiarugi P, Sabatino L, Denti MA, Bonapace IM. DNMT3A epigenetically regulates key microRNAs involved in epithelial-to-mesenchymal transition in prostate cancer. Carcinogenesis 2021; 42:1449-1460. [PMID: 34687205 DOI: 10.1093/carcin/bgab101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 11/14/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) is involved in prostate cancer metastatic progression, and its plasticity suggests epigenetic implications. Deregulation of DNMTs and several miRNAs plays a relevant role in EMT, but their interplay has not been clarified yet. In this study we provide evidence that DNMT3A interaction with several miRNAs has a central role in an ex-vivo EMT prostate cancer model obtained via exposure of PC3 cells to conditioned media from cancer-associated fibroblasts (CM-CAFs). The analysis of the alterations of the miRNA profile shows that miR-200 family (miR-200a/200b/429, miR-200c/141), miR-205, and miR-203, known to modulate key EMT factors, are downregulated and hyper-methylated at their promoters. DNMT3A (mainly isoform a) is recruited onto these miRNA promoters, coupled with the increase of H3K27me3/H3K9me3 and/or the decrease of H3K4me3/H3K36me3. Most interestingly, our results reveal the differential expression of two DNMT3A isoforms (a and b) during ex-vivo EMT and a regulatory feedback loop between miR-429 and DNMT3A that can promote and sustain the transition toward a more mesenchymal phenotype. We demonstrate the ability of miR-429 to target DNMT3A 3'UTR and modulate the expression of EMT factors, in particular ZEB1. Survey of the PRAD-TCGA data set shows that patients expressing an EMT-like signature are indeed characterized by down-regulation of the same miRNAs with a diffused hyper-methylation at miR-200c/141 and miR-200a/200b/429 promoters. Finally, we show that miR-1260a also targets DNMT3A, although it does not seem involved in EMT in prostate cancer.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio (VA), Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Federica Babbio
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio (VA), Italy
| | - Francesca Precazzini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Ilaria Castiglioni
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio (VA), Italy
| | - Valentina Zanetti
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio (VA), Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081 Baronissi, Italy.,Genome Research Center for Health, c/o University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
| | - Christian Pistore
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio (VA), Italy
| | - Maria Giovanna De Marino
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio (VA), Italy
| | - Michele Zocchi
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio (VA), Italy
| | - Valerio Del Vescovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology "Charles Darwin", "Sapienza" University of Rome, Rome, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081 Baronissi, Italy.,Genome Research Center for Health, c/o University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081 Baronissi, Italy.,Genome Research Center for Health, c/o University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
| | - Paola Chiarugi
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Michela Alessandra Denti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, 21052 Busto Arsizio (VA), Italy
| |
Collapse
|
36
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
37
|
Zhang J, Chang Y, Xia H, Xu L, Wei X. HIST1H2BN induced cell proliferation and EMT phenotype in prostate cancer via NF-κB signal pathway. Genes Genomics 2021; 43:1361-1369. [PMID: 34537918 DOI: 10.1007/s13258-021-01164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The potential role of HIST1H2BN in prostate cancer remains unclear. OBJECTIVE To evaluate the carcinogenic role of HIST1H2BN in prostate cancer. METHODS The expression of HIST1H2BN in prostate cancer was analyzed using TCGA database and clinical samples. The roles and mechanisms of HIST1H2BN were investigated in DU145 and PC3 cells. RESULTS HIST1H2BN was significantly upregulated in prostate cancer. HIST1H2BN knockdown inhibited cell proliferation, migration and EMT phenotype in prostate cancer cells. Downregulating HIST1H2BN diminished the expression and binding activity of NF-κB p65, then influenced the expression of MMP2 and MMP9. CONCLUSION : This is the first study to elaborate a HIST1H2BN-NF-κB-EMT regulatory axis in oncogenesis, indicating that HIST1H2BN might be potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yuhan Chang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Haiyan Xia
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Luwei Xu
- Department of Urinary surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
38
|
Silva R, Moran B, Baird AM, O'Rourke CJ, Finn SP, McDermott R, Watson W, Gallagher WM, Brennan DJ, Perry AS. Longitudinal analysis of individual cfDNA methylome patterns in metastatic prostate cancer. Clin Epigenetics 2021; 13:168. [PMID: 34454584 PMCID: PMC8403420 DOI: 10.1186/s13148-021-01155-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 01/27/2023] Open
Abstract
Background Disease progression and therapeutic resistance are hallmarks of advanced stage prostate cancer (PCa), which remains a major cause of cancer-related mortality around the world. Longitudinal studies, coupled with the use of liquid biopsies, offer a potentially new and minimally invasive platform to study the dynamics of tumour progression. Our aim was to investigate the dynamics of personal DNA methylomic profiles of metastatic PCa (mPCa) patients, during disease progression and therapy administration. Results Forty-eight plasma samples from 9 mPCa patients were collected, longitudinally, over 13–21 months. After circulating cell-free DNA (cfDNA) isolation, DNA methylation was profiled using the Infinium MethylationEPIC BeadChip. The top 5% most variable probes across time, within each individual, were utilised to study dynamic methylation patterns during disease progression and therapeutic response. Statistical testing was carried out to identify differentially methylated genes (DMGs) in cfDNA, which were subsequently validated in two independent mPCa (cfDNA and FFPE tissue) cohorts. Individual cfDNA global methylation patterns were temporally stable throughout the disease course. However, a proportion of CpG sites presented a dynamic temporal pattern that was consistent with clinical events, including different therapies, and were prominently associated with genes linked to immune response pathways. Additionally, study of the tumour fraction of cfDNA identified > 2000 DMGs with dynamic methylation patterns. Conclusions Longitudinal assessment of cfDNA methylation in mPCa patients unveiled dynamic patterns associated with disease progression and therapy administration, thus highlighting the potential of using liquid biopsies to study PCa evolution at a methylomic level. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01155-w.
Collapse
Affiliation(s)
- Romina Silva
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,School of Biology and Environmental Science, Science West, O'Brien Science Centre, University College Dublin, Dublin, Ireland
| | - Bruce Moran
- Department of Pathology, St. Vincent's University Hospital, Dublin, Ireland
| | - Anne-Marie Baird
- Department of Clinical Medicine, Trinity College, Dublin, Ireland
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen P Finn
- Department of Clinical Medicine, Trinity College, Dublin, Ireland.,Department of Histopathology, St James's Hospital, Dublin, Ireland
| | - Ray McDermott
- Cancer Trials Ireland, Dublin, Ireland.,Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
| | - William Watson
- School of Medicine, University College Dublin, Dublin, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Donal J Brennan
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland. .,School of Biology and Environmental Science, Science West, O'Brien Science Centre, University College Dublin, Dublin, Ireland.
| |
Collapse
|
39
|
Cheng H, Tang S, Lian X, Meng H, Gu X, Jiang J, Li X. The Differential Antitumor Activity of 5-Aza-2'-deoxycytidine in Prostate Cancer DU145, 22RV1, and LNCaP Cells. J Cancer 2021; 12:5593-5604. [PMID: 34405020 PMCID: PMC8364635 DOI: 10.7150/jca.56709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation is a DNA methyltransferase-mediated epigenetic modification affecting gene expression. This process is involved in the initiation and development of malignant disease. 5-Aza-2'-deoxycytidine (5-Aza), a classic DNA methyltransferase inhibitor, possesses antitumor proliferation activity. However, whether 5-Aza induces cytotoxicity in solid tumors warrants further investigated. In this study, human prostate cancer (CaP) cells were treated with 5-Aza and subjected to cell viability and cytotoxicity analysis. Reverse transcription-polymerase chain reaction and methylation-specific polymerase chain reaction assay were utilized to test the gene expression and methylation status of the p53 and p21 gene promoters. The results showed that 5-Aza differentially inhibited spontaneous proliferation, arrested the cell cycle at S phase in DU145, at G1 phase in 22RV1 and LNCaP cells, and G2 phase in normal RWPE-1 cells, as well as induced the expression of phospho-H2A.X and tumor suppressive mammary serine protease inhibitor (maspin) in all three types of CaP cells. 5-Aza also increased p53 and p21 transcription through promoter demethylation, and decreased the expression of oncogene c-Myc in 22RV1 and LNCaP cells. Western blotting analysis showed that the poly (ADP-ribose) polymerase cleavage was detected in DU145 and 22RV1 cells. Moreover, there were no significant changes in p53, p21 and c-Myc expression in DU145 cells following treatment with 5-Aza. Thus, in responsible for its apoptotic induction and DNA damage, the mechanism of the antitumor activities of 5-Aza may involve in an increase of tumor suppressive maspin, upregulation of wild type p53-mediated p21 expression and a decrease of oncogene c-Myc level in 22RV1 and LNCaP cells, and enhancing the tumor suppressive maspin expression in DU145 cells. These results enriched our understanding of the multifaceted antitumor activity of 5-Aza, and provided the expression basis of biomarkers for its possible clinical application in prostate cancer.
Collapse
Affiliation(s)
- Huiying Cheng
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Sijie Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China.,Dept of Urology, the Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Xueqi Lian
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Hong Meng
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit 48201, MI, USA
| | - Xiang Gu
- Dept of Urology, the Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China
| | - Xiaohua Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Blvd., Zhangjiagang, Suzhou, 215600, China.,The Laboratory of Clinical Genomics, Hefei KingMed Diagnostics Ltd., 2800 Chuangxin Blvd., Building H4, Hefei 230088, China.,National Center for Gene Testing Technology Application & Demonstration(Hefei), 2800 Chuangxin Blvd., Building H4, Hefei 230088, China
| |
Collapse
|
40
|
Multiplexed Prostate Cancer Companion Diagnostic Devices. SENSORS 2021; 21:s21155023. [PMID: 34372259 PMCID: PMC8347987 DOI: 10.3390/s21155023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PCa) remains one of the most prominent forms of cancer for men. Since the early 1990s, Prostate-Specific Antigen (PSA) has been a commonly recognized PCa-associated protein biomarker. However, PSA testing has been shown to lack in specificity and sensitivity when needed to diagnose, monitor and/or treat PCa patients successfully. One enhancement could include the simultaneous detection of multiple PCa-associated protein biomarkers alongside PSA, also known as multiplexing. If conventional methods such as the enzyme-linked immunosorbent assay (ELISA) are used, multiplexed detection of such protein biomarkers can result in an increase in the required sample volume, in the complexity of the analytical procedures, and in adding to the cost. Using companion diagnostic devices such as biosensors, which can be portable and cost-effective with multiplexing capacities, may address these limitations. This review explores recent research for multiplexed PCa protein biomarker detection using optical and electrochemical biosensor platforms. Some of the novel and potential serum-based PCa protein biomarkers will be discussed in this review. In addition, this review discusses the importance of converting research protocols into multiplex point-of-care testing (xPOCT) devices to be used in near-patient settings, providing a more personalized approach to PCa patients’ diagnostic, surveillance and treatment management.
Collapse
|
41
|
Meehan J, Gray M, Martínez-Pérez C, Kay C, McLaren D, Turnbull AK. Tissue- and Liquid-Based Biomarkers in Prostate Cancer Precision Medicine. J Pers Med 2021; 11:jpm11070664. [PMID: 34357131 PMCID: PMC8306523 DOI: 10.3390/jpm11070664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, prostate cancer (PC) is the second-most-frequently diagnosed male cancer and the fifth-most-common cause of all cancer-related deaths. Suspicion of PC in a patient is largely based upon clinical signs and the use of prostate-specific antigen (PSA) levels. Although PSA levels have been criticised for a lack of specificity, leading to PC over-diagnosis, it is still the most commonly used biomarker in PC management. Unfortunately, PC is extremely heterogeneous, and it can be difficult to stratify patients whose tumours are unlikely to progress from those that are aggressive and require treatment intensification. Although PC-specific biomarker research has previously focused on disease diagnosis, there is an unmet clinical need for novel prognostic, predictive and treatment response biomarkers that can be used to provide a precision medicine approach to PC management. In particular, the identification of biomarkers at the time of screening/diagnosis that can provide an indication of disease aggressiveness is perhaps the greatest current unmet clinical need in PC management. Largely through advances in genomic and proteomic techniques, exciting pre-clinical and clinical research is continuing to identify potential tissue, blood and urine-based PC-specific biomarkers that may in the future supplement or replace current standard practices. In this review, we describe how PC-specific biomarker research is progressing, including the evolution of PSA-based tests and those novel assays that have gained clinical approval. We also describe alternative diagnostic biomarkers to PSA, in addition to biomarkers that can predict PC aggressiveness and biomarkers that can predict response to certain therapies. We believe that novel biomarker research has the potential to make significant improvements to the clinical management of this disease in the near future.
Collapse
Affiliation(s)
- James Meehan
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Correspondence:
| | - Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK;
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Duncan McLaren
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh EH4 2XU, UK;
| | - Arran K. Turnbull
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
42
|
Kukkonen K, Taavitsainen S, Huhtala L, Uusi-Makela J, Granberg KJ, Nykter M, Urbanucci A. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers (Basel) 2021; 13:3325. [PMID: 34283056 PMCID: PMC8268970 DOI: 10.3390/cancers13133325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The dysregulation of chromatin and epigenetics has been defined as the overarching cancer hallmark. By disrupting transcriptional regulation in normal cells and mediating tumor progression by promoting cancer cell plasticity, this process has the ability to mediate all defined hallmarks of cancer. In this review, we collect and assess evidence on the contribution of chromatin and epigenetic dysregulation in prostate cancer. We highlight important mechanisms leading to prostate carcinogenesis, the emergence of castration-resistance upon treatment with androgen deprivation therapy, and resistance to antiandrogens. We examine in particular the contribution of chromatin structure and epigenetics to cell lineage commitment, which is dysregulated during tumorigenesis, and cell plasticity, which is altered during tumor progression.
Collapse
Affiliation(s)
- Konsta Kukkonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Joonas Uusi-Makela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Kirsi J. Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
43
|
Ghosh M, Sen S, Sarkar R, Maulik U. Quantum squirrel inspired algorithm for gene selection in methylation and expression data of prostate cancer. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Ylitalo EB, Thysell E, Landfors M, Brattsand M, Jernberg E, Crnalic S, Widmark A, Hultdin M, Bergh A, Degerman S, Wikström P. A novel DNA methylation signature is associated with androgen receptor activity and patient prognosis in bone metastatic prostate cancer. Clin Epigenetics 2021; 13:133. [PMID: 34193246 PMCID: PMC8244194 DOI: 10.1186/s13148-021-01119-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with metastatic prostate cancer (PC) are treated with androgen deprivation therapy (ADT) that initially reduces metastasis growth, but after some time lethal castration-resistant PC (CRPC) develops. A better understanding of the tumor biology in bone metastases is needed to guide further treatment developments. Subgroups of PC bone metastases based on transcriptome profiling have been previously identified by our research team, and specifically, heterogeneities related to androgen receptor (AR) activity have been described. Epigenetic alterations during PC progression remain elusive and this study aims to explore promoter gene methylation signatures in relation to gene expression and tumor AR activity. MATERIALS AND METHODS Genome-wide promoter-associated CpG methylation signatures of a total of 94 tumor samples, including paired non-malignant and malignant primary tumor areas originating from radical prostatectomy samples (n = 12), and bone metastasis samples of separate patients with hormone-naive (n = 14), short-term castrated (n = 4) or CRPC (n = 52) disease were analyzed using the Infinium Methylation EPIC arrays, along with gene expression analysis by Illumina Bead Chip arrays (n = 90). AR activity was defined from expression levels of genes associated with canonical AR activity. RESULTS Integrated epigenome and transcriptome analysis identified pronounced hypermethylation in malignant compared to non-malignant areas of localized prostate tumors. Metastases showed an overall hypomethylation in relation to primary PC, including CpGs in the AR promoter accompanied with induction of AR mRNA levels. We identified a Methylation Classifier for Androgen receptor activity (MCA) signature, which separated metastases into two clusters (MCA positive/negative) related to tumor characteristics and patient prognosis. The MCA positive metastases showed low methylation levels of genes associated with canonical AR signaling and patients had a more favorable prognosis after ADT. In contrast, MCA negative patients had low AR activity associated with hypermethylation of AR-associated genes, and a worse prognosis after ADT. CONCLUSIONS A promoter methylation signature classifies PC bone metastases into two groups and predicts tumor AR activity and patient prognosis after ADT. The explanation for the methylation diversities observed during PC progression and their biological and clinical relevance need further exploration.
Collapse
Affiliation(s)
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Maria Brattsand
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sead Crnalic
- Department of Surgical and Perioperative Sciences, Orthopedics, Umeå University, Umeå, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
45
|
Seonu SY, Kim MJ, Yin J, Lee MW. Alnus sibirica Compounds Exhibiting Anti-Proliferative, Apoptosis-Inducing, and GSTP1 Demethylating Effects on Prostate Cancer Cells. Molecules 2021; 26:molecules26133830. [PMID: 34201712 PMCID: PMC8270241 DOI: 10.3390/molecules26133830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
Alnus sibirica (AS) is distributed in Korea, Japan, China, and Russia and has reported anti-oxidant, anti-inflammatory, and reducing activities on atopic dermatitis-like skin lesions, along with other beneficial health properties. In the present study, we tried to prove the cancer-preventive activity against prostate cancer. The extracted and isolated compounds, oregonin (1), hirsutenone (2), and hirsutanonol (3), which were isolated from AS, were tested for anti-proliferative activity. To do this, we used the MTT assay; NF-κB inhibitory activity, using Western blotting; apoptosis-inducing activity using flow cytometry; DNA methylation activity, using methylation-specific polymerase chain reaction in androgen-dependent (LNCaP) and androgen-independent (PC-3) prostate cancer cell lines. The compounds (1–3) showed potent anti-proliferative activity against both prostate cancer cell lines. Hirsutenone (2) exhibited the strongest NF-κB inhibitory and apoptosis-inducing activities compared with oregonin (1) and hirsutanonol (3). DNA methylation activity, which was assessed for hirsutenone (2), revealed a concentration-dependent enhancement of the unmethylated DNA content and a reduction in the methylated DNA content in both PC-3 and LNCaP cells. Overall, these findings suggest that hirsutenone (2), when isolated from AS, may be a potential agent for preventing the development or progression of prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Min-Won Lee
- Correspondence: ; Tel.: +82-2-820-5602; Fax: +82-2-822-7338
| |
Collapse
|
46
|
Dynamic patterns of DNA methylation in the normal prostate epithelial differentiation program are targets of aberrant methylation in prostate cancer. Sci Rep 2021; 11:11405. [PMID: 34075163 PMCID: PMC8169877 DOI: 10.1038/s41598-021-91037-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding the epigenetic control of normal differentiation programs might yield principal information about critical regulatory states that are disturbed in cancer. We utilized the established non-malignant HPr1-AR prostate epithelial cell model that upon androgen exposure commits to a luminal cell differentiation trajectory from that of a basal-like state. We profile the dynamic transcriptome associated with this transition at multiple time points (0 h, 1 h, 24 h, 96 h), and confirm that expression patterns are strongly indicative of a progressive basal to luminal cell differentiation program based on human expression signatures. Furthermore, we establish dynamic patterns of DNA methylation associated with this program by use of whole genome bisulfite sequencing (WGBS). Expression patterns associated with androgen induced luminal cell differentiation were found to have significantly elevated DNA methylation dynamics. Shifts in methylation profiles were strongly associated with Polycomb repressed regions and to promoters associated with bivalency, and strongly enriched for binding motifs of AR and MYC. Importantly, we found that dynamic DNA methylation patterns observed in the normal luminal cell differentiation program were significant targets of aberrant methylation in prostate cancer. These findings suggest that the normal dynamics of DNA methylation in luminal differentiation contribute to the aberrant methylation patterns in prostate cancer.
Collapse
|
47
|
Rodger EJ, Almomani SN, Ludgate JL, Stockwell PA, Baguley BC, Eccles MR, Chatterjee A. Comparison of Global DNA Methylation Patterns in Human Melanoma Tissues and Their Derivative Cell Lines. Cancers (Basel) 2021; 13:cancers13092123. [PMID: 33924927 PMCID: PMC8124222 DOI: 10.3390/cancers13092123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Cancer cell lines are a defined population of cells, originally sourced from tumour tissue, that can be maintained in culture for an extended period of time. They are a critical laboratory-based model, and are frequently used to unravel mechanisms of cancer cell biology. In all cells, gene activity is in part regulated by DNA methylation, the epigenetic process by which methyl groups are added to DNA. In this study, we demonstrate that at a global level, DNA methylation profiles are globally well conserved, but we identify specific sites that are consistently more methylated in tumour-derived cell lines compared to the original tumour tissue. The genes associated with these common differentially methylated regions are involved in important cellular processes and are strongly enriched for epigenetic mechanisms associated with suppression of gene activity. This study provides a valuable resource for identifying false positives due to cell culture and for better interpretation of future cancer epigenetics studies. Abstract DNA methylation is a heritable epigenetic mark that is fundamental to mammalian development. Aberrant DNA methylation is an epigenetic hallmark of cancer cells. Cell lines are a critical in vitro model and very widely used to unravel mechanisms of cancer cell biology. However, limited data are available to assess whether DNA methylation patterns in tissues are retained when cell lines are established. Here, we provide the first genome-scale sequencing-based methylation map of metastatic melanoma tumour tissues and their derivative cell lines. We show that DNA methylation profiles are globally conserved in vitro compared to the tumour tissue of origin. However, we identify sites that are consistently hypermethylated in cell lines compared to their tumour tissue of origin. The genes associated with these common differentially methylated regions are involved in cell metabolism, cell cycle and apoptosis and are also strongly enriched for the H3K27me3 histone mark and PRC2 complex-related genes. Our data indicate that although global methylation patterns are similar between tissues and cell lines, there are site-specific epigenomic differences that could potentially impact gene expression. Our work provides a valuable resource for identifying false positives due to cell culture and for better interpretation of cancer epigenetics studies in the future.
Collapse
Affiliation(s)
- Euan J. Rodger
- Department of Pathology, Otago Medical School—Dunedin Campus, University of Otago, Dunedin 9054, New Zealand; (S.N.A.); (J.L.L.); (P.A.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand;
- Correspondence: (E.J.R.); (M.R.E.); (A.C.)
| | - Suzan N. Almomani
- Department of Pathology, Otago Medical School—Dunedin Campus, University of Otago, Dunedin 9054, New Zealand; (S.N.A.); (J.L.L.); (P.A.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand;
| | - Jackie L. Ludgate
- Department of Pathology, Otago Medical School—Dunedin Campus, University of Otago, Dunedin 9054, New Zealand; (S.N.A.); (J.L.L.); (P.A.S.)
| | - Peter A. Stockwell
- Department of Pathology, Otago Medical School—Dunedin Campus, University of Otago, Dunedin 9054, New Zealand; (S.N.A.); (J.L.L.); (P.A.S.)
| | - Bruce C. Baguley
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand;
| | - Michael R. Eccles
- Department of Pathology, Otago Medical School—Dunedin Campus, University of Otago, Dunedin 9054, New Zealand; (S.N.A.); (J.L.L.); (P.A.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand;
- Correspondence: (E.J.R.); (M.R.E.); (A.C.)
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School—Dunedin Campus, University of Otago, Dunedin 9054, New Zealand; (S.N.A.); (J.L.L.); (P.A.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand;
- Correspondence: (E.J.R.); (M.R.E.); (A.C.)
| |
Collapse
|
48
|
Distinct DNA methylation patterns associated with treatment resistance in metastatic castration resistant prostate cancer. Sci Rep 2021; 11:6630. [PMID: 33758253 PMCID: PMC7988053 DOI: 10.1038/s41598-021-85812-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
Androgens are a major driver of prostate cancer (PCa) and continue to be a critical treatment target for advanced disease, which includes castration therapy and antiandrogens. However, resistance to these therapies leading to metastatic castration-resistant prostate cancer (mCRPC), and the emergence of treatment-induced neuroendocrine disease (tNEPC) remains an ongoing challenge. Instability of the DNA methylome is well established as a major hallmark of PCa development and progression. Therefore, investigating the dynamics of the methylation changes going from the castration sensitive to the tNEPC state would provide insights into novel mechanisms of resistance. Using an established xenograft model of CRPC, genome-wide methylation analysis was performed on cell lines representing various stages of PCa progression. We confirmed extensive methylation changes with the development of CRPC and tNEPC using this model. This included key genes and pathways associated with cellular differentiation and neurodevelopment. Combined analysis of methylation and gene expression changes further highlighted genes that could potentially serve as therapeutic targets. Furthermore, tNEPC-related methylation signals from this model were detectable in circulating cell free DNA (cfDNA) from mCRPC patients undergoing androgen-targeting therapies and were associated with a faster time to clinical progression. These potential biomarkers could help with identifying patients with aggressive disease.
Collapse
|
49
|
Singh VK, Pal R, Srivastava P, Misra G, Shukla Y, Sharma PK. Exposure of androgen mimicking environmental chemicals enhances proliferation of prostate cancer (LNCaP) cells by inducing AR expression and epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116397. [PMID: 33433340 DOI: 10.1016/j.envpol.2020.116397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/07/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Exposure to environmental endocrine disrupting chemicals (EDCs) is highly suspected in prostate carcinogenesis. Though, estrogenicity is the most studied behavior of EDCs, the androgenic potential of most of the EDCs remains elusive. This study investigates the androgen mimicking potential of some common EDCs and their effect in androgen-dependent prostate cancer (LNCaP) cells. Based on the In silico interaction study, all the 8 EDCs tested were found to interact with androgen receptor with different binding energies. Further, the luciferase reporter activity confirmed the androgen mimicking potential of 4 EDCs namely benzo[a]pyrene, dichlorvos, genistein and β-endosulfan. Whereas, aldrin, malathion, tebuconazole and DDT were reported as antiandrogenic in luciferase reporter activity assay. Next, the nanomolar concentration of androgen mimicking EDCs (benzo[a]pyrene, dichlorvos, genistein and β-endosulfan) significantly enhanced the expression of AR protein and subsequent nuclear translocation in LNCaP cells. Our In silico studies further demonstrated that androgenic EDCs also bind with epigenetic regulatory enzymes namely DNMT1 and HDAC1. Moreover, exposure to these EDCs enhanced the protein expression of DNMT1 and HDAC1 in LNCaP cells. These observations suggest that EDCs may regulate proliferation in androgen sensitive LNCaP cells by acting as androgen mimicking ligands for AR signaling as well as by regulating epigenetic machinery. Both androgenic potential and epigenetic modulatory effects of EDCs may underlie the development and growth of prostate cancer.
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajesh Pal
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Priyansh Srivastava
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Gauri Misra
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Yogeshwer Shukla
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep Kumar Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
50
|
Zhu A, Hopkins KM, Friedman RA, Bernstock JD, Broustas CG, Lieberman HB. DNMT1 and DNMT3B regulate tumorigenicity of human prostate cancer cells by controlling RAD9 expression through targeted methylation. Carcinogenesis 2021; 42:220-231. [PMID: 32780107 PMCID: PMC7905840 DOI: 10.1093/carcin/bgaa088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the second most common type of cancer and the second leading cause of cancer death in American men. RAD9 stabilizes the genome, but prostate cancer cells and tumors often have high quantities of the protein. Reduction of RAD9 level within prostate cancer cells decreases tumorigenicity of nude mouse xenographs and metastasis phenotypes in culture, indicating that RAD9 overproduction is essential for the disease. In prostate cancer DU145 cells, CpG hypermethylation in a transcription suppressor site of RAD9 intron 2 causes high-level gene expression. Herein, we demonstrate that DNA methyltransferases DNMT1 and DNMT3B are highly abundant in prostate cancer cells DU145, CWR22, LNCaP and PC-3; yet, these DNMTs bind primarily to the transcription suppressor in DU145, the only cells where methylation is critical for RAD9 regulation. For DU145 cells, DNMT1 or DNMT3B shRNA reduced RAD9 level and tumorigenicity, and RAD9 ectopic expression restored this latter activity in the DNMT knockdown cells. High levels of RAD9, DNMT1, DNMT3B and RAD9 transcription suppressor hypermethylation were significantly correlated in prostate tumors, and not in normal prostate tissues. Based on these results, we propose a novel model where RAD9 is regulated epigenetically by DNMT1 and DNMT3B, via targeted hypermethylation, and that consequent RAD9 overproduction promotes prostate tumorigenesis.
Collapse
Affiliation(s)
- Aiping Zhu
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kevin M Hopkins
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Joshua D Bernstock
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|