1
|
Xi T, Wang R, Pi D, Ouyang J, Yang J. The p53/miR-29a-3p axis mediates the antifibrotic effect of leonurine on angiotensin II-stimulated rat cardiac fibroblasts. Exp Cell Res 2023; 426:113556. [PMID: 36933858 DOI: 10.1016/j.yexcr.2023.113556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Overactivation of cardiac fibroblasts (CFs) is one of the main causes of myocardial fibrosis (MF), and inhibition of CF activation is a crucial strategy for MF therapy. A previous study by our group demonstrated that leonurine (LE) effectively inhibits collagen synthesis and myofibroblast generation originated from CFs, and eventually mitigates the progression of MF (where miR-29a-3p is likely to be a vital mediator). However, the underlying mechanisms involved in this process remain unknown. Thus, the present study aimed to investigate the precise role of miR-29a-3p in LE-treated CFs, and to elucidate the pharmacological effects of LE on MF. Neonatal rat CFs were isolated and stimulated by angiotensin II (Ang II) to mimic the pathological process of MF in vitro. The results show that LE distinctly inhibits collagen synthesis, as well as the proliferation, differentiation and migration of CFs, all of which could be induced by Ang II. In addition, LE promotes apoptosis in CFs under Ang II stimulation. During this process, the down-regulated expressions of miR-29a-3p and p53 are partly restored by LE. Either knockdown of miR-29a-3p or inhibition of p53 by PFT-α (a p53 inhibitor) blocks the antifibrotic effect of LE. Notably, PFT-α suppresses miR-29a-3p levels in CFs under both normal and Ang II-treated conditions. Furthermore, ChIP analysis confirmed that p53 is bound to the promoter region of miR-29a-3p, and directly regulates its expression. Overall, our study demonstrates that LE upregulates p53 and miR-29a-3p expression, and subsequently inhibits CF overactivation, suggesting that the p53/miR-29a-3p axis may play a crucial role in mediating the antifibrotic effect of LE against MF.
Collapse
Affiliation(s)
- Tianlan Xi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ruiyu Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Yang L, Ruan H, Ma S, Elokil AA, Li S. Transcriptome analysis and identification of genes associated with individual fertilization rate differences in hen infundibulum. Br Poult Sci 2022; 64:268-274. [PMID: 36416611 DOI: 10.1080/00071668.2022.2149320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
1. Fertilisation rate is closely related to the reproductive performance and economic status of chicken laying breeders. In this study, two flocks (n = 1,029 in population I and n = 358 in population II) in the later laying period were used for investigating the individual differences among population fertilisation rates (FRs).2. The funnel and distal parts of the infundibulum were collected from nine individuals (five with low FR and four with high FR from population II) and RNA-sequencing (RNA-seq) method was used to investigate the transcriptome differences in fertilisation. Differences in fertilisation regulation were investigated by comparing the different parts (funnel and distal) of the infundibulum between the low FR and high FR groups.3. There were notable individual FR differences in both categories. Some individuals had a relative high FR (≥90%) for a long time (>5 days after AI), contrarily, some individuals lost the ability to fertilise eggs in a very short time.4. Differentially expressed genes (DEGs), such as DUSP7, PPP1R3B, FYB, OVA, OVALX and OVALY may be associated with sperm functional regulation, fertilisation and early-stage fertilised ovum development processes. DEGs such as AVBD1, AVBD2, AVBD6, NFATC2 and BANK1 indicated a severe immune response to sperm survival and fertilisation in the oviduct.5. The results suggested that individual differences should be considered in the breeding and reproduction process. The DEGs identified in this study may promote our understanding of different fertilisation regulation in laying breeders.
Collapse
Affiliation(s)
- Liubin Yang
- College of Food Sciences & Technology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei Province, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Hongji Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Shuai Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Abdelmotaleb A. Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
3
|
Niu F, Xu J, Yan Y. Histone demethylase KDM5A regulates the functions of human periodontal ligament stem cells during periodontitis via the miR-495-3p/HOXC8 axis. Regen Ther 2022; 20:95-106. [PMID: 35509266 PMCID: PMC9046131 DOI: 10.1016/j.reth.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fang Niu
- Department of Oral Implantology and Prosthodontics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, PR China
- Corresponding author. Department of Oral Implantology and Prosthodontics, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province, 450000, China.
| | - Jing Xu
- Department of Oral Orthodontics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, PR China
| | - Yujuan Yan
- Department of Oral Prosthodontics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, PR China
| |
Collapse
|
4
|
Demir M, Altındağ F. Sinapic acid ameliorates cisplatin‐induced disruptions in testicular steroidogenesis and spermatogenesis by modulating androgen receptor, proliferating cell nuclear antigen and apoptosis in male rats. Andrologia 2022; 54:e14369. [DOI: 10.1111/and.14369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Murat Demir
- Department of Urology Faculty of Medicine Van Yüzüncü Yıl University Van Turkey
| | - Fikret Altındağ
- Department of Histology and Embryology Faculty of Medicine Van Yüzüncü Yıl University Van Turkey
| |
Collapse
|
5
|
Wang JM, Li ZF, Yang WX. What Does Androgen Receptor Signaling Pathway in Sertoli Cells During Normal Spermatogenesis Tell Us? Front Endocrinol (Lausanne) 2022; 13:838858. [PMID: 35282467 PMCID: PMC8908322 DOI: 10.3389/fendo.2022.838858] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/01/2022] [Indexed: 01/18/2023] Open
Abstract
Androgen receptor signaling pathway is necessary to complete spermatogenesis in testes. Difference between androgen binding location in Sertoli cell classifies androgen receptor signaling pathway into classical signaling pathway and non-classical signaling pathway. As the only somatic cell type in seminiferous tubule, Sertoli cells are under androgen receptor signaling pathway regulation via androgen receptor located in cytoplasm and plasma membrane. Androgen receptor signaling pathway is able to regulate biological processes in Sertoli cells as well as germ cells surrounded between Sertoli cells. Our review will summarize the major discoveries of androgen receptor signaling pathway in Sertoli cells and the paracrine action on germ cells. Androgen receptor signaling pathway regulates Sertoli cell proliferation and maturation, as well as maintain the integrity of blood-testis barrier formed between Sertoli cells. Also, Spermatogonia stem cells achieve a balance between self-renewal and differentiation under androgen receptor signaling regulation. Meiotic and post-meiotic processes including Sertoli cell - Spermatid attachment and Spermatid development are guaranteed by androgen receptor signaling until the final sperm release. This review also includes one disease related to androgen receptor signaling dysfunction named as androgen insensitivity syndrome. As a step further ahead, this review may be conducive to develop therapies which can cure impaired androgen receptor signaling in Sertoli cells.
Collapse
|
6
|
Raut S, Kumar AV, Deshpande S, Khambata K, Balasinor NH. Sex hormones regulate lipid metabolism in adult Sertoli cells: A genome-wide study of estrogen and androgen receptor binding sites. J Steroid Biochem Mol Biol 2021; 211:105898. [PMID: 33845154 DOI: 10.1016/j.jsbmb.2021.105898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Optimal functioning of Sertoli cells is crucial for spermatogenesis which is under tight regulation of sex hormones, estrogen and androgen. Adult rat Sertoli cells expresses estrogen receptor beta (ERβ) and androgen receptor (AR), both of which regulate gene transcription by binding to the DNA. The present study is aimed to acquire a genome-wide map of estrogen- and androgen-regulated genes in adult Sertoli cells. ChIP-Seq was performed for ERβ and AR in Sertoli cells under physiological conditions. 30,859 peaks in ERβ and 9,594 peaks in AR were identified with a fold enrichment >2 fold. Pathway analysis for the genes revealed metabolic pathways to be significantly enriched. Since Sertoli cells have supportive functions and provide energy substrates to germ cells during spermatogenesis, significantly enriched metabolic pathways were explored further. Peaks of the genes involved in lipid metabolism, like fatty acid, glyceride, leucine, and sphingosine metabolism were validated. Motif analysis confirmed the presence of estrogen- and androgen-response elements (EREs and AREs). Moreover, transcript levels of enzymes involved in the lipid metabolic pathways were significantly altered in cultured Sertoli cells treated with estrogen and androgen receptor agonists, demonstrating functional significance of these binding sites. This study elucidates a mechanism by which sex hormones regulate lipid metabolism in Sertoli cells by transcriptionally controlling the expression of these genes, thereby shedding light on the roles of these hormones in male fertility.
Collapse
Affiliation(s)
- Sanketa Raut
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Anita V Kumar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Sharvari Deshpande
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Kushaan Khambata
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Nafisa H Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive Health, Mumbai, India.
| |
Collapse
|
7
|
Patankar A, Gajbhiye R, Surve S, Parte P. Epigenetic landscape of testis specific histone H2B variant and its influence on sperm function. Clin Epigenetics 2021; 13:101. [PMID: 33933143 PMCID: PMC8088685 DOI: 10.1186/s13148-021-01088-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Biological relevance of the major testis specific histone H2B variant (TH2B) in sperm is not fully understood. Studies in TH2A/TH2B double knockout male mice indicate its role in chromatin compaction and male fertility. Additionally, the presence of TH2B and TH2A reportedly generates more dynamic nucleosomes, leading to an open chromatin structure characteristic of transcriptionally active genome. Given that mature human sperm are transcriptionally and translationally inactive, the presence of TH2B in mature sperm is intriguing. To address its role in sperm, we investigated the genome-wide localization of TH2B in sperm of fertile men. RESULTS We have identified the genomic loci associated with TH2B in fertile human sperm by ChIP-seq analysis. Bioinformatic analysis revealed ~ 5% sperm genome and 5527 genes to be associated with TH2B. Out of these 105 (1.9%) and 144 (2.6%) genes showed direct involvement in sperm function and early embryogenesis, respectively. Chromosome wide analysis for TH2B distribution indicated its least distribution on X and Y chromosomes and varied distribution on autosomes. TH2B showed relatively higher percentage of gene association on chromosome 4, 18, 3 and 2. TH2B enrichment was more in promoter and gene body region. Gene Ontology (GO) analysis revealed signal transduction and associated kinase activity as the most enriched biological and molecular function, respectively. We also observed the enrichment of TH2B at developmentally important loci, such as HOXA and HOXD and on genes required for normal sperm function, few of which were validated by ChIP-qPCR. The relative expression of these genes was altered in particular subgroup of infertile men showing abnormal chromatin packaging. Chromatin compaction positively correlated with sperm- motility, concentration, viability and with transcript levels of PRKAG2 and CATSPER B. CONCLUSION ChIP-seq analysis of TH2B revealed a putative role of TH2B in sperm function and embryo development. Altered expression of TH2B associated genes in infertile individuals with sperm chromatin compaction defects indicates involvement of TH2B in transcriptional regulation of these genes in post meiotic male germ cells. This altered transcriptome may be a consequence or cause of abnormal nuclear remodeling during spermiogenesis.
Collapse
Affiliation(s)
- Aniket Patankar
- Department of Gamete Immunobiology, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Rahul Gajbhiye
- Department of Clinical Research, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Suchitra Surve
- Department of Clinical Research, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India.
| |
Collapse
|
8
|
de Santi F, Beltrame FL, Rodrigues BM, Junior MJVP, Scaramele NF, Lopes FL, Cerri PS, Sasso-Cerri E. Venlafaxine-induced damage to seminiferous epithelium, spermiation, and sperm parameters in rats: A correlation with high estrogen levels. Andrology 2021; 9:297-311. [PMID: 32598512 DOI: 10.1111/andr.12852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Venlafaxine (selective serotonin and norepinephrine reuptake inhibitor) use has increased worldwide. However, the impact of venlafaxine on testes and sperm parameters has not been investigated. OBJECTIVES We evaluated venlafaxine impact on testicular and sperm parameters and verified whether the changes are reversible. METHODS Animals from venlafaxine-35 days and venlafaxine-65 days groups received 30 mg/kg of venlafaxine for 35 days. Control-35 days and control-65 days received distilled water. In control-65 days and venlafaxine-65 days, the treatment was interrupted for 30 days. Sperm concentration, morphology, motility, and mitochondrial activity were analyzed. Number of step 19 spermatids (NLS), frequency of tubules with spermiation failure, Sertoli cells number, and TUNEL-positive germ cells were quantified. Testicular aromatase, connexin 43 (Cx43) immunoexpression, Cx43 protein levels, and Cx43 expression were evaluated. Either intratesticular testosterone or estrogen levels were measured. RESULTS Venlafaxine impaired sperm morphology, reduced sperm concentration, mitochondrial activity, and sperm motility. The frequency of tubules with spermiation failure and NLS increased in parallel to increased Cx43 immunoexpression; mRNA and protein levels; and aromatase, testosterone, and estrogen levels. An increase in germ cell death and decreased Sertoli cells number were observed. In venlafaxine-65 days, except for sperm motility, mitochondrial activity, Sertoli cells number, and germ cell death, all other parameters were partially or totally recovered. CONCLUSION Venlafaxine increases testosterone aromatization and Cx43. This drug, via high estrogen levels, disturbs Sertoli cells, induces germ cell death, and impairs spermiation and sperm parameters. The restoration of spermiation associated with the decreased Cx43 and hormonal levels in venlafaxine-65 days reinforces that high estrogen levels are related to venlafaxine-induced changes. The presence of damaged Sertoli cells, germ cell death, and low sperm motility in venlafaxine-65 days indicates that interruption of treatment for 30 days was insufficient for testicular recovery and points to a long-term estrogen impact on the seminiferous epithelium.
Collapse
Affiliation(s)
- Fabiane de Santi
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Flávia L Beltrame
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Beatriz M Rodrigues
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcio J V P Junior
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Natália F Scaramele
- Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Flávia L Lopes
- Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Paulo S Cerri
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Estela Sasso-Cerri
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
9
|
Molecular insights into hormone regulation via signaling pathways in Sertoli cells: With discussion on infertility and testicular tumor. Gene 2020; 753:144812. [DOI: 10.1016/j.gene.2020.144812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
|
10
|
Genome-wide identification of estrogen receptor binding sites reveals novel estrogen-responsive pathways in adult male germ cells. Biochem J 2020; 477:2115-2131. [DOI: 10.1042/bcj20190946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Spermatogenesis occurs in the seminiferous epithelium that shows the presence of estrogen receptors alpha (ERα) and beta (ERβ), both of which regulate gene transcription by binding to the DNA. Estrogen responsive phases of spermatogenesis are well documented; however, the genes regulated remain inexplicit. To study the regulation of genes by estrogen in male germ cells, we performed chromatin immunoprecipitation (ChIP) sequencing for ERα and ERβ under normal physiological conditions. A total of 27 221 DNA binding regions were enriched with ERα and 20 926 binding sites with ERβ. Majority of the peaks were present in the intronic regions and located 20 kb upstream or downstream from the transcription start site (TSS). Pathway analysis of the genes enriched by ChIP-Seq showed involvement in several biological pathways. Genes involved in pathways whose role in spermatogenesis is unexplored were validated; these included prolactin, GnRH, and oxytocin signaling. All the selected genes showed the presence of estrogen response elements (EREs) in their binding region and were also found to be significantly enriched by ChIP-qPCR. Functional validation using seminiferous tubule culture after treatment with estrogen receptor subtype-specific agonist and antagonist confirmed the regulation of these genes by estrogen through its receptors. The genes involved in these pathways were also found to be regulated by the respective receptor subtypes at the testicular level in our in vivo estrogen receptor agonist rat models. Our study provides a genome-wide map of ERα and ERβ binding sites and identifies the genes regulated by them in the male germ cells under normal physiological conditions.
Collapse
|
11
|
Hess RA, Cooke PS. Estrogen in the male: a historical perspective. Biol Reprod 2019; 99:27-44. [PMID: 29438493 PMCID: PMC6044326 DOI: 10.1093/biolre/ioy043] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
Estrogens have traditionally been considered female hormones. Nevertheless, the presence of estrogen in males has been known for over 90 years. Initial studies suggested that estrogen was deleterious to male reproduction because exogenous treatments induced developmental abnormalities. However, demonstrations of estrogen synthesis in the testis and high concentrations of 17β-estradiol in rete testis fluid suggested that the female hormone might have a function in normal male reproduction. Identification of estrogen receptors and development of biological radioisotope methods to assess estradiol binding revealed that the male reproductive tract expresses estrogen receptor extensively from the neonatal period to adulthood. This indicated a role for estrogens in normal development, especially in efferent ductules, whose epithelium is the first in the male reproductive tract to express estrogen receptor during development and a site of exceedingly high expression. In the 1990s, a paradigm shift occurred in our understanding of estrogen function in the male, ushered in by knockout mouse models where estrogen production or expression of its receptors was not present. These knockout animals revealed that estrogen's main receptor (estrogen receptor 1 [ESR1]) is essential for male fertility and development of efferent ductules, epididymis, and prostate, and that loss of only the membrane fraction of ESR1 was sufficient to induce extensive male reproductive abnormalities and infertility. This review provides perspectives on the major discoveries and developments that led to our current knowledge of estrogen's importance in the male reproductive tract and shaped our evolving concept of estrogen's physiological role in the male.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Ni FD, Hao SL, Yang WX. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell Death Dis 2019; 10:541. [PMID: 31316051 PMCID: PMC6637205 DOI: 10.1038/s41419-019-1782-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
The functions of Sertoli cells in spermatogenesis have attracted much more attention recently. Normal spermatogenesis depends on Sertoli cells, mainly due to their influence on nutrient supply, maintenance of cell junctions, and support for germ cells' mitosis and meiosis. Accumulating evidence in the past decade has highlighted the dominant functions of the MAPK, AMPK, and TGF-β/Smad signaling pathways during spermatogenesis. Among these pathways, the MAPK signaling pathway regulates dynamics of tight junctions and adherens junctions, proliferation and meiosis of germ cells, proliferation and lactate production of Sertoli cells; the AMPK and the TGF-β/Smad signaling pathways both affect dynamics of tight junctions and adherens junctions, as well as the proliferation of Sertoli cells. The AMPK signaling pathway also regulates lactate supply. These signaling pathways combine to form a complex regulatory network for spermatogenesis. In testicular tumors or infertile patients, the activities of these signaling pathways in Sertoli cells are abnormal. Clarifying the mechanisms of signaling pathways in Sertoli cells on spermatogenesis provides new insights into the physiological functions of Sertoli cells in male reproduction, and also serves as a pre-requisite to identify potential therapeutic targets in abnormal spermatogenesis including testicular tumor and male infertility.
Collapse
Affiliation(s)
- Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
|
14
|
Mohamed AR, Verbyla KL, Al-Mamun HA, McWilliam S, Evans B, King H, Kube P, Kijas JW. Polygenic and sex specific architecture for two maturation traits in farmed Atlantic salmon. BMC Genomics 2019; 20:139. [PMID: 30770720 PMCID: PMC6377724 DOI: 10.1186/s12864-019-5525-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A key developmental transformation in the life of all vertebrates is the transition to sexual maturity, whereby individuals are capable of reproducing for the first time. In the farming of Atlantic salmon, early maturation prior to harvest size has serious negative production impacts. RESULTS We report genome wide association studies (GWAS) using fish measured for sexual maturation in freshwater or the marine environment. Genotypic data from a custom 50 K single nucleotide polymorphism (SNP) array was used to identify 13 significantly associated SNP for freshwater maturation with the most strongly associated on chromosomes 10 and 11. A higher number of associations (48) were detected for marine maturation, and the two peak loci were found to be the same for both traits. The number and broad distribution of GWAS hits confirmed a highly polygenetic nature, and GWAS performed separately within males and females revealed sex specific genetic behaviour for loci co-located with positional candidate genes phosphatidylinositol-binding clathrin assembly protein-like (picalm) and membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (magi2). CONCLUSIONS The results extend earlier work and have implications for future applied breeding strategies to delay maturation in this important aquaculture species.
Collapse
Affiliation(s)
- Amin R Mohamed
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia Brisbane, 4067, Australia.,Zoology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Klara L Verbyla
- Commonwealth Scientific and Industrial Research Organisation Data 61, Canberra, Australian Capital Territory, 2601, Australia
| | - Hawlader A Al-Mamun
- Commonwealth Scientific and Industrial Research Organisation Data 61, Canberra, Australian Capital Territory, 2601, Australia
| | - Sean McWilliam
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia Brisbane, 4067, Australia
| | - Bradley Evans
- Tassal Operations Pty Ltd, Hobart, Tasmania, 7001, Australia
| | - Harry King
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Hobart, Tasmania, 7004, Australia
| | - Peter Kube
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Hobart, Tasmania, 7004, Australia
| | - James W Kijas
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia Brisbane, 4067, Australia.
| |
Collapse
|
15
|
Michalson KT, Groban L, Howard TD, Shively CA, Sophonsritsuk A, Appt SE, Cline JM, Clarkson TB, Carr JJ, Kitzman DW, Register TC. Estradiol Treatment Initiated Early After Ovariectomy Regulates Myocardial Gene Expression and Inhibits Diastolic Dysfunction in Female Cynomolgus Monkeys: Potential Roles for Calcium Homeostasis and Extracellular Matrix Remodeling. J Am Heart Assoc 2018; 7:e009769. [PMID: 30571375 PMCID: PMC6404177 DOI: 10.1161/jaha.118.009769] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Background Left ventricular ( LV ) diastolic dysfunction often precedes heart failure with preserved ejection fraction, the dominant form of heart failure in postmenopausal women. The objective of this study was to determine the effect of oral estradiol treatment initiated early after ovariectomy on LV function and myocardial gene expression in female cynomolgus macaques. Methods and Results Monkeys were ovariectomized and randomized to receive placebo (control) or oral estradiol at a human-equivalent dose of 1 mg/day for 8 months. Monkeys then underwent conventional and tissue Doppler imaging to assess cardiac function, followed by transcriptomic and histomorphometric analyses of LV myocardium. Age, body weight, blood pressure, and heart rate were similar between groups. Echocardiographic mitral early and late inflow velocities, mitral annular velocities, and mitral E deceleration slope were higher in estradiol monkeys (all P<0.05), despite similar estimated LV filling pressure. MCP1 (monocyte chemoattractant protein 1) and LV collagen staining were lower in estradiol animals ( P<0.05). Microarray analysis revealed differential myocardial expression of 40 genes (>1.2-fold change; false discovery rate, P<0.05) in estradiol animals relative to controls, which implicated pathways associated with better calcium ion homeostasis and muscle contraction and lower extracellular matrix deposition ( P<0.05). Conclusions Estradiol treatment initiated soon after ovariectomy resulted in enhanced LV diastolic function, and altered myocardial gene expression towards decreased extracellular matrix deposition, improved myocardial contraction, and calcium homeostasis, suggesting that estradiol directly or indirectly modulates the myocardial transcriptome to preserve cardiovascular function.
Collapse
Affiliation(s)
- Kristofer T. Michalson
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Leanne Groban
- Department of AnesthesiologyWake Forest University School of MedicineWinston‐SalemNC
| | - Timothy D. Howard
- Department of BiochemistryWake Forest University School of MedicineWinston‐SalemNC
| | - Carol A. Shively
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Areepan Sophonsritsuk
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Susan E. Appt
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - J. Mark Cline
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Thomas B. Clarkson
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - J. Jeffrey Carr
- Department of RadiologyVanderbilt University School of MedicineNashvilleTN
| | - Dalane W. Kitzman
- Section on CardiologyDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC
| | - Thomas C. Register
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| |
Collapse
|
16
|
Kumar A, Dumasia K, Deshpande S, Raut S, Balasinor NH. Delineating the regulation of estrogen and androgen receptor expression by sex steroids during rat spermatogenesis. J Steroid Biochem Mol Biol 2018; 182:127-136. [PMID: 29709634 DOI: 10.1016/j.jsbmb.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022]
Abstract
Estrogen receptors (ERα and β) and androgen receptor (AR) regulate various critical processes during spermatogenesis. Since spermatogenesis is very sensitive to hormonal stimuli and perturbations, it is important to understand the regulation of expression of these receptors by sex steroid hormones. Although many studies have reported deregulation of steroid receptors on endocrine disruption, there is no consensus on the regulation of their expression by steroid hormones during spermatogenesis, and a lack of clear understanding of the mechanism of regulation. Here, we evaluated the receptor expressions in a well-established exogenous estradiol administration model. We then investigated the mechanisms by which the individual receptors regulate their expression by binding to the respective hormone response elements upstream of these receptor genes. By further employing in vitro and in vivo models of ER and AR stimulation or antagonism, we delineated their regulation in a receptor subtype-specific manner. Our results indicate that ERα positively regulates expression of both the ERs; whereas, ERβ and AR negatively regulate expression of both ERβ and AR by direct binding to upstream regulatory regions. The perturbations in the levels of steroid receptors could be an important factor contributing to spermatogenic defects and male sub-fertility after estradiol and ER agonist treatment. Our study delineates the direct contribution of the individual steroid receptors in the regulation of their own expression.
Collapse
Affiliation(s)
- Anita Kumar
- Neuroendocrinology Division, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Kushaan Dumasia
- Neuroendocrinology Division, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Sharvari Deshpande
- Neuroendocrinology Division, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Sanketa Raut
- Neuroendocrinology Division, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - N H Balasinor
- Neuroendocrinology Division, National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India.
| |
Collapse
|
17
|
Gill-Sharma MK. Testosterone Retention Mechanism in Sertoli Cells: A Biochemical Perspective. Open Biochem J 2018; 12:103-112. [PMID: 30069251 PMCID: PMC6048825 DOI: 10.2174/1874091x01812010103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023] Open
Abstract
Mechanism(s) involved in regulating Intratesticular Testosterone levels (iT) have assumed importance in recent years, from the point of view of hormonal contraception. Contraceptives using Testosterone (T) in combination with Progestins (P), for more effective suppression of pituitary gonadotropins thereby iT, are not 100% effective in suppressing spermatogenesis in human males, likely due to pesrsistence of Intratesticular Dihydrotestosterone (iD) in poor-responders. Several lacunae pertaining to the mechanism of action of principal male hormone T during spermatogenesis remain to be resolved. Notably, the mechanism through which T brings about the stage-specific differentiation of germ cells lacking Androgen Receptors (AR). Testosterone is a highly anabolic steroid with a rapid tissue clearance rate. T is intratesticular substrate for synthesis of Dihydrotestosterone (DHT) and Estradiol (E2) involved in spermtaogenesis. Therefore, it is important to delineate the mechanism(s) for retention of iT, in order to understand regulation of its bioavailability in testis. In depth studies, pertaining to the role of androgen-binding protein(s) in sequestration, retention and bioavailability of T/DHT are required to understand male fertility regulation. The appropriate approach to overcome this lacuna would be development of mice lacking functional testicular Androgen-Binding Protein (ABPKO), but not deficient T/DHT, Luteinizing Hormone (LH) and Follicle-Stimulating Hormone (FSH), in order to understand its physiological functions. Insights gained about androgen retention mechanism(s) from the ABPKO murine model will be of immense help in improving the efficacy of male hormonal contraceptives and infertility management.
Collapse
Affiliation(s)
- Manjeet Kaur Gill-Sharma
- Neuroendocrinology Department (retired), National Institute for Research in Reproductive Health (ICMR), J. M. Street, Parel, Mumbai, 400012, India
| |
Collapse
|
18
|
McSwiggin HM, O'Doherty AM. Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction 2018; 156:R9-R21. [PMID: 29717022 DOI: 10.1530/rep-18-0009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Abstract
Infertility is an often devastating diagnosis encountered by around one in six couples who are trying to conceive. Moving away from the long-held belief that infertility is primarily a female issue, it is now recognised that half, if not more, of these cases may be due to male factors. Recent evidence has suggested that epigenetic abnormalities in chromatin dynamics, DNA methylation or sperm-borne RNAs may contribute to male infertility. In light of advances in deep sequencing technologies, researchers have been able to increase the coverage and depth of sequencing results, which in turn has allowed more comprehensive analyses of spermatozoa chromatin dynamics and methylomes and enabled the discovery of new subsets of sperm RNAs. This review examines the most current literature related to epigenetic processes in the male germline and the associations of aberrant modifications with fertility and development.
Collapse
Affiliation(s)
- H M McSwiggin
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of Medicine, Center for Molecular Medicine, Reno, North Virginia, USA
| | - A M O'Doherty
- Animal Genomics LaboratoryUCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Kumar A, Raut S, Balasinor NH. Endocrine regulation of sperm release. Reprod Fertil Dev 2018; 30:1595-1603. [DOI: 10.1071/rd18057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/02/2018] [Indexed: 01/11/2023] Open
Abstract
Spermiation (sperm release) is the culmination of a spermatid’s journey in the seminiferous epithelium. After a long association with the Sertoli cell, spermatids have to finally ‘let go’ of the support from Sertoli cells in order to be transported to the epididymis. Spermiation is a multistep process characterised by removal of excess spermatid cytoplasm, recycling of junctional adhesion molecules by endocytosis, extensive cytoskeletal remodelling and final spermatid disengagement. Successful execution of all these events requires coordinated regulation by endocrine and paracrine factors. This review focuses on the endocrine regulation of spermiation. With the aim of delineating how hormones control the various aspects of spermiation, this review provides an analysis of recent advances in research on the hormonal control of molecules associated with the spermiation machinery. Because spermiation is one of the most sensitive phases of spermatogenesis to variations in hormone levels, understanding their molecular control is imperative to advance our knowledge of the nuances of spermatogenesis and male fertility.
Collapse
|
20
|
Dostalova P, Zatecka E, Dvorakova-Hortova K. Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction. Int J Mol Sci 2017; 18:ijms18050904. [PMID: 28441342 PMCID: PMC5454817 DOI: 10.3390/ijms18050904] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
The crucial role that oestrogens play in male reproduction has been generally accepted; however, the exact mechanism of their action is not entirely clear and there is still much more to be clarified. The oestrogen response is mediated through oestrogen receptors, as well as classical oestrogen receptors’ variants, and their specific co-expression plays a critical role. The importance of oestrogen signalling in male fertility is indicated by the adverse effects of selected oestrogen-like compounds, and their interaction with oestrogen receptors was proven to cause pathologies. The aims of this review are to summarise the current knowledge on oestrogen signalling during spermatogenesis and sperm maturation and discuss the available information on oestrogen receptors and their splice variants. An overview is given of species-specific differences including in humans, along with a detailed summary of the methodology outcome, including all the genetically manipulated models available to date. This review provides coherent information on the recently discovered mechanisms of oestrogens’ and oestrogen receptors’ effects and action in both testicular somatic and germ cells, as well as in mature sperm, available for mammals, including humans.
Collapse
Affiliation(s)
- Pavla Dostalova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Eva Zatecka
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic.
| |
Collapse
|