1
|
Yoshitake R, Mori H, Ha D, Wu X, Wang J, Wang X, Saeki K, Chang G, Shim HJ, Chan Y, Chen S. Molecular features of luminal breast cancer defined through spatial and single-cell transcriptomics. Clin Transl Med 2024; 14:e1548. [PMID: 38282415 PMCID: PMC10823285 DOI: 10.1002/ctm2.1548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Intratumour heterogeneity is a hallmark of most solid tumours, including breast cancers. We applied spatial transcriptomics and single-cell RNA-sequencing on patient-derived xenografts (PDXs) to profile spatially resolved cell populations within oestrogen receptor-positive (ER+ ) breast cancer and to elucidate their importance in oestrogen-dependent tumour growth. METHODS Two PDXs of 'ER-high' breast cancers with opposite oestrogen-mediated growth responses were investigated: oestrogen-suppressed GS3 (80-100% ER) and oestrogen-dependent SC31 (40-90% ER) models. The observation was validated via single-cell analyses on an 'ER-low' PDX, GS1 (5% ER). The results from our spatial and single-cell analyses were further supported by a public ER+ breast cancer single-cell dataset and protein-based dual immunohistochemistry (IHC) of SC31 examining important luminal cancer markers (i.e., ER, progesterone receptor and Ki67). The translational implication of our findings was assessed by clinical outcome analyses on publicly available cohorts. RESULTS Our space-gene-function study revealed four spatially distinct compartments within ER+ breast cancers. These compartments showed functional diversity (oestrogen-responsive, proliferative, hypoxia-induced and inflammation-related). The 'proliferative' population, rather than the 'oestrogen-responsive' compartment, was crucial for oestrogen-dependent tumour growth, leading to the acquisition of luminal B-like features. The cells expressing typical oestrogen-responsive genes like PGR were not directly linked to oestrogen-dependent proliferation. Dual IHC analyses demonstrated the distinct contribution of the Ki67+ proliferative cells toward oestrogen-mediated growth and their response to a CDK4/6 inhibitor. The gene signatures derived from the proliferative, hypoxia-induced and inflammation-related compartments were significantly correlated with worse clinical outcomes, while patients with the oestrogen-responsive signature showed better prognoses, suggesting that this compartment would not be directly associated with oestrogen-dependent tumour progression. CONCLUSIONS Our study identified the gene signature in our 'proliferative' compartment as an important determinant of luminal cancer subtypes. This 'proliferative' cell population is a causative feature of luminal B breast cancer, contributing toward its aggressive behaviours.
Collapse
Affiliation(s)
- Ryohei Yoshitake
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Hitomi Mori
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
- Department of Surgery and OncologyGraduate School of Medicine, Kyushu UniversityFukuokaJapan
| | - Desiree Ha
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Xiwei Wu
- Integrative Genomics CoreBeckman Research Institute of City of HopeMonroviaCaliforniaUSA
| | - Jinhui Wang
- Integrative Genomics CoreBeckman Research Institute of City of HopeMonroviaCaliforniaUSA
| | - Xiaoqiang Wang
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Kohei Saeki
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
- Faculty of Veterinary MedicineOkayama University of ScienceImabariEhimeJapan
| | - Gregory Chang
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Hyun Jeong Shim
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Yin Chan
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Shiuan Chen
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| |
Collapse
|
2
|
Hogstrom JM, Cruz KA, Selfors LM, Ward MN, Mehta TS, Kanarek N, Philips J, Dialani V, Wulf G, Collins LC, Patel JM, Muranen T. Simultaneous isolation of hormone receptor-positive breast cancer organoids and fibroblasts reveals stroma-mediated resistance mechanisms. J Biol Chem 2023; 299:105021. [PMID: 37423299 PMCID: PMC10415704 DOI: 10.1016/j.jbc.2023.105021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Recurrent hormone receptor-positive (HR+) breast cancer kills more than 600,000 women annually. Although HR+ breast cancers typically respond well to therapies, approximately 30% of patients relapse. At this stage, the tumors are usually metastatic and incurable. Resistance to therapy, particularly endocrine therapy is typically thought to be tumor intrinsic (e.g., estrogen receptor mutations). However, tumor-extrinsic factors also contribute to resistance. For example, stromal cells, such as cancer-associated fibroblasts (CAFs), residing in the tumor microenvironment, are known to stimulate resistance and disease recurrence. Recurrence in HR+ disease has been difficult to study due to the prolonged clinical course, complex nature of resistance, and lack of appropriate model systems. Existing HR+ models are limited to HR+ cell lines, a few HR+ organoid models, and xenograft models that all lack components of the human stroma. Therefore, there is an urgent need for more clinically relevant models to study the complex nature of recurrent HR+ breast cancer, and the factors contributing to treatment relapse. Here, we present an optimized protocol that allows a high take-rate, and simultaneous propagation of patient-derived organoids (PDOs) and matching CAFs, from primary and metastatic HR+ breast cancers. Our protocol allows for long-term culturing of HR+ PDOs that retain estrogen receptor expression and show responsiveness to hormone therapy. We further show the functional utility of this system by identifying CAF-secreted cytokines, such as growth-regulated oncogene α , as stroma-derived resistance drivers to endocrine therapy in HR+ PDOs.
Collapse
Affiliation(s)
- Jenny M Hogstrom
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kayla A Cruz
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Madelyn N Ward
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tejas S Mehta
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jordana Philips
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Vandana Dialani
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerburg Wulf
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura C Collins
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jaymin M Patel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Taru Muranen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Yoshitake R, Mori H, Ha D, Wu X, Wang J, Wang X, Saeki K, Chang G, Shim HJ, Chan Y, Chen S. Identification and characterization of a proliferative cell population in estrogen receptor-positive metastatic breast cancer through spatial and single-cell transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526403. [PMID: 36778271 PMCID: PMC9915610 DOI: 10.1101/2023.01.31.526403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Intratumor heterogeneity is a hallmark of most solid tumors, including breast cancers. We applied spatial transcriptomics and single-cell RNA-sequencing technologies to profile spatially resolved cell populations within estrogen receptor-positive (ER + ) metastatic breast cancers and elucidate their importance in estrogen-dependent tumor growth. Methods Spatial transcriptomics and single-cell RNA-sequencing were performed on two patient-derived xenografts (PDXs) of "ER-high" metastatic breast cancers with opposite estrogen-mediated growth responses: estrogen-suppressed GS3 (80-100% ER) and estrogen-stimulated SC31 (30-75% ER) models. The analyses included samples treated with and without 17β-estradiol. The findings were validated via scRNA-seq analyses on "ER-low" estrogen-accelerating PDX, GS1 (5% ER). The results from our spatial and single-cell analyses were further supported by the analysis of a publicly available single cell dataset and a protein-based dual immunohistochemical (IHC) evaluation using three important clinical markers [i.e., ER, progesterone receptor (PR), and Ki67]. The translational implication of these results was assessed by clinical outcome analyses on public breast cancer cohorts. Results Our novel space-gene-function study revealed a "proliferative" cell population in addition to three major spatially distinct compartments within ER + metastatic breast cancers. These compartments showed functional diversity (i.e., estrogen-responsive, proliferative, hypoxia-induced, and inflammation-related). The "proliferative ( MKI67 + )" population, not "estrogen-responsive" compartment, was crucial for estrogen-dependent tumor growth, leading to the acquisition of luminal B features. The cells with induction of typical estrogen-responsive genes such as PGR were not directly linked to estrogen-dependent proliferation. Additionally, the dual IHC analyses demonstrated the distinct contribution of the Ki67 + proliferative cells toward estrogen-mediated growth and their response to palbociclib, a CDK4/6 inhibitor. The gene signatures developed from the proliferative, hypoxia-induced, and inflammation-related compartments were significantly correlated with worse clinical outcomes, while patients with the high estrogen-responsive scores showed better prognosis, confirming that the estrogen-responsive compartment would not be directly associated with estrogen-dependent tumor progression. Conclusions For the first time, our study elucidated a "proliferative" cell population distinctly distributed in ER + metastatic breast cancers. They contribute differently toward progression of these cancers, and the gene signature in the "proliferative" compartment is an important determinant of luminal cancer subtypes.
Collapse
|
4
|
Pandya PH, Jannu AJ, Bijangi-Vishehsaraei K, Dobrota E, Bailey BJ, Barghi F, Shannon HE, Riyahi N, Damayanti NP, Young C, Malko R, Justice R, Albright E, Sandusky GE, Wurtz LD, Collier CD, Marshall MS, Gallagher RI, Wulfkuhle JD, Petricoin EF, Coy K, Trowbridge M, Sinn AL, Renbarger JL, Ferguson MJ, Huang K, Zhang J, Saadatzadeh MR, Pollok KE. Integrative Multi-OMICs Identifies Therapeutic Response Biomarkers and Confirms Fidelity of Clinically Annotated, Serially Passaged Patient-Derived Xenografts Established from Primary and Metastatic Pediatric and AYA Solid Tumors. Cancers (Basel) 2022; 15:259. [PMID: 36612255 PMCID: PMC9818438 DOI: 10.3390/cancers15010259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Establishment of clinically annotated, molecularly characterized, patient-derived xenografts (PDXs) from treatment-naïve and pretreated patients provides a platform to test precision genomics-guided therapies. An integrated multi-OMICS pipeline was developed to identify cancer-associated pathways and evaluate stability of molecular signatures in a panel of pediatric and AYA PDXs following serial passaging in mice. Original solid tumor samples and their corresponding PDXs were evaluated by whole-genome sequencing, RNA-seq, immunoblotting, pathway enrichment analyses, and the drug−gene interaction database to identify as well as cross-validate actionable targets in patients with sarcomas or Wilms tumors. While some divergence between original tumor and the respective PDX was evident, majority of alterations were not functionally impactful, and oncogenic pathway activation was maintained following serial passaging. CDK4/6 and BETs were prioritized as biomarkers of therapeutic response in osteosarcoma PDXs with pertinent molecular signatures. Inhibition of CDK4/6 or BETs decreased osteosarcoma PDX growth (two-way ANOVA, p < 0.05) confirming mechanistic involvement in growth. Linking patient treatment history with molecular and efficacy data in PDX will provide a strong rationale for targeted therapy and improve our understanding of which therapy is most beneficial in patients at diagnosis and in those already exposed to therapy.
Collapse
Affiliation(s)
- Pankita H. Pandya
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Asha Jacob Jannu
- Department of Biostatistics & Health Data Science Indiana, University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erika Dobrota
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Barbara J. Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Farinaz Barghi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harlan E. Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Niknam Riyahi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nur P. Damayanti
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Courtney Young
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rada Malko
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryli Justice
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric Albright
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - L. Daniel Wurtz
- Department of Orthopedics Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher D. Collier
- Department of Orthopedics Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark S. Marshall
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rosa I. Gallagher
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Julia D. Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Kathy Coy
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa Trowbridge
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anthony L. Sinn
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie L. Renbarger
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael J. Ferguson
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kun Huang
- Department of Biostatistics & Health Data Science Indiana, University School of Medicine, Indianapolis, IN 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - M. Reza Saadatzadeh
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E. Pollok
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Bahnassy S, Sikora MJ, Riggins RB. Unlocking the Mysteries of Lobular Breast Cancer Biology Needs the Right Combination of Preclinical Models. Mol Cancer Res 2022; 20:837-840. [PMID: 35276005 DOI: 10.1158/1541-7786.mcr-22-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Preclinical model systems are essential research tools that help us understand the biology of invasive lobular carcinoma of the breast (ILC). The number of well-established ILC models are increasing but remain limited. Lower incidence of ILC, under-representation of ILC patients in clinical trials, and intrinsic ILC tumor characteristics all contribute to this challenge. Hence, there is significant need to continually develop better model systems to recapitulate the essential characteristics of ILC biology, genetics, and histology, and empower preclinical therapeutic studies to be translated back into the clinic. In this Perspective, we highlight recent advances in in vivo experimental models, which recapitulate key features of ILC biology and disease progression and potentially reshape the future of ILC translational research. We assert that all existing in vitro and in vivo ILC preclinical models have their strengths and weaknesses, and that it is necessary to bridge key deficiencies in each model context as we move forward with ILC research. Thus, unlocking the mysteries of ILC will be best achieved by choosing the right combination of preclinical model systems.
Collapse
Affiliation(s)
- Shaymaa Bahnassy
- Georgetown University, Washington, District of Columbia, United States
| | - Matthew J Sikora
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rebecca B Riggins
- Georgetown University Medical Center - Lombardi Comprehensive Cancer Center, Washington, District of Columbia, United States
| |
Collapse
|
6
|
Wang Y, Chen S. TXNIP Links Anticipatory Unfolded Protein Response to Estrogen Reprogramming Glucose Metabolism in Breast Cancer Cells. Endocrinology 2022; 163:6382455. [PMID: 34614512 PMCID: PMC8570585 DOI: 10.1210/endocr/bqab212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Estrogen and estrogen receptor (ER) play a fundamental role in breast cancer. To support the rapid proliferation of ER+ breast cancer cells, estrogen increases glucose uptake and reprograms glucose metabolism. Meanwhile, estrogen/ER activates the anticipatory unfolded protein response (UPR) preparing cancer cells for the increased protein production required for subsequent cell proliferation. Here, we report that thioredoxin-interacting protein (TXNIP) is an important regulator of glucose metabolism in ER+ breast cancer cells, and estrogen/ER increases glucose uptake and reprograms glucose metabolism via activating anticipatory UPR and subsequently repressing TXNIP expression. In 2 widely used ER+ breast cancer cell lines, MCF7 and T47D, we showed that MCF7 cells express high TXNIP levels and exhibit mitochondrial oxidative phosphorylation (OXPHOS) phenotype, while T47D cells express low TXNIP levels and display aerobic glycolysis (Warburg effect) phenotype. Knockdown of TXNIP promoted glucose uptake and Warburg effect, while forced overexpression of TXNIP inhibited glucose uptake and Warburg effect. We further showed that estrogen represses TXNIP expression and activates UPR sensor inositol-requiring enzyme 1 (IRE1) via ER in the breast cancer cells, and IRE1 activity is required for estrogen suppression of TXNIP expression and estrogen-induced cell proliferation. Our study suggests that TXNIP is involved in estrogen-induced glucose uptake and metabolic reprogramming in ER+ breast cancer cells and links anticipatory UPR to estrogen reprogramming glucose metabolism.
Collapse
Affiliation(s)
- Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Correspondence: Shiuan Chen, PhD, Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
7
|
Mori H, Saeki K, Chang G, Wang J, Wu X, Hsu PY, Kanaya N, Wang X, Somlo G, Nakamura M, Bild A, Chen S. Influence of Estrogen Treatment on ESR1+ and ESR1- Cells in ER + Breast Cancer: Insights from Single-Cell Analysis of Patient-Derived Xenograft Models. Cancers (Basel) 2021; 13:cancers13246375. [PMID: 34944995 PMCID: PMC8699443 DOI: 10.3390/cancers13246375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary The benefit of endocrine therapy is normally observed for cancers with 10% or more of cells positive for ER expression. We compared the gene expression profiles in both ESR1+ and ESR1– cells in ER+ tumors following estrogen treatment. Our single-cell RNA sequencing analysis of estrogen-stimulated (SC31) and estrogen-suppressed (GS3) patient-derived xenograft models offered an unprecedented opportunity to address the molecular and functional differences between ESR1+ and ESR1– cells. While estrogen should activate ERα and stimulate ESR1+ cells, our findings regarding ESR1– cells were important, indicating that the proliferation of ESR1– cells in ER+ cancer is also influenced by estrogen. Another valuable finding from our studies was that estrogen also upregulated a tumor-suppressor gene, IL-24, only in GS3. Estrogen increased the percentage of cells expressing IL-24, associated with the estrogen-dependent inhibition of GS3 tumor growth. Abstract A 100% ER positivity is not required for an endocrine therapy response. Furthermore, while estrogen typically promotes the progression of hormone-dependent breast cancer via the activation of estrogen receptor (ER)-α, estrogen-induced tumor suppression in ER+ breast cancer has been clinically observed. With the success in establishing estrogen-stimulated (SC31) and estrogen-suppressed (GS3) patient-derived xenograft (PDX) models, single-cell RNA sequencing analysis was performed to determine the impact of estrogen on ESR1+ and ESR1– tumor cells. We found that 17β-estradiol (E2)-induced suppression of GS3 transpired through wild-type and unamplified ERα. E2 upregulated the expression of estrogen-dependent genes in both SC31 and GS3; however, E2 induced cell cycle advance in SC31, while it resulted in cell cycle arrest in GS3. Importantly, these gene expression changes occurred in both ESR1+ and ESR1– cells within the same breast tumors, demonstrating for the first time a differential effect of estrogen on ESR1– cells. E2 also upregulated a tumor-suppressor gene, IL-24, in GS3. The apoptosis gene set was upregulated and the G2M checkpoint gene set was downregulated in most IL-24+ cells after E2 treatment. In summary, estrogen affected pathologically defined ER+ tumors differently, influencing both ESR1+ and ESR1– cells. Our results also suggest IL-24 to be a potential marker of estrogen-suppressed tumors.
Collapse
Affiliation(s)
- Hitomi Mori
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA; (H.M.); (K.S.); (G.C.); (P.-Y.H.); (N.K.); (X.W.)
- Department of Surgery and Oncology, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Kohei Saeki
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA; (H.M.); (K.S.); (G.C.); (P.-Y.H.); (N.K.); (X.W.)
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA; (H.M.); (K.S.); (G.C.); (P.-Y.H.); (N.K.); (X.W.)
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, 655 Huntington Drive, Monrovia, CA 91016, USA; (J.W.); (X.W.)
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, 655 Huntington Drive, Monrovia, CA 91016, USA; (J.W.); (X.W.)
| | - Pei-Yin Hsu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA; (H.M.); (K.S.); (G.C.); (P.-Y.H.); (N.K.); (X.W.)
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA; (H.M.); (K.S.); (G.C.); (P.-Y.H.); (N.K.); (X.W.)
| | - Xiaoqiang Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA; (H.M.); (K.S.); (G.C.); (P.-Y.H.); (N.K.); (X.W.)
| | - George Somlo
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA; (G.S.); (A.B.)
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Andrea Bild
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA; (G.S.); (A.B.)
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA; (H.M.); (K.S.); (G.C.); (P.-Y.H.); (N.K.); (X.W.)
- Correspondence: ; Tel.: +1-626-218-3454; Fax: +1-626-301-8972
| |
Collapse
|
8
|
Lingyun H, Ailing L, Yali L, Yanqin Y, Jing N. Expression of CUE domain containing 2 protein in serous ovarian cancer tissue: predicting disease-free and overall survival of patients. J Int Med Res 2021; 48:300060520954770. [PMID: 32967504 PMCID: PMC7521062 DOI: 10.1177/0300060520954770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective The aim of this study was to predict disease-free (DFS) and overall (OS) survival of cancer patients through expression of CUE domain containing 2 (CUEDC2) protein. Methods In this retrospective study, we investigated CUEDC2 expression in 75 serous ovarian cancer tissues and 34 tubal fimbria tissues by immunohistochemistry. Chemoresistance was analyzed using clinical follow-up data. Results CUEDC2 expression scores were 1.35 ± 0.60, 1.54 ± 0.57, 1.78 ± 0.71, and 2.13 ± 0.27 for International Federation of Gynecology and Obstetrics (FIGO) stages I, II, III, and IV tissues, respectively, indicating that CUEDC2 expression increased with stage and that scores differed between patients with early and advanced cancers. We found no differences in CUEDC2 expression for tissues with low, medium, and high differentiation. CUEDC2 expression was unrelated to patient age, pathological grade, or presence or absence of lymph node metastasis, but was related to tumor stage. For CUEDC2-positive patients, median DFS and OS survival were 32.6 and 54.3 months, respectively. For CUEDC2-negative patients, median DFS and OS were 51.9 and 63.5 months, respectively. Expression of CUEDC2 was correlated with DFS but not OS. Conclusion CUEDC2 is highly expressed in ovarian cancer tissues and is related to tumor stage and DFS.
Collapse
Affiliation(s)
- Hu Lingyun
- Department of Gynecology and Obstetrics, PLA General Hospital, Beijing, China
| | - Li Ailing
- Center of Instrument, Academy of Military Medical Sciences, Beijing, China
| | - Li Yali
- Department of Gynecology and Obstetrics, PLA General Hospital, Beijing, China
| | - You Yanqin
- Department of Gynecology and Obstetrics, PLA General Hospital, Beijing, China
| | - Ning Jing
- Department of Gynecology and Obstetrics, Hainan Hospital of PLA General Hospital, Hainan, China
| |
Collapse
|
9
|
Kay C, Martínez-Pérez C, Meehan J, Gray M, Webber V, Dixon JM, Turnbull AK. Current trends in the treatment of HR+/HER2+ breast cancer. Future Oncol 2021; 17:1665-1681. [PMID: 33726508 DOI: 10.2217/fon-2020-0504] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Treatment for HR+/HER2+ patients has been debated, as some tumors within this luminal HER2+ subtype behave like luminal A cancers, whereas others behave like non-luminal HER2+ breast cancers. Recent research and clinical trials have revealed that a combination of hormone and targeted anti-HER2 approaches without chemotherapy provides long-term disease control for at least some HR+/HER2+ patients. Novel anti-HER2 therapies, including neratinib and trastuzumab emtansine, and new agents that are effective in HR+ cancers, including the next generation of oral selective estrogen receptor downregulators/degraders and CDK4/6 inhibitors such as palbociclib, are now being evaluated in combination. This review discusses current trials and results from previous studies that will provide the basis for current recommendations on how to treat newly diagnosed patients with HR+/HER2+ disease.
Collapse
Affiliation(s)
- Charlene Kay
- Translational Oncology Research Group, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.,Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.,Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - James Meehan
- Translational Oncology Research Group, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Mark Gray
- The Royal (Dick) School of Veterinary Studies & Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Victoria Webber
- Edinburgh Breast Unit, Western General Hospital, NHS Lothian, Edinburgh, EH4 2XU, UK
| | - J Michael Dixon
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.,Edinburgh Breast Unit, Western General Hospital, NHS Lothian, Edinburgh, EH4 2XU, UK
| | - Arran K Turnbull
- Translational Oncology Research Group, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.,Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
10
|
Wang X, Petrossian K, Huang MJ, Saeki K, Kanaya N, Chang G, Somlo G, Chen S. Functional characterization of androgen receptor in two patient-derived xenograft models of triple negative breast cancer. J Steroid Biochem Mol Biol 2021; 206:105791. [PMID: 33271252 PMCID: PMC8820229 DOI: 10.1016/j.jsbmb.2020.105791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Extensive efforts, through cell line-based models, have been made to characterize the androgen receptor (AR) signaling pathway in triple-negative breast cancer (TNBC). However, these efforts have not yet reached a consensus with regards to the mechanism of AR in TNBC. Considering that patient-derived xenografts (PDXs) are more appropriate than cell line-based models for recapitulating the structural and molecular features of a patient's tumor, we have identified and molecularly characterized two new AR-positive TNBC PDX models and assessed the impacts of AR agonist [dihydrotestosterone (DHT)] and antagonist (enzalutamide) on tumor growth and gene expression profiles by utilizing immunohistochemistry, western blots, and RNA-Seq analyses. Two PDX models, termed TN1 and TN2, were derived from two grade-3 TNBC tumors, each harboring 1∼5% of AR nuclear positive cancer cells. DHT activated AR in both PDX tumors by increasing nuclear localization and AR protein levels. However, the endpoint tumor volume of DHT-treated TN1 was 3-folds smaller than that of non-treated TN1 tumors. Conversely, the endpoint tumor volume of DHT-treated TN2 was 2-folds larger than that of non-treated TN2. Moreover, enzalutamide failed to antagonize DHT-induced tumor growth in TN2. The RNA-Seq analyses revealed that DHT mainly suppressed gene expression in TN1 (961 down-regulated genes versus 149 up-regulated genes), while DHT promoted gene expression in TN2 (673 up-regulated genes versus 192 down-regulated genes). RNA-Seq data predicted distinct TNBC molecular subtypes for TN1 and TN2. TN1 correlated to a basal-like 1 (BL1) subtype, and TN2 correlated to a basal-like 2 (BL2) subtype. These analyses suggest that TN1 and TN2, which both express functional AR, are two molecularly distinct PDX models. The molecular characterization of these PDX models expands our current knowledge on AR-positive TNBC. Our results do not support that AR is a suitable therapeutic target in TNBC. To our best knowledge, the molecular mechanisms of AR in TNBC are equivocal and should be evaluated using clinically relevant models, considering both the heterogeneous expression of AR in TNBC and the general complexities of AR signaling.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Karineh Petrossian
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Miao-Juei Huang
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Kohei Saeki
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Noriko Kanaya
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Gregory Chang
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - George Somlo
- Department of Medical Oncology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.
| |
Collapse
|
11
|
Kanaya N, Bernal L, Chang G, Yamamoto T, Nguyen D, Wang YZ, Park JS, Warden C, Wang J, Wu X, Synold T, Rakoff M, Neuhausen SL, Chen S. Molecular Mechanisms of Polybrominated Diphenyl Ethers (BDE-47, BDE-100, and BDE-153) in Human Breast Cancer Cells and Patient-Derived Xenografts. Toxicol Sci 2020; 169:380-398. [PMID: 30796839 DOI: 10.1093/toxsci/kfz054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in household materials. Their environmental persistence has led to continuous human exposure and significant tissue levels. Three PBDE congeners (BDE-47, BDE-100, and BDE-153) have been frequently detected in human serum. Although these compounds appear to possess endocrine disrupting activity, studies are largely missing to determine the biological mechanisms of PBDEs in breast cancer cells. Here, we assessed PBDE bioactivities with three complementary strategies: receptor binding/activity assays; nonbiased RNA-sequencing analysis using an estrogen-dependent breast cancer cell line MCF-7aroERE; and in vivo assessments using patient-derived xenograft (PDX) models of human breast cancer. According to the results from in vitro experiments, the PBDE congeners regulate distinct nuclear receptor signaling pathways. BDE-47 acts as a weak agonist of both estrogen receptor α (ERα) and estrogen-related receptor α (ERRα); it could stimulate proliferation of MCF-7aroERE and induced expression of ER-regulated genes (including cell cycle genes). BDE-153 was found to act as a weak antagonist of ERα. BDE-100 could act as (1) an agonist of aryl hydrocarbon receptor (AhR), inducing expression of CYP1A1 and CYP1B1 and (2) as a very weak agonist/antagonist of ERα. In vivo, a mixture of the three congeners with ratios detected in human serum was tested in an ER+ PDX model. The mixture exhibited estrogenic activity through apoptosis/cell cycle regulation and increased the expression of a proliferation marker, Ki-67. These results advance our understanding of the mechanisms of PBDE exposure in breast cancer cells.
Collapse
Affiliation(s)
- Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Takuro Yamamoto
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Duc Nguyen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Yuan-Zhong Wang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, Berkeley, California 94710
| | - Charles Warden
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Timothy Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Michele Rakoff
- Breast Cancer Care & Research Fund, Los Angeles, California 90036
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| |
Collapse
|
12
|
Tumor shedding and metastatic progression after tumor excision in patient-derived orthotopic xenograft models of triple-negative breast cancer. Clin Exp Metastasis 2020; 37:413-424. [PMID: 32335861 DOI: 10.1007/s10585-020-10033-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Patient-derived orthotopic xenograft (PDOX) models have been verified as a useful method for studying human cancers in mice. Previous studies on the extent of metastases in these models have been limited by the necessity of welfare euthanasia (primary tumors reaching threshold size), at which point metastases may only be micrometers in diameter, few in number, and solely identified by step-sectioning of formalin-fixed paraffin-embedded tissue. These small micro-metastases are less suitable for many downstream molecular analyses than macro-metastases. Resection of the primary tumor by survival surgery has been proven to allow further time for metastases to grow. Although PDOX models of triple-negative breast cancer (TNBC) shed circulating tumor cells (CTCs) into the bloodstream and metastasize, similar to human TNBC, little data has been collected in these TNBC PDOX models regarding the association between CTC characteristics and distant metastasis following excision of the primary tumor xenograft. This study assembles a timeline of PDOX tumor shedding and metastatic tumor progression before and after tumor excision surgery. We report the ability to use tumorectomies to increase the lifespan of TNBC PDOX models with the potential to obtain larger metastases. CTC clusters and CTCs expressing a mesenchymal marker (vimentin) were associated with metastatic burden in lung and liver. The data collected through these experiments will guide the further use of PDOX models in studying metastatic TNBC.
Collapse
|
13
|
Shi J, Li Y, Jia R, Fan X. The fidelity of cancer cells in PDX models: Characteristics, mechanism and clinical significance. Int J Cancer 2019; 146:2078-2088. [PMID: 31479514 DOI: 10.1002/ijc.32662] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022]
Abstract
Patient-derived xenograft (PDX) models are widely used as preclinical cancer models and are considered better than cell culture models in recapitulating the histological features, molecular characteristics and intratumoral heterogeneity (ITH) of human tumors. While the PDX model is commonly accepted for use in drug discovery and other translational studies, a growing body of evidence has suggested its limitations. Recently, the fidelity of cancer cells within a PDX has been questioned, which may impede the future application of these models. In this review, we will focus the variable phenotypes of xenograft tumors and the genomic instability and molecular inconsistency of PDX tumors after serial transplantation. Next, we will discuss the underlying mechanism of ITH and its clinical relevance. Stochastic selection bias in the sampling process and/or deterministic clonal dynamics due to murine selective pressure may have detrimental effects on the results of personalized medicine and drug screening studies. In addition, we aim to identify a possible solution for the issue of fidelity in current PDX models and to discuss emerging next-generation preclinical models.
Collapse
Affiliation(s)
- Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Patient-Derived Xenograft Models of Breast Cancer and Their Application. Cells 2019; 8:cells8060621. [PMID: 31226846 PMCID: PMC6628218 DOI: 10.3390/cells8060621] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, patient-derived xenograft (PDX) models of many types of tumors including breast cancer have emerged as a powerful tool for predicting drug efficacy and for understanding tumor characteristics. PDXs are established by the direct transfer of human tumors into highly immunodeficient mice and then maintained by passaging from mouse to mouse. The ability of PDX models to maintain the original features of patient tumors and to reflect drug sensitivity has greatly improved both basic and clinical study outcomes. However, current PDX models cannot completely predict drug efficacy because they do not recapitulate the tumor microenvironment of origin, a failure which puts emphasis on the necessity for the development of the next generation PDX models. In this article, we summarize the advantages and limitations of current PDX models and discuss the future directions of this field.
Collapse
|
15
|
Development of Personalized Therapeutic Strategies by Targeting Actionable Vulnerabilities in Metastatic and Chemotherapy-Resistant Breast Cancer PDXs. Cells 2019; 8:cells8060605. [PMID: 31216647 PMCID: PMC6627522 DOI: 10.3390/cells8060605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023] Open
Abstract
Human breast cancer is characterized by a high degree of inter-patients heterogeneity in terms of histology, genomic alterations, gene expression patterns, and metastatic behavior, which deeply influences individual prognosis and treatment response. The main cause of mortality in breast cancer is the therapy-resistant metastatic disease, which sets the priority for novel treatment strategies for these patients. In the present study, we demonstrate that Patient Derived Xenografts (PDXs) that were obtained from metastatic and therapy-resistant breast cancer samples recapitulate the wide spectrum of the disease in terms of histologic subtypes and mutational profiles, as evaluated by whole exome sequencing. We have integrated genomic and transcriptomic data to identify oncogenic and actionable pathways in each PDX. By taking advantage of primary short-term in vitro cultures from PDX tumors, we showed their resistance to standard chemotherapy (Paclitaxel), as seen in the patients. Moreover, we selected targeting drugs and analyzed PDX sensitivity to single agents or to combination of targeted and standard therapy on the basis of PDX-specific genomic or transcriptomic alterations. Our data demonstrate that PDXs represent a suitable model to test new targeting drugs or drug combinations and to prioritize personalized therapeutic regimens for pre-clinal and clinical tests.
Collapse
|
16
|
Synergistic anti-cancer activity of CDK4/6 inhibitor palbociclib and dual mTOR kinase inhibitor MLN0128 in pRb-expressing ER-negative breast cancer. Breast Cancer Res Treat 2019; 174:615-625. [PMID: 30607633 DOI: 10.1007/s10549-018-05104-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Palbociclib is an approved cyclin-dependent kinase (CDK) 4/6 inhibitor for treatment of patients with ER-positive and HER2-negative breast cancers. While Retinoblastoma protein (pRb), a major substrate of CDK4/6, is a potential target in triple negative breast cancer (TNBC), the usefulness of CDK4/6 inhibitors in this cancer has not been established. This preclinical study investigated the combination effects of palbociclib and the dual mammalian target of rapamycin (mTOR) kinase inhibitor MLN0128 in estrogen receptor (ER)-negative breast cancer in vitro and in vivo. METHODS The combined effects of two drugs on three TNBC cell lines (MB231, MB468, and CAL148) and an ER-negative and HER2-positive cell line (MB453) were investigated by MTT assay and colony formation analysis. Cell cycle measurements were examined as well as changes in expression of molecules related to G1/S transition and the mTOR pathway. Importantly, a pRb-expressing TNBC patient-derived xenograft (PDX) model was used to assess the effects of the combination in vivo. RESULTS A combination of palbociclib and MLN0128 synergistically inhibited the proliferation of pRb-expressing cell lines and induced G1 cell cycle arrest. Western blot analysis revealed that CDK4/6-pRb and mTOR pathways were inhibited by these treatments. In pRb-expressing TNBC PDX, the combination treatment drastically suppressed tumor growth compared to either the control or single drug treatments. In addition, the combination treatment significantly reduced the number of Ki67-positive cells. CONCLUSIONS We revealed that palbociclib and MLN0128 had synergistic anti-cancer activity in both pRb + ER-negative cell lines and a TNBC PDX model. Our results indicate that such combination therapy is worthy of further investigation in a clinical setting.
Collapse
|
17
|
Zhu YY, Chen C, Li JJ, Sun SR. The prognostic value of quantitative analysis of CCL5 and collagen IV in luminal B (HER2-) subtype breast cancer by quantum-dot-based molecular imaging. Int J Nanomedicine 2018; 13:3795-3803. [PMID: 29988769 PMCID: PMC6030937 DOI: 10.2147/ijn.s159585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Breast cancer is the most common malignancy and one of the main causes of death in women. Luminal B (HER2−) breast cancer subtype has been proposed since the 2011 St Gallon consensus. The hormone receptor status in this type of breast cancer is positive; thus, endocrine therapy was performed in all cases, but the treatment was not satisfactory, and a significant number of cases received very little benefit from chemotherapy. Furthermore, there is no effective treatment target for this subtype. Luminal B (HER2−) breast cancer subtype has been proposed since the 2011 St Gallon consensus. Therefore, the study of the key molecules in the microenvironment of breast cancer can help to reveal the biological characteristics. Patients and methods Luminal B (HER2−) breast cancer is a subtype with higher heterogeneity and poorer prognosis than luminal A. It is known that the development of cancer cells is an active process, and this process needs microenvironment cytokines, including chemokine (C–C motif) ligand 5 (CCL5) and collagen IV. Therefore, CCL5 and collagen IV were imaged and detected by quantum dot, and the CCL5/collagen IV ratio was calculated to investigate the prognostic value of the CCL5/collagen IV ratio in luminal B (HER2−). Results Quantitative determination showed a statistically significant negative correlation between CCL5 and collagen IV. The 5-year disease-free survival (5-DFS) of the high and low CCL5/collagen IV ratio subgroups was significantly different. The CCL5/collagen IV ratio had a greater prognostic value for 5-DFS. The CCL5/collagen IV ratio was an independent prognostic indicator. Conclusion Our findings revealed the effective integration of tumor CCL5 and collagen IV, and a new method for predicting the prognosis of luminal B (HER2−) has been developed.
Collapse
Affiliation(s)
- Yong-Yun Zhu
- Department of Thyroid and Breast Surgery, Wuhu Second People's Hospital, Wuhu, Anhui 24100, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China,
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China,
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China,
| |
Collapse
|
18
|
Petrossian K, Kanaya N, Lo C, Hsu PY, Nguyen D, Yang L, Yang L, Warden C, Wu X, Pillai R, Bernal L, Huang CS, Kruper L, Yuan Y, Somlo G, Mortimer J, Chen S. ERα-mediated cell cycle progression is an important requisite for CDK4/6 inhibitor response in HR+ breast cancer. Oncotarget 2018; 9:27736-27751. [PMID: 29963233 PMCID: PMC6021239 DOI: 10.18632/oncotarget.25552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/19/2018] [Indexed: 01/01/2023] Open
Abstract
While ER has multiple biological effects, ER-cyclin D1-CDK4/6-RB is a critical pathway for the action of estrogen on the cell cycle, especially for breast cancers that rely on estrogen for growth. The latest and most efficient CDK4/6 inhibitors target the phosphorylation of retinoblastoma (RB) tumor suppressor gene; thus, altering levels of many cell cycle molecules. Estrogen receptor (ER)+/HER2- breast cancers have shown great progression free survival when CDK4/6 inhibitors are combined with endocrine therapies. Here we report the mechanism of antiestrogen (fulvestrant) combination with CDK4/6 inhibitors is due to synergism in the suppression of ER-mediated cell cycle progression. Furthermore, we performed single cell analysis of cells from an estrogen dependent/hormone receptor-positive patient derived xenograft (PDX) tumor model treated with palbociclib. These single cells expressed various levels of ER and RB which are involved in cell cycle regulation; and the response to palbociclib treatment relies not only on the ER-cyclin D1-CDK4/6-RB pathway but it is also dependent on elevated levels of ER and/or RB. Our preclinical studies show that palbociclib response is dependent on cells with ER, which is directly involved in cell cycle progression in hormone receptor positive (HR+) breast cancer.
Collapse
Affiliation(s)
- Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Chiao Lo
- Department of Breast Health, National Taiwan University Hospital, Taipei City, Taiwan
| | - Pei-Yin Hsu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Duc Nguyen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Lixin Yang
- Molecular Pathology Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Lu Yang
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Charles Warden
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Raju Pillai
- Molecular Pathology Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Chiun-Sheng Huang
- Department of Breast Health, National Taiwan University Hospital, Taipei City, Taiwan
| | - Laura Kruper
- Department of Surgery, City of Hope Medical Center, Duarte, CA, United States
| | - Yuan Yuan
- Department of Medical Oncology and Therapeutics Research, City of Hope Medical Center, Duarte, CA, United States
| | - George Somlo
- Department of Medical Oncology and Therapeutics Research, City of Hope Medical Center, Duarte, CA, United States
| | - Joanne Mortimer
- Department of Medical Oncology and Therapeutics Research, City of Hope Medical Center, Duarte, CA, United States
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| |
Collapse
|
19
|
Petrossian K, Nguyen D, Lo C, Kanaya N, Somlo G, Cui YX, Huang CS, Chen S. Use of dual mTOR inhibitor MLN0128 against everolimus-resistant breast cancer. Breast Cancer Res Treat 2018; 170:499-506. [PMID: 29623577 DOI: 10.1007/s10549-018-4779-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/31/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE HR+/HER2- aromatase inhibitor-resistant metastatic breast cancer can be treated with everolimus and a second AI until the cancer recurs. Targeting these everolimus-resistant patients with the latest standard of care, CDK4/6 inhibitors, has not been clearly addressed. Understanding the signaling transduction pathways, which everolimus resistance activates, will elucidate the mechanisms and offer treatment strategies of everolimus resistance. METHODS To mimic the clinical setting, letrozole-resistant cells were used to generate an everolimus-resistant model (RAD-R). Reverse phase protein array (RPPA) was performed to reveal changes in the signaling transduction pathways, and expression levels of key proteins were analyzed. Inhibitors targeting the major signaling pathways, a CDK4/6 inhibitor palbociclib and a mTORC1/2 inhibitor (MLN0128), were evaluated to establish resistance mechanisms of RAD-R. RESULTS RPPA results from RAD-R indicated changes to significant regulatory pathways and upregulation of p-AKT expression level associating with everolimus resistance. MLN0128, that inhibits the AKT phosphorylation, effectively suppressed the proliferation of RAD-R cells while treatment with palbociclib had no effect. CONCLUSION Among the many signaling transduction pathways, which are altered post everolimus resistance, targeting dual mTORC1/2 is a possible option for patients who have recurrent disease from previous everolimus treatment.
Collapse
Affiliation(s)
- Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Kaplan CRB, Room 2002C, Duarte, CA, USA
| | - Duc Nguyen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Kaplan CRB, Room 2002C, Duarte, CA, USA
| | - Chiao Lo
- Department of Breast Health, National Taiwan University Hospital, Taipei City, Taiwan
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Kaplan CRB, Room 2002C, Duarte, CA, USA
| | - George Somlo
- Department of Medical Oncology and Therapeutics Research, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Yvonne Xiaoyong Cui
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Kaplan CRB, Room 2002C, Duarte, CA, USA
| | - Chiun-Sheng Huang
- Department of Breast Health, National Taiwan University Hospital, Taipei City, Taiwan
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Kaplan CRB, Room 2002C, Duarte, CA, USA.
| |
Collapse
|
20
|
SRC Increases MYC mRNA Expression in Estrogen Receptor-Positive Breast Cancer via mRNA Stabilization and Inhibition of p53 Function. Mol Cell Biol 2018; 38:MCB.00463-17. [PMID: 29263157 DOI: 10.1128/mcb.00463-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
The transcription factor gene MYC is important in breast cancer, and its mRNA is maintained at a high level even in the absence of gene amplification. The mechanism(s) underlying increased MYC mRNA expression is unknown. Here, we demonstrate that MYC mRNA was stabilized upon estrogen stimulation of estrogen receptor-positive breast cancer cells via SRC-dependent effects on a recently described RNA-binding protein, IMP1 with an N-terminal deletion (ΔN-IMP1). We also show that loss of the tumor suppressor p53 increased MYC mRNA levels even in the absence of estrogen stimulation. However, in cells with wild-type p53, SRC acted to overcome p53-mediated inhibition of estrogen-stimulated cell cycle entry and progression. SRC thus promotes cell proliferation in two ways: by stabilizing MYC mRNA and by inhibiting p53 function. Since estrogen receptor-positive breast cancers typically express wild-type p53, these studies establish a rationale for p53 status to be predictive for effective SRC inhibitor treatment in this subtype of breast cancer.
Collapse
|
21
|
Masoud V, Pagès G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J Clin Oncol 2017; 8:120-134. [PMID: 28439493 PMCID: PMC5385433 DOI: 10.5306/wjco.v8.i2.120] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common type of cancer found in women and today represents a significant challenge to public health. With the latest breakthroughs in molecular biology and immunotherapy, very specific targeted therapies have been tailored to the specific pathophysiology of different types of breast cancers. These recent developments have contributed to a more efficient and specific treatment protocol in breast cancer patients. However, the main challenge to be further investigated still remains the emergence of therapeutic resistance mechanisms, which develop soon after the onset of therapy and need urgent attention and further elucidation. What are the recent emerging molecular resistance mechanisms in breast cancer targeted therapy and what are the best strategies to apply in order to circumvent this important obstacle? The main scope of this review is to provide a thorough update of recent developments in the field and discuss future prospects for preventing resistance mechanisms in the quest to increase overall survival of patients suffering from the disease.
Collapse
|