1
|
Joshi D, Patel J, Munshi M, Mistry Z, Prajapati A, Mukherjee A, Ramachandran AV, Parashar NC, Parashar G, Haque S, Tuli HS. Hormones as a double-edged sword: the role of hormones in cancer progression and the potential of targeted hormone therapies. Med Oncol 2024; 41:283. [PMID: 39400627 DOI: 10.1007/s12032-024-02517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains a significant cause of mortality in the world, with increasing prevalence worldwide. There are numerous treatments ranging from surgery to chemotherapy and radiotherapy, but since cancer is a heterogeneous disease, only few patients possibly respond to treatments. However, it opens a huge space for the advent of targeted therapies such as hormone therapy, immunotherapy, and target-specific drugs. Hormonal therapy using hormone agonists/antagonists or hormone receptor inhibitors-called the next-generation hormonal agents-hits distinct hormonal pathways that are involved in breast, prostate and ovarian cancer. Preliminary results show that through combination of drugs, it is possible that the synergistic effects may actually lead to better survival than with the use of single drugs. With manageable adverse effects, hormonal therapy offers much hope for treatment of this rather challenging malignancy of the hormone-sensitive cancers, especially in combination with other treatments.
Collapse
Affiliation(s)
- Dixita Joshi
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Janaki Patel
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Muskaan Munshi
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Zeel Mistry
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Alok Prajapati
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Asmi Mukherjee
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - A V Ramachandran
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Nidarshana Chaturvedi Parashar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India.
| | - Gaurav Parashar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
2
|
Shchelkunova TA, Levina IS, Morozov IA, Rubtsov PM, Goncharov AI, Kuznetsov YV, Zavarzin IV, Smirnova OV. Effects of Progesterone and Selective Ligands of Membrane Progesterone Receptors in HepG2 Cells of Human Hepatocellular Carcinoma. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1920-1932. [PMID: 38105209 DOI: 10.1134/s0006297923110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Progesterone exerts multiple effects in different tissues through nuclear receptors (nPRs) and through membrane receptors (mPRs) of adiponectin and progestin receptor families. The effect of progesterone on the cells through different types of receptors can vary significantly. At the same time, it affects the processes of proliferation and apoptosis in normal and tumor tissues in a dual way, stimulating proliferation and carcinogenesis in some tissues, suppressing them and stimulating cell death in others. In this study, we have shown the presence of high level of mPRβ mRNA and protein in the HepG2 cells of human hepatocellular carcinoma. Expression of other membrane and classical nuclear receptors was not detected. It could imply that mPRβ has an important function in the HepG2 cells. The main goal of the work was to study functions of this protein and mechanisms of its action in human hepatocellular carcinoma cells. Previously, we have identified selective mPRs ligands, compounds LS-01 and LS-02, which do not interact with nuclear receptors. Their employment allows differentiating the effects of progestins mediated by different types of receptors. Effects of progesterone, LS-01, and LS-02 on proliferation and death of HepG2 cells were studied in this work, as well as activating phosphorylation of two kinases, p38 MAPK and JNK, under the action of three steroids. It was shown that all three progestins after 72 h of incubation with the cells suppressed their viability and stimulated appearance of phosphatidylserine on the outer surface of the membranes, which was detected by binding of annexin V, but they did not affect DNA fragmentation of the cell nuclei. Progesterone significantly reduced expression of the proliferation marker genes and stimulated expression of the p21 protein gene, but had a suppressive effect on the expression of some proapoptotic factor genes. All three steroids activated JNK in these cells, but had no effect on the p38 MAPK activity. The effects of progesterone and selective mPRs ligands in HepG2 cells were the same in terms of suppression of proliferation and stimulation of apoptotic changes in outer membranes, therefore, they were mediated through interaction with mPRβ. JNK is a member of the signaling cascade activated in these cells by the studied steroids.
Collapse
Affiliation(s)
| | - Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey I Goncharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Yury V Kuznetsov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
3
|
Goncharov AI, Levina IS, Shliapina VL, Morozov IA, Rubtsov PM, Zavarzin IV, Smirnova OV, Shchelkunova TA. Cytotoxic Effects of the Selective Ligands of Membrane Progesterone Receptors in Human Pancreatic Adenocarcinoma Cells BxPC3. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1446-1460. [PMID: 34906046 DOI: 10.1134/s0006297921110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Progesterone and its synthetic analogues act on cells through different types of receptors, affecting proliferation and apoptosis. These compounds exert their effect through the nuclear receptors and the insufficiently studied membrane progesterone receptors (mPRs) belonging to the progestin and adiponectin Q receptor (PAQR) family. We have identified two selective ligands of mPRs that activate only this type of progesterone receptors - 19-hydroxypregn-4-en-20-one (LS-01) and 19-hydroxy-5β-pregn-3-en-20-one (LS-02). The goal of this work is to study the effect of these compounds on proliferation and death of human pancreatic adenocarcinoma cells BxPC3 and involvement of the two kinases (p38 MAPK and JNK) in signaling pathways activated by progestins through mPRs. It was shown that progesterone and the compound LS-01 significantly (p < 0.05) inhibited the BxPC3 cell viability, with JNK serving as a mediator. The identified targets of these two steroids are the genes of the proteins Ki67, cyclin D1, PCNA, and p21. Progesterone and the compound LS-01 significantly (p < 0.05) stimulate DNA fragmentation, enhancing the cell death. The p38 mitogen-activated protein kinase (MAPK) is a key mediator of this process. The BCL2A1 protein gene was identified as a target of both steroids. The compound LS-02 significantly (p < 0.05) alters membrane permeability and changes the exposure of phosphatidylserine on the outer membrane leaflet, also enhancing the cell death. This compound acts on these processes by activating both kinases, JNK and p38 MAPK. The compound LS-02 targets the genes encoding the proteins HRK, caspase 9, and DAPK.
Collapse
Affiliation(s)
- Alexey I Goncharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
4
|
Sex Differences in the Exocrine Pancreas and Associated Diseases. Cell Mol Gastroenterol Hepatol 2021; 12:427-441. [PMID: 33895424 PMCID: PMC8255941 DOI: 10.1016/j.jcmgh.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Differences in pancreatic anatomy, size, and function exist in men and women. The anatomical differences could contribute to the increase in complications associated with pancreatic surgery in women. Although diagnostic criteria for pancreatitis are the same in men and women, major sex differences in etiology are reported. Alcohol and tobacco predominate in men, whereas idiopathic and obstructive etiologies predominate in women. Circulating levels of estrogens, progesterone, and androgens contribute significantly to overall health outcomes; premenopausal women have lower prevalence of cardiovascular and pancreatic diseases suggesting protective effects of estrogens, whereas androgens promote growth of normal and cancerous cells. Sex chromosomes and gonadal and nongonadal hormones together determine an individual's sex, which is distinct from gender or gender identity. Human pancreatic disease etiology, outcomes, and sex-specific mechanisms are largely unknown. In rodents of both sexes, glucocorticoids and estrogens from the adrenal glands influence pancreatic secretion and acinar cell zymogen granule numbers. Lack of corticotropin-releasing factor receptor 2 function, a G protein-coupled receptor whose expression is regulated by both estrogens and glucocorticoids, causes sex-specific changes in pancreatic histopathology, zymogen granule numbers, and endoplasmic reticulum ultrastructure changes in acute pancreatitis model. Here, we review existing literature on sex differences in the normal exocrine pancreas and mechanisms that operate at homeostasis and diseased states in both sexes. Finally, we review pregnancy-related pancreatic diseases and discuss the effects of sex differences on proposed treatments in pancreatic disease.
Collapse
|
5
|
Levina IS, Kuznetsov YV, Shchelkunova TA, Zavarzin IV. Selective ligands of membrane progesterone receptors as a key to studying their biological functions in vitro and in vivo. J Steroid Biochem Mol Biol 2021; 207:105827. [PMID: 33497793 DOI: 10.1016/j.jsbmb.2021.105827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Progesterone modulates many processes in the body, acting through nuclear receptors (nPR) in various organs and tissues. However, a number of effects are mediated by membrane progesterone receptors (mPRs), which are members of the progestin and adipoQ (PAQR) receptor family. These receptors are found in most tissues and immune cells. They are expressed in various cancer cells and appear to play an important role in the development of tumors. The role of mPRs in the development of insulin resistance and metabolic syndrome has also attracted attention. Since progesterone efficiently binds to both nPRs and mPRs, investigation of the functions of the mPRs both at the level of the whole body and at the cell level requires ligands that selectively interact with mPRs, but not with nPRs, with an affinity comparable with that of the natural hormone. The development of such ligands faces difficulties primarily due to the lack of data on the three-dimensional structure of the ligand-binding site of mPR. This review is the first attempt to summarize available data on the structures of compounds interacting with mPRs and analyze them in terms of the differences in binding to membrane and nuclear receptors. Based on the identified main structural fragments of molecules, which affect the efficiency of binding to mPRs and are responsible for the selectivity of interactions, we propose directions of modification of the steroid scaffold to create new selective mPRs ligands.
Collapse
Affiliation(s)
- Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia.
| | - Yury V Kuznetsov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia
| | - Tatiana A Shchelkunova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia
| |
Collapse
|
6
|
Cantonero C, Salido GM, Rosado JA, Redondo PC. PGRMC1 Inhibits Progesterone-Evoked Proliferation and Ca 2+ Entry Via STIM2 in MDA-MB-231 Cells. Int J Mol Sci 2020; 21:ijms21207641. [PMID: 33076541 PMCID: PMC7589959 DOI: 10.3390/ijms21207641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) has been shown to regulate some cancer hallmarks. Progesterone (P4) evokes intracellular calcium (Ca2+) changes in the triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and BT-20) and in other breast cancer cell lines like the luminal MCF7 cells. PGRMC1 expression is elevated in MDA-MB-231 and MCF7 cells as compared to non-tumoral MCF10A cell line, and PGRMC1 silencing enhances P4-evoked Ca2+ mobilization. Here, we found a new P4-dependent Ca2+ mobilization pathway in MDA-MB-231 cells and other triple-negative breast cancer cells, as well as in MCF7 cells that involved Stromal interaction molecule 2 (STIM2), Calcium release-activated calcium channel protein 1 (Orai1), and Transient Receptor Potential Channel 1 (TRPC1). Stromal interaction molecule 1 (STIM1) was not involved in this novel Ca2+ pathway, as evidenced by using siRNA STIM1. PGRMC1 silencing reduced the negative effect of P4 on cell proliferation and cell death in MDA-MB-231 cells. In line with the latter observation, Nuclear Factor of Activated T-Cells 1 (NFAT1) nuclear accumulation due to P4 incubation for 48 h was enhanced in cells transfected with the small hairpin siRNA against PGRMC1 (shPGRMC1). These results provide evidence for a novel P4-evoked Ca2+ entry pathway that is downregulated by PGRMC1.
Collapse
|
7
|
Xie M, Lu X, Chen Q. Microarray expression profiling of long noncoding RNAs in the progesterone-treated lung cancer cells. J Gene Med 2020; 22:e3215. [PMID: 32391956 DOI: 10.1002/jgm.3215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The increasing incidence and unique biological features of lung cancer in women has prompted renewed interest in the role of sex hormones in this disease. We previously showed that progesterone (P4) inhibited lung cancer tumorigenesis and progression. Here, we investigated the effects of P4 on expression of long noncoding RNAs (lncRNAs) and target mRNAs in lung cancer cells. METHODS We performed high-throughput microarray and bioinformatics analysis to identify differentially expressed lncRNAs and mRNAs in the untreated and the P4-treated A549 human lung cancer cells. RESULTS In total, 692 lncRNAs and 268 mRNAs were significantly differentially expressed in the P4-treated A549 cells compared to the untreated A549 cells (> 2-fold change, p < 0.05). Of the lncRNAs, 82 and 610 were up-regulated and down-regulated, respectively. Gene ontology, pathway and network analyses showed that many of the mRNAs were involved in the regulation of classical pathways, including Notch signaling. Differential expression of a lncRNA signature composed of NONHSAT000264, FR075921, FR324124, linc-TRIM58, RP1-93H18.7, RP11-120 K9.2, RP11-134F2.2 and NONHSAG024980 was validated by quantitatuve reverse transcriptase-polymerase chain reaction analysis. CONCLUSIONS This is the first report of differentially expressed lncRNAs in the P4-treated lung cancer cells. The results suggest that lncRNAs could serve as potential therapeutic targets for P4-sensitive lung cancer.
Collapse
Affiliation(s)
- Mingxuan Xie
- Department of Geriatrics/Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxiao Lu
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong Chen
- Department of Geriatrics/Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Polikarpova AV, Levina IS, Sigai NV, Zavarzin IV, Morozov IA, Rubtsov PM, Guseva AA, Smirnova OV, Shchelkunova TA. Immunomodulatory effects of progesterone and selective ligands of membrane progesterone receptors. Steroids 2019; 145:5-18. [PMID: 30753845 DOI: 10.1016/j.steroids.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
Progesterone (P4) and its analogues regulate various reproductive processes, such as ovulation, implantation, pregnancy maintenance and delivery. In these processes, an important role is played by the immune cells recruited to the female reproductive organs and tissues, where they are exposed to the action of P4. Progestins regulate cellular processes, acting through nuclear steroid receptors (nSRs), membrane P4 receptors (mPRs), and through the sensors. It remains unclear, what type of receptors is used by P4 and its derivatives to exert their effect on the immune cells and how similar their effects are in different types of these cells. We have previously synthesized new progesterone derivatives, among which two selective mPRs ligands, not interacting with nSRs were identified. The objective of this study was to examine the effects of P4 and new selective mPRs ligands on the expression of pro- and anti-inflammatory cytokines in activated human peripheral blood mononuclear cells (PBMCs), THP-1 monocyte cells, and Jurkat T cells. It was demonstrated that the action of P4 and selective ligands was unidirectional, but in different types of the immune cells, their effects were different, and sometimes even opposite. In PBMCs, exposure to these steroids resulted in the increase of mRNA and secreted protein levels of IL-1β, TNFα, and IL-6 cytokines, as well as in the increase of INFγ mRNA level, decrease of IL-2 mRNA level, increase of TGFβ mRNA level, and decrease of IL-4 mRNA and IL-10 secreted protein levels. In monocytes, similarly to PBMCs, expression of IL-1β and TNFα mRNA was increased, but expression of IL-10 was also increased, and the TGFβ expression statistically significantly remained the same. In Jurkat T cells, expression of IL-2 and TNFα mRNA decreased, while expression of IL-10 increased, and expression of TGFβ did not change. Thus, progestins act on the immune cells through mPRs and have both pro- and anti-inflammatory effects, depending on the phenotypes of these cells. The data obtained are important for understanding the complexity of the immune system regulation by progestins, which depends on the type of the immune cells and individual characteristics of the immune system.
Collapse
Affiliation(s)
- A V Polikarpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - I S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - N V Sigai
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - I V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - I A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - P M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - A A Guseva
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - O V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - T A Shchelkunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
9
|
Wang F, Meng Z, Li S, Zhang Y, Wu H. Prognostic value of progesterone receptor in solid pseudopapillary neoplasm of the pancreas: evaluation of a pooled case series. BMC Gastroenterol 2018; 18:187. [PMID: 30547767 PMCID: PMC6295102 DOI: 10.1186/s12876-018-0914-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background The role of progesterone receptor (PR) has been reported in a series of pancreatic cysts. However, the relationship between PR and prognosis of solid pseudopapillary neoplasm of the pancreas (SPNP) has not been elucidated so far. The aim of our study was to evaluate the prognostic value of PR in SPNP. Methods A total of 76 patients with SPNP treated in our institution from January 2012 to December 2017 were included. Demographic parameters, laboratory data, pathologic information and clinical outcomes were analyzed by the use of survival analysis. In addition, a pooled case series was performed to evaluate the results. Results The institutional data included 76 patients (17 male and 59 female) ranging from 8 to 90 years (median, 30 years) in age. Kaplan-Meier survival analysis confirmed negative PR result was significantly associated with poorer disease-free survival (DFS) and disease-specific survival (DSS) (both P < 0.001). In the pooled analysis, a total of 62 studies comprising 214 patients with SPNP were included. After multivariable cox analysis, negative PR result remained an independent prognostic factor for SPNP (DFS HR: 14.50, 95% CI: 1.98–106.05, P = 0.008; DSS HR: 9.15, 95% CI: 1.89–44.17, P = 0.006). Conclusion Our results indicated the role of PR in predicting adverse outcome of patients with SPNP and negative PR result may serve as a potential prognostic factor. Electronic supplementary material The online version of this article (10.1186/s12876-018-0914-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feiyang Wang
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, 200080, China.,Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zibo Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shoukang Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yushun Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
10
|
Tocchetti GN, Domínguez CJ, Zecchinati F, Arana MR, Ruiz ML, Villanueva SSM, Weiss J, Mottino AD, Rigalli JP. Biphasic modulation of cAMP levels by the contraceptive nomegestrol acetate. Impact on P-glycoprotein expression and activity in hepatic cells. Biochem Pharmacol 2018; 154:118-126. [PMID: 29684377 DOI: 10.1016/j.bcp.2018.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022]
Abstract
ABC transporters are key players in drug excretion with alterations in their expression and activity by therapeutic agents potentially leading to drug-drug interactions. The interaction potential of nomegestrol acetate (NMGA), a synthetic progestogen increasingly used as oral contraceptive, had never been explored. In this work we evaluated (1) the effect of NMGA on ABC transporters in the human hepatic cell line HepG2 and (2) the underlying molecular mechanism. NMGA (5, 50 and 500 nM) increased P-glycoprotein (P-gp) expression at both protein and mRNA levels and reduced intracellular calcein accumulation, indicating an increase also in transporter activity. This up-regulation of P-gp was corroborated in Huh7 cells and was independent of the classical progesterone receptor. Instead, using a siRNA-mediated silencing approach, we demonstrated the involvement of membrane progesterone receptor α. Moreover, we found that the activation of this receptor by NMGA led to a falling-rising profile in intracellular cAMP levels and protein kinase A activity over time, ultimately leading to transcriptional P-gp up-regulation. Finally, we identified inhibitory G protein and phosphodiesterases as mediators of this novel biphasic modulation. These results demonstrate the ability of NMGA to selectively up-regulate hepatic P-gp expression and activity and constitute the first report of ABC transporter modulation by membrane progesterone receptor α. If a similar regulation took place in vivo, decreased bioavailability and therapeutic efficacy of NMGA-coadministered P-gp substrates could be expected. This holds special importance considering long-term administration of NMGA and broad substrate specificity of P-gp.
Collapse
Affiliation(s)
- Guillermo Nicolás Tocchetti
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina; Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Camila Juliana Domínguez
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Felipe Zecchinati
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Maite Rocío Arana
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | | | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Aldo Domingo Mottino
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Garg D, Ng SSM, Baig KM, Driggers P, Segars J. Progesterone-Mediated Non-Classical Signaling. Trends Endocrinol Metab 2017; 28:656-668. [PMID: 28651856 DOI: 10.1016/j.tem.2017.05.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
Abstract
Progesterone is essential for pregnancy maintenance and menstrual cycle regulation. Hormone action has been primarily ascribed to the well-characterized classical signaling pathway involving ligand binding, activation of nuclear progesterone receptors (PRs), and subsequent activation of genes containing progesterone response elements (PREs). Recent studies have revealed progesterone actions via non-classical signaling pathways, often mediated by non-genomic signaling. Progesterone signaling, in conjunction with growth factor signaling, impacts on the function of growth factors and regulates important physiological actions such as cell growth and remodeling, as well as apoptosis. This review focuses on non-classical progesterone signaling pathways, both including and excluding PR, and highlights how research in this area will provide a better understanding of progesterone actions and may inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Deepika Garg
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, NY 11219, USA
| | - Sinnie Sin Man Ng
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - K Maravet Baig
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Paul Driggers
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Polikarpova AV, Maslakova AA, Levina IS, Kulikova LE, Kuznetsov YV, Guseva AA, Shchelkunova TA, Zavarzin IV, Smirnova OV. Selection of Progesterone Derivatives Specific to Membrane Progesterone Receptors. BIOCHEMISTRY (MOSCOW) 2017; 82:140-148. [PMID: 28320297 DOI: 10.1134/s0006297917020055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The search of selective agonists and antagonists of membrane progesterone receptors (mPRs) is a starting point for the study of progesterone signal transduction mechanisms mediated by mPRs, distinct from nuclear receptors. According to preliminary data, the ligand affinity for mPRs differs significantly from that for classical nuclear progesterone receptors (nPRs), which might indicate structural differences in the ligand-binding pocket of these proteins. In the present work, we analyzed the affinity of several progesterone derivatives for mPRs of human pancreatic adenocarcinoma BxPC3 cell line that is characterized by a high level of mPR mRNA expression and by the absence of expression of nPR mRNA. The values were compared with the affinity of these compounds for nPRs. All tested compounds showed almost no affinity for nPRs, whereas their selectivity towards mPRs was different. Derivatives with an additional 19-hydroxyl group and removed 3-keto group had the highest selectivity for mPRs. These results suggest these compounds as the most selective progesterone analogs for studying the mechanisms of progestin action via mPRs.
Collapse
Affiliation(s)
- A V Polikarpova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|