1
|
Handelsman DJ. Toward a Robust Definition of Sport Sex. Endocr Rev 2024; 45:709-736. [PMID: 38578952 DOI: 10.1210/endrev/bnae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Elite individual sports in which success depends on power, speed, or endurance are conventionally divided into male and female events using traditional binary definitions of sex. Male puberty creates durable physical advantages due to the 20- to 30-fold increase in circulating testosterone producing a sustained uplift in men's muscle, bone, hemoglobin, and cardiorespiratory function resulting from male puberty and sustained during men's lives. These male physical advantages provide strong justification for a separate protected category of female events allowing women to achieve the fame and fortune from success they would be denied if competing against men. Recent wider social acceptance of transgender individuals, together with the less recognized involvement of intersex individuals, challenge and threaten to defeat the sex classifications for elite individual female events. This can create unfair advantages if seeking inclusion into elite female events of unmodified male-bodied athletes with female gender identity who have gained the physical advantages of male puberty. Based on reproductive physiology, this paper proposes a working definition of sport sex based primarily on an individual's experience of male puberty and can be applied to transgender and various XY intersex conditions. Consistent with the multidimensionality of biological sex (chromosomal, genetic, hormonal, anatomical sex), this definition may be viewed as a multistrand cable whose overall strength survives when any single strand weakens or fails, rather than as a unidimensional chain whose strength is only as good as its weakest link.
Collapse
Affiliation(s)
- David J Handelsman
- Andrology Department, ANZAC Research Institute, University of Sydney, Concord Hospital, Syndey, NSW 2139, Australia
| |
Collapse
|
2
|
Nagarajaiah P, Bhuyan AK, Baro A, Saikia UK. Variability in Sex Assignment at Birth and Etiological Diagnosis of Differences of Sex Development: A Ten-Year Institutional Experience from Assam. Indian J Endocrinol Metab 2024; 28:417-423. [PMID: 39371652 PMCID: PMC11451964 DOI: 10.4103/ijem.ijem_385_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/21/2024] [Accepted: 05/09/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Differences of sex development (DSD) also known as disorders of sex development encompass a wide spectrum of conditions with varying clinical presentations across different age groups. This study aims to analyse various aetiologies of DSD in Assam and the variability of sex assignment at birth. Methods This retrospective study included the records of people with DSD presenting to a tertiary centre over 10 years. The age at presentation, sex assignment, gender identity, degree of ambiguity, pertinent hormonal and radiological investigations were noted. Descriptive statistics were used for analysis. Results The age of presentation varied widely, with peaks during infancy and puberty. The most prevalent DSD type was 46, XY DSD (61.2%), followed by 46, XX DSD (19.7%) and sex chromosome DSD (19.1%). Among people with 46, XY DSD, androgen biosynthesis disorders were dominant, particularly 5-a reductase 2 deficiency (46.7%). Among 46, XX DSDs, the most common subtype was androgen excess disorders (51.7%) comprising 21a-hydroxylase deficiency (48,3%) and 11β-hydroxylase deficiency (3.4%). Turner syndrome was most prevalent among sex chromosome DSD (71.4%) with others being Klinefelter syndrome, 45, XO/46, XY mixed gonadal dysgenesis and 46, XX/46, XY chimerism. The degree of ambiguity was variable depending on the type of DSD and similarly, sex assignment at birth was influenced by the level of ambiguity. Conclusion The study underscores the significance of comprehensive approaches for DSD diagnosis and management, especially in regions with limited resources. The insights gained from this clinical study offer valuable understanding and aid in addressing the complexities associated with these conditions.
Collapse
Affiliation(s)
- Praveen Nagarajaiah
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Ashok K. Bhuyan
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Abhamoni Baro
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Uma K. Saikia
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| |
Collapse
|
3
|
Lv S, Huang J, Luo Y, Wen Y, Chen B, Qiu H, Chen H, Yue T, He L, Feng B, Yu Z, Zhao M, Yang Q, He M, Xiao W, Zou X, Gu C, Lu R. Gut microbiota is involved in male reproductive function: a review. Front Microbiol 2024; 15:1371667. [PMID: 38765683 PMCID: PMC11099273 DOI: 10.3389/fmicb.2024.1371667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Globally, ~8%-12% of couples confront infertility issues, male-related issues being accountable for 50%. This review focuses on the influence of gut microbiota and their metabolites on the male reproductive system from five perspectives: sperm quality, testicular structure, sex hormones, sexual behavior, and probiotic supplementation. To improve sperm quality, gut microbiota can secrete metabolites by themselves or regulate host metabolites. Endotoxemia is a key factor in testicular structure damage that causes orchitis and disrupts the blood-testis barrier (BTB). In addition, the gut microbiota can regulate sex hormone levels by participating in the synthesis of sex hormone-related enzymes directly and participating in the enterohepatic circulation of sex hormones, and affect the hypothalamic-pituitary-testis (HPT) axis. They can also activate areas of the brain that control sexual arousal and behavior through metabolites. Probiotic supplementation can improve male reproductive function. Therefore, the gut microbiota may affect male reproductive function and behavior; however, further research is needed to better understand the mechanisms underlying microbiota-mediated male infertility.
Collapse
Affiliation(s)
- Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Hao Qiu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huanxin Chen
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
| | - Tianhao Yue
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Baochun Feng
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Mingde Zhao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xiaoxia Zou
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruilin Lu
- Gastrointestinal Surgery, Suining First People's Hospital, Suining, China
| |
Collapse
|
4
|
Junnila A, Zhang FP, Martínez Nieto G, Hakkarainen J, Mäkelä JA, Ohlsson C, Sipilä P, Poutanen M. HSD17B1 Compensates for HSD17B3 Deficiency in Fetal Mouse Testis but Not in Adults. Endocrinology 2024; 165:bqae056. [PMID: 38785348 DOI: 10.1210/endocr/bqae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 05/25/2024]
Abstract
Hydroxysteroid (17β) dehydrogenase (HSD17B) enzymes convert 17-ketosteroids to 17beta-hydroxysteroids, an essential step in testosterone biosynthesis. Human XY individuals with inactivating HSD17B3 mutations are born with female-appearing external genitalia due to testosterone deficiency. However, at puberty their testosterone production reactivates, indicating HSD17B3-independent testosterone synthesis. We have recently shown that Hsd17b3 knockout (3-KO) male mice display a similar endocrine imbalance, with high serum androstenedione and testosterone in adulthood, but milder undermasculinization than humans. Here, we studied whether HSD17B1 is responsible for the remaining HSD17B activity in the 3-KO male mice by generating a Ser134Ala point mutation that disrupted the enzymatic activity of HSD17B1 (1-KO) followed by breeding Hsd17b1/Hsd17b3 double-KO (DKO) mice. In contrast to 3-KO, inactivation of both HSD17B3 and HSD17B1 in mice results in a dramatic drop in testosterone synthesis during the fetal period. This resulted in a female-like anogenital distance at birth, and adult DKO males displayed more severe undermasculinization than 3-KO, including more strongly reduced weight of seminal vesicles, levator ani, epididymis, and testis. However, qualitatively normal spermatogenesis was detected in adult DKO males. Furthermore, similar to 3-KO mice, high serum testosterone was still detected in adult DKO mice, accompanied by upregulation of various steroidogenic enzymes. The data show that HSD17B1 compensates for HSD17B3 deficiency in fetal mouse testis but is not the enzyme responsible for testosterone synthesis in adult mice with inactivated HSD17B3. Therefore, other enzymes are able to convert androstenedione to testosterone in the adult mouse testis and presumably also in the human testis.
Collapse
Affiliation(s)
- Arttu Junnila
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland
- Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Guillermo Martínez Nieto
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland
- Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Janne Hakkarainen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, 41345 Gothenburg, Sweden
| | - Petra Sipilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland
- Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland
- Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
5
|
Xia K, Wang F, Tan Z, Zhang S, Lai X, Ou W, Yang C, Chen H, Peng H, Luo P, Hu A, Tu X, Wang T, Ke Q, Deng C, Xiang AP. Precise Correction of Lhcgr Mutation in Stem Leydig Cells by Prime Editing Rescues Hereditary Primary Hypogonadism in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300993. [PMID: 37697644 PMCID: PMC10582410 DOI: 10.1002/advs.202300993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/20/2023] [Indexed: 09/13/2023]
Abstract
Hereditary primary hypogonadism (HPH), caused by gene mutation related to testosterone synthesis in Leydig cells, usually impairs male sexual development and spermatogenesis. Genetically corrected stem Leydig cells (SLCs) transplantation may provide a new approach for treating HPH. Here, a novel nonsense-point-mutation mouse model (LhcgrW495X ) is first generated based on a gene mutation relative to HPH patients. To verify the efficacy and feasibility of SLCs transplantation in treating HPH, wild-type SLCs are transplanted into LhcgrW495X mice, in which SLCs obviously rescue HPH phenotypes. Through comparing several editing strategies, optimized PE2 protein (PEmax) system is identified as an efficient and precise approach to correct the pathogenic point mutation in Lhcgr. Furthermore, delivering intein-split PEmax system via lentivirus successfully corrects the mutation in SLCs from LhcgrW495X mice ex vivo. Gene-corrected SLCs from LhcgrW495X mice exert ability to differentiate into functional Leydig cells in vitro. Notably, the transplantation of gene-corrected SLCs effectively regenerates Leydig cells, recovers testosterone production, restarts sexual development, rescues spermatogenesis, and produces fertile offspring in LhcgrW495X mice. Altogether, these results suggest that PE-based gene editing in SLCs ex vivo is a promising strategy for HPH therapy and is potentially leveraged to address more hereditary diseases in reproductive system.
Collapse
Affiliation(s)
- Kai Xia
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Fulin Wang
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Zhipeng Tan
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Suyuan Zhang
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xingqiang Lai
- Cardiovascular DepartmentThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033China
| | - Wangsheng Ou
- State Key Laboratory of Ophthalmology Zhong Shan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouGuangdong510000China
| | - Cuifeng Yang
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Hao Peng
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Peng Luo
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Anqi Hu
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiang'an Tu
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Chunhua Deng
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| |
Collapse
|
6
|
Jelley H, Meder M, Timme K. Virilization at Puberty: A Rare Cause. Clin Pediatr (Phila) 2023; 62:946-950. [PMID: 36797848 DOI: 10.1177/00099228221146508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Hannah Jelley
- Division of Pediatric Diabetes & Endocrinology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Primary Children's Hospital, Salt Lake City, UT, USA
| | - Michelle Meder
- Division of Pediatric Diabetes & Endocrinology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Primary Children's Hospital, Salt Lake City, UT, USA
| | - Kathleen Timme
- Division of Pediatric Diabetes & Endocrinology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Primary Children's Hospital, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Xia K, Wang F, Lai X, Dong L, Luo P, Zhang S, Yang C, Chen H, Ma Y, Huang W, Ou W, Li Y, Feng X, Yang B, Liu C, Lei Z, Tu X, Ke Q, Mao FF, Deng C, Xiang AP. AAV-mediated gene therapy produces fertile offspring in the Lhcgr-deficient mouse model of Leydig cell failure. Cell Rep Med 2022; 3:100792. [PMID: 36270285 PMCID: PMC9729833 DOI: 10.1016/j.xcrm.2022.100792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/14/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
Leydig cell failure (LCF) caused by gene mutation results in testosterone deficiency and infertility. Serum testosterone levels can be recovered via testosterone replacement; however, established therapies have shown limited success in restoring fertility. Here, we use a luteinizing hormone/choriogonadotrophin receptor (Lhcgr)-deficient mouse model of LCF to investigate the feasibility of gene therapy for restoring testosterone production and fertility. We screen several adeno-associated virus (AAV) serotypes and identify AAV8 as an efficient vector to drive exogenous Lhcgr expression in progenitor Leydig cells through interstitial injection. We observe considerable testosterone recovery and Leydig cell maturation after AAV8-Lhcgr treatment in pubertal Lhcgr-/- mice. Of note, this gene therapy partially recovers sexual development, substantially restores spermatogenesis, and effectively produces fertile offspring. Furthermore, these favorable effects can be reproduced in adult Lhcgr-/- mice. Our proof-of-concept experiments in the mouse model demonstrate that AAV-mediated gene therapy may represent a promising therapeutic approach for patients with LCF.
Collapse
Affiliation(s)
- Kai Xia
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Fulin Wang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Lin Dong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Luo
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Suyuan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Cuifeng Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wangsheng Ou
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Yuyan Li
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin Feng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bin Yang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Congyuan Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhenmin Lei
- Department of OB/GYN and Women’s Health, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Xiang’an Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Frank Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Corresponding author
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China,Corresponding author
| |
Collapse
|
8
|
Disorder of Sex Development Due to 17-Beta-Hydroxysteroid Dehydrogenase Type 3 Deficiency: A Case Report and Review of 70 Different HSD17B3 Mutations Reported in 239 Patients. Int J Mol Sci 2022; 23:ijms231710026. [PMID: 36077423 PMCID: PMC9456484 DOI: 10.3390/ijms231710026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The 17-beta-hydroxysteroid dehydrogenase type 3 (17-β-HSD3) enzyme converts androstenedione to testosterone and is encoded by the HSD17B3 gene. Homozygous or compound heterozygous HSD17B3 mutations block the synthesis of testosterone in the fetal testis, resulting in a Disorder of Sex Development (DSD). We describe a child raised as a female in whom the discovery of testes in the inguinal canals led to a genetic study by whole exome sequencing (WES) and to the identification of a compound heterozygous mutation of the HSD17B3 gene (c.608C>T, p.Ala203Val, and c.645A>T, p.Glu215Asp). Furthermore, we review all HSD17B3 mutations published so far in cases of 17-β-HSD3 deficiency. A total of 70 different HSD17B3 mutations have so far been reported in 239 patients from 187 families. A total of 118 families had homozygous mutations, 63 had compound heterozygous mutations and six had undetermined genotypes. Mutations occurred in all 11 exons and were missense (55%), splice-site (29%), small deletions and insertions (7%), nonsense (5%), and multiple exon deletions and duplications (2%). Several mutations were recurrent and missense mutations at codon 80 and the splice-site mutation c.277+4A>T each represented 17% of all mutated alleles. These findings may be useful to those involved in the clinical management and genetic diagnosis of this disorder.
Collapse
|
9
|
von Spreckelsen B, Aksglaede L, Johannsen TH, Nielsen JE, Main KM, Jørgensen A, Jensen RB. Prepubertal and pubertal gonadal morphology, expression of cell lineage markers and hormonal evaluation in two 46,XY siblings with 17β-hydroxysteroid dehydrogenase 3 deficiency. J Pediatr Endocrinol Metab 2022; 35:953-961. [PMID: 35411763 DOI: 10.1515/jpem-2021-0713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) deficiency results in insufficient biosynthesis of testosterone and consequently dihydrotestosterone. This is important for the fetal development of male genitalia. Thus, most 46,XY patients with 17β-HSD3 deficiency have a female appearance at birth and present with virilization at puberty. This study presents the differences in the clinical and hormonal data and analyses of gonadal characteristics in two siblings with 17β-HSD3 deficiency. CASE PRESENTATION Patient 1 presented with deepening of the voice and signs of virilization at puberty and increased serum levels of testosterone (T) of 10.9 nmol/L (2.9 SDS) and androstenedione (Δ4) of 27 nmol/L (3.3 SDS) were observed. The T/Δ4-ratio was 0.39. Patient 2 was clinically prepubertal at the time of diagnosis, but she also had increased levels of T at 1.97 nmol/L (2.9 SDS), Δ4 at 5 nmol/L (3.3 SDS), and the T/Δ4-ratio was 0.40, but without signs of virilization. Both siblings were diagnosed as homozygous for the splice-site mutation c.277+4A>T in intron 3 of HSD17B3. They were subsequently gonadectomized and treated with hormone replacement therapy. The gonadal histology was overall in accordance with pubertal status, although with a dysgenetic pattern in both patients, including Sertoli-cell-only tubules, few tubules containing germ cells, and presence of microliths. CONCLUSIONS Two siblings with 17β-HSD3 deficiency differed in pubertal development at the time of diagnosis and showed marked differences in their clinical presentation, hormonal profile, gonadal morphology and expression of cell lineage markers. Early diagnosis of 17β-HSD3 deficiency appears beneficial to ameliorate long-term consequences.
Collapse
Affiliation(s)
- Benedikte von Spreckelsen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lise Aksglaede
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Trine Holm Johannsen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - John E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Katharina M Main
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rikke Beck Jensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
10
|
Krishnappa B, Arya S, Lila AR, Sarathi V, Memon SS, Barnabas R, Kumbhar BV, Bhandare VV, Patil V, Shah NS, Kunwar A, Bandgar T. 17β hydroxysteroid dehydrogenase 3 deficiency in 46,XY disorders of sex development: Our experience and a gender role-focused systematic review. Clin Endocrinol (Oxf) 2022; 97:43-51. [PMID: 35170787 DOI: 10.1111/cen.14694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To describe Asian Indian patients with 17β hydroxysteroid dehydrogenase 3 (17βHSD3) deficiency and to perform a systematic review to determine the factors influencing gender role in 46,XY disorder of sex development (DSD) due to 17βHSD3 deficiency. PATIENTS AND DESIGN We present the phenotypic and genotypic data of 10 patients (9 probands and 1 affected family member) with 17βHSD3 deficiency from our 46,XY DSD cohort (N = 150; Western India) and a systematic review of 152 probands with genetically proven, index 17βHSD3 deficiency patients from the world literature to identify the determinants of gender role. RESULTS 17βHSD3 deficiency was the third most common (6%) cause of non-dysgenetic 46,XY DSD in our cohort. Five patients each had prepubertal (atypical genitalia) and pubertal (primary amenorrhoea) presentations. Six patients were initially reared as female of whom two (one each in prepubertal and pubertal age) changed their gender role. Ten pathogenic molecular variants (six novel) were observed. In the systematic review, initial male sex of rearing was uncommon (10.5%) and was associated with atypical genitalia, higher testosterone/androstenedione (T/A) ratio and Asian origin. Gender role change to male was seen in 10.3% of patients with initial female sex of rearing and was associated with Asian origin but unrelated to pubertal androgens or molecular variant severity. It has not been reported in patients of European origin. CONCLUSIONS We report the first Indian case series of 17βHSD3 deficiency, the third most common cause of 46,XY DSD, with six novel molecular variants. Distinct geographical differences in the frequency of initial male sex of rearing and gender role change to male in those initially reared as females in 17βHSD3 deficiency were noted which needs further evaluation for the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Brijesh Krishnappa
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Sneha Arya
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Anurag R Lila
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| | - Saba S Memon
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Rohit Barnabas
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Bajarang V Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Vishwambhar V Bhandare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Virendra Patil
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Nalini S Shah
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Tushar Bandgar
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Rafigh M, Salmaninejad A, Sorouri Khorashad B, Arabi A, Milanizadeh S, Hiradfar M, Abbaszadegan MR. Novel Deleterious Mutation in Steroid-5α-Reductase-2 in 46, XY Disorders of Sex Development: Case Report Study. Fetal Pediatr Pathol 2022; 41:141-148. [PMID: 32449406 DOI: 10.1080/15513815.2020.1745974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Steroid-5α-reductase-2 (SRD5A2) and 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) enzyme deficiencies are frequent causes of 46, XY disorder of sex development (46, XY DSD), where an infant with 46, XY has a female phenotype. We assessed the hydroxy-steroid-17β-dehydrogenase-3 (HSD17B3)and SRD5A2 genes in twenty Iranian phenotypic females with 46,XY DSD. Materials and methods: All exons in HSD17B3 and SRD5A2 genes were subjected to PCR amplification followed by sequencing. Results: Of 20 identified 46, XY DSD patients, one had a homozygous missense 17β-HSD3 mutation Ser65Leu (c.194C > T). We found 1 SRD5A2 novel homozygous missense mutation of Tyr242Asp (c.891T > G) in exon 5, which in-silico analyses revealed that this mutation may have deleterious impact on ligand binding site of SRD5A2 protein. Three other individuals harbored 17β-HSD3 deficiencies without identified mutations. Conclusions: SRD5A2 and 17β-HSD3 mutations are found in 10% of 46, XY DSD Iranian patients.
Collapse
Affiliation(s)
- Mahboobeh Rafigh
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Sorouri Khorashad
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Azadeh Arabi
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Milanizadeh
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Hiradfar
- Department of Pediatric Surgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Boettcher C, Flück CE. Rare forms of genetic steroidogenic defects affecting the gonads and adrenals. Best Pract Res Clin Endocrinol Metab 2022; 36:101593. [PMID: 34711511 DOI: 10.1016/j.beem.2021.101593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pathogenic variants have been found in all genes involved in the classic pathways of human adrenal and gonadal steroidogenesis. Depending on their function and severity, they cause characteristic disorders of corticosteroid and/or sex hormone deficiency, may result in atypical sex development at birth and/or puberty, and mostly lead to sexual dysfunction and infertility. Genetic disorders of steroidogenesis are all inherited in an autosomal recessive fashion. Loss of function mutations lead to typical phenotypes, while variants with partial activity may manifest with milder, non-classic, late-onset disorders that share similar phenotypes. Thus, these disorders of steroidogenesis are diagnosed by comprehensive phenotyping, steroid profiling and genetic testing using next generation sequencing techniques. Treatment comprises of steroid replacement therapies, but these are insufficient in many aspects. Therefore, studies are currently ongoing towards newer approaches such as lentiviral transmitted enzyme replacement therapy and reprogrammed stem cell-based gene therapy.
Collapse
Affiliation(s)
- Claudia Boettcher
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland.
| |
Collapse
|
13
|
Kapczuk K, Kędzia W. Primary Amenorrhea Due to Anatomical Abnormalities of the Reproductive Tract: Molecular Insight. Int J Mol Sci 2021; 22:ijms222111495. [PMID: 34768925 PMCID: PMC8584168 DOI: 10.3390/ijms222111495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Congenital anomalies of the female reproductive tract that present with primary amenorrhea involve Müllerian aplasia, also known as Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS), and cervical and vaginal anomalies that completely obstruct the reproductive tract. Karyotype abnormalities do not exclude the diagnosis of MRKHS. Familial cases of Müllerian anomalies and associated malformations of the urinary and skeletal systems strongly suggest a complex genetic etiology, but so far, the molecular mechanism in the vast majority of cases remains unknown. Primary amenorrhea may also be the first presentation of complete androgen insensitivity syndrome, steroid 5α-reductase type 2 deficiency, 17β-hydroxysteroid dehydrogenase type 3 deficiency, and Leydig cells hypoplasia type 1; therefore, these disorders should be considered in the differential diagnosis of the congenital absence of the uterus and vagina. The molecular diagnosis in the majority of these cases can be established.
Collapse
|
14
|
Luna SE, Wegner DJ, Gale S, Yang P, Hollander A, St Dennis-Feezle L, Nabhan ZM, Ory DS, Cole FS, Wambach JA. Whole exome sequencing and functional characterization increase diagnostic yield in siblings with a 46, XY difference of sexual development (DSD). J Steroid Biochem Mol Biol 2021; 212:105908. [PMID: 33984517 PMCID: PMC8725205 DOI: 10.1016/j.jsbmb.2021.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/23/2022]
Abstract
Pathogenic biallelic variants in HSD17B3 result in 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) deficiency, variable disruption of testosterone production, and phenotypic diversity among 46, XY individuals with differences of sexual development (DSDs). We performed quad whole exome sequencing (WES) on two male siblings with microphallus, perineal hypospadias, and bifid scrotum and their unaffected parents. Both male siblings were compound heterozygous for a rare pathogenic HSD17B3 variant (c.239 G > A, p.R80Q) previously identified among individuals with 17β-HSD3 deficiency and a HSD17B3 variant (c.641A > G, p.E214 G) of uncertain significance. Following WES, the siblings underwent hCG stimulation testing with measurement of testosterone, androstenedione, and dihydrotestosterone which was non-diagnostic. To confirm pathogenicity of the HSD17B3 variants, we performed transient transfection of HEK-293 cells and measured conversion of radiolabeled androstenedione to testosterone. Both HSD17B3 variants decreased conversion of radiolabeled androstenedione to testosterone. As pathogenic HSD17B3 variants are rare causes of 46, XY DSD and hCG stimulation testing may not be diagnostic for 17β-HSD3 deficiency, WES in 46, XY individuals with DSDs can increase diagnostic yield and identify genomic variants for functional characterization of disruption of testosterone production.
Collapse
Affiliation(s)
- Sofia E Luna
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Sarah Gale
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping Yang
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Abby Hollander
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Lori St Dennis-Feezle
- Department of Pediatrics, Indiana University School of Medicine and Riley Children's Hospital, Indianapolis, IN, USA
| | - Zeina M Nabhan
- Department of Pediatrics, Indiana University School of Medicine and Riley Children's Hospital, Indianapolis, IN, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA.
| |
Collapse
|
15
|
Alswailem M, Alsagheir A, Abbas BB, Alzahrani O, Alzahrani AS. Molecular genetics of disorders of sex development in a highly consanguineous population. J Steroid Biochem Mol Biol 2021; 208:105736. [PMID: 32784047 DOI: 10.1016/j.jsbmb.2020.105736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 11/15/2022]
Abstract
UNLABELLED Consanguinity increases the risk of hereditary diseases including disorders of sex development (DSD). There are minimal data on DSD in the highly consanguineous population of Saudi Arabia. This study reports the molecular genetics of a series of patients with different types of DSD. METHODS We enrolled 77 patients from 47 families with DSD. DNA was isolated from peripheral leucocytes. Genes of interest were amplified by polymerase chain reaction and subsequently sequenced. RESULTS Overall, 77 patients from 47 families (44 of them are consanguineous) had a total of 29 mutations; 16 of them were described before and 13 were novel mutations. The most common condition was 5-α reductase (SRD5A2) deficiency (25 patients from 18 families) and the most common mutation was a splice site mutation in intron 1 (c.282-2A>G). The next most common condition was 11-β hydroxylase (CYP11B1) deficiency where 19 patients from 10 families had 8 mutations (7 of them are novel). Other mutations affected CYP17A1 with 2 novel and 2 known mutations in 7 patients; HSD3B2 with 2 known mutations in 11 patients of 4 families; StAR with 1 novel and 1 known mutations in 4 patients; NR0B1 with 1 novel mutation in 2 siblings; HSD17B3 with 1 known mutation in 3 siblings; LHCGR with 1 novel mutation in 2 siblings; and AR with 1 novel and 3 known mutations in 4 unrelated patients. CONCLUSION In the highly consanguineous and homogeneous population of Saudi Arabia, SRD5A2 and CYP11B1 deficiencies are common causes of DSDs. Other DSDs occur less frequently but often with novel mutations.
Collapse
Affiliation(s)
- Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Afaf Alsagheir
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Bassam Ben Abbas
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ohoud Alzahrani
- Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Faienza MF, Baldinotti F, Marrocco G, TyuTyusheva N, Peroni D, Baroncelli GI, Bertelloni S. 17β-hydroxysteroid dehydrogenase type 3 deficiency: female sex assignment and follow-up. J Endocrinol Invest 2020; 43:1711-1716. [PMID: 32297288 DOI: 10.1007/s40618-020-01248-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/06/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Deficiency of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) is a rare autosomal recessive 46,XY disorder of sex development (DSD). It is due to pathogenetic variants in the HSD17B3 gene. Mutated genes encode an abnormal enzyme with absent or reduced ability to convert Δ4-androstenedione (Δ4-A) to testosterone (T) in the fetal testis. Affected individuals are usually raised as females and diagnosis is made at puberty, when they show virilization. METHODS A girl with a presumptive diagnosis of complete androgen insensitivity syndrome underwent endocrine and genetic assessment. Long-term follow-up was reported. RESULTS The diagnosis of 17β-HSD3 deficiency was made (stimulated T/Δ4-A ratio: 0.15; HSD17B3 gene analysis: c.277+4A>T in intron 3/c.640_645del (p.Glu214_Glu215del) in exon 9. After extensive information, parents decided to maintain female sex. Gonadal removal was performed and histological evaluation demonstrated deep fibrosis of testicular tissue. Follow-up till 8.5 years of age showed somatic and neuro-psychological development fitting with the female sex. CONCLUSIONS Management of a child with the rare 17β-HSD3 deficiency remains challenging. Any decision must be carefully evaluated with parents. Long-term follow-up must be warranted by a multidisciplinary DSD team to evaluate the adequacy of the choices made on quality of life in later life.
Collapse
Affiliation(s)
- M F Faienza
- Pediatric Section, Department of Biomedical Sciences and Human Oncology, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy.
| | - F Baldinotti
- Laboratory of Molecular Genetics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - G Marrocco
- UOC Chirurgia Pediatrica, Fondazione Policlinico Gemelli, Rome, Italy
| | - N TyuTyusheva
- Pediatric and Adolescent Endocrinology, Pediatric Unit, Department of Obstetrics, Gynecology and Paediatrics, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67, 56126, Pisa, Italy
| | - D Peroni
- Pediatric and Adolescent Endocrinology, Pediatric Unit, Department of Obstetrics, Gynecology and Paediatrics, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67, 56126, Pisa, Italy
| | - G I Baroncelli
- Pediatric and Adolescent Endocrinology, Pediatric Unit, Department of Obstetrics, Gynecology and Paediatrics, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67, 56126, Pisa, Italy
| | - S Bertelloni
- Pediatric and Adolescent Endocrinology, Pediatric Unit, Department of Obstetrics, Gynecology and Paediatrics, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67, 56126, Pisa, Italy.
| |
Collapse
|
17
|
Cheng Y, Yang Y, Wu Y, Wang W, Xiao L, Zhang Y, Tang J, Huang YD, Zhang S, Xiang Q. The Curcumin Derivative, H10, Suppresses Hormone-Dependent Prostate Cancer by Inhibiting 17β-Hydroxysteroid Dehydrogenase Type 3. Front Pharmacol 2020; 11:637. [PMID: 32457626 PMCID: PMC7227374 DOI: 10.3389/fphar.2020.00637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/21/2020] [Indexed: 01/31/2023] Open
Abstract
The 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) enzyme is a potential therapeutic target for hormone-dependent prostate cancer, as it is the key enzyme in the last step of testosterone (T) biosynthesis. A curcumin analog, H10, was optimized for inhibiting T production in LC540 cells that stably overexpressed 17β-HSD3 enzyme (LC540 [17β-HSD3]) (P < 0.01), without affecting progesterone (P) synthesis. H10 downregulated the production of T in the microsomal fraction of rat testes containing the 17β-HSD3 enzyme from 100 to 78.41 ± 7.41%, 51.86 ± 10.03%, and 45.14 ± 8.49% at doses of 10, 20, and 40 μM, respectively. There were no significant differences among the groups with respect to the protein expression levels of 17β-HSD3, 3βHSD1, CYP17a1, CYP11a1, and STAR, which participate in 17β-HSD3-mediated conversion of androgens to T (P > 0.05). This indicated that H10 only inhibited the enzymatic activity of 17β-HSD3 in vitro. Furthermore, H10 inhibited the adione-stimulated growth of xenografts established from LNCaP cells in nude mice in vivo. We conclude that H10 could serve as an effective inhibitor of 17β-HSD3, which in turn would inhibit the biosynthesis of androgens and progression of prostate cancer.
Collapse
Affiliation(s)
- Yating Cheng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Yan Yang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Yinan Wu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wencheng Wang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Lichun Xiao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Yifan Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Jianzhong Tang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Ya-Dong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Shu Zhang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Sipilä P, Junnila A, Hakkarainen J, Huhtaniemi R, Mairinoja L, Zhang FP, Strauss L, Ohlsson C, Kotaja N, Huhtaniemi I, Poutanen M. The lack of HSD17B3 in male mice results in disturbed Leydig cell maturation and endocrine imbalance akin to humans with HSD17B3 deficiency. FASEB J 2020; 34:6111-6128. [PMID: 32190925 DOI: 10.1096/fj.201902384r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 11/11/2022]
Abstract
Hydroxysteroid (17β) dehydrogenase type 3 (HSD17B3) deficiency causes a disorder of sex development in humans, where affected males are born with female-appearing external genitalia, but are virilized during puberty. The hormonal disturbances observed in the Hsd17b3 knockout mice (HSD17B3KO), generated in the present study, mimic those found in patients with HSD17B3 mutations. Identical to affected humans, serum T in the adult HSD17B3KO mice was within the normal range, while a striking increase was detected in serum A-dione concentration. This resulted in a marked reduction of the serum T/A-dione ratio, a diagnostic hallmark for the patients with HSD17B3 deficiency. However, unlike humans, male HSD17B3KO mice were born with normally virilized phenotype, but presenting with delayed puberty. In contrast to the current belief, data from HSD17B3KO mice show that the circulating T largely originates from the testes, indicating a strong compensatory mechanism in the absence of HSD17B3. The lack of testicular malignancies in HSD17B3KO mice supports the view that testis tumors in human patients are due to associated cryptorchidism. The HSD17B3KO mice presented also with impaired Leydig cell maturation and signs of undermasculinization in adulthood. The identical hormonal disturbances between HSD17B3 deficient knockout mice and human patients make the current mouse model valuable for understanding the mechanism of the patient phenotypes, as well as endocrinopathies and compensatory steroidogenic mechanisms in HSD17B3 deficiency.
Collapse
Affiliation(s)
- P Sipilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland
| | - A Junnila
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - J Hakkarainen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - R Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - L Mairinoja
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - F P Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - L Strauss
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland
| | - C Ohlsson
- Institute of Medicine, the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - N Kotaja
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - I Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - M Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.,Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland.,Institute of Medicine, the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
19
|
Krzeminska P, Nizanski W, Nowacka-Woszuk J, Switonski M. Analysis of testosterone pathway genes in dogs (78,XY; SRY-positive) with ambiguous external genitalia revealed a homozygous animal for 2-bp deletion causing premature stop codon in HSD17B3. Anim Genet 2019; 50:705-711. [PMID: 31476086 DOI: 10.1111/age.12850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
The genetic background of disorders of sex development (DSD) in dogs with a normal male sex chromosome set (78,XY) is poorly described. In this study, we present for the first time, an analysis of six genes of the testosterone pathway, encoding enzymes (CYP17A1, HSD3B2, HSD17B3, SRD5A2) and transcription factors (NR5A1, AR). The entire coding sequence and flanking regions of the introns, 5'-UTR and 3'-UTR were analyzed in five DSD dogs (78,XY, SRY-positive) with ambiguous external genitalia and in 15 control dogs. A homozygous deletion of 2 bp in exon 2 of HSD17B3 (hydroxysteroid 17-beta dehydrogenase 3) was found in a Dachshund dog with enlarged clitoris, vulva and abdominal gonads and decreased serum testosterone level. In silico analysis revealed that this deleterious variant causes truncation of the encoded polypeptide (from 306 to 65 amino acids) and deprivation of the active site of the encoded enzyme. Genotyping of 23 control Dachshund dogs showed a normal homozygous genotype. Thus, we assumed that the 2-bp deletion is the causative variant. Moreover, 24 SNPs (four in CYP17A1, three in HSD3B2, six in HSD17B3, five in SRD5A2, one in AR and five in NR5A1), two intronic indels (one in HSD3B2 and one in SRD5A2) and two microsatellite polymorphisms in exon 1 of AR were found. Six SNPs appeared to be novel. No association with DSD phenotype was observed. Identification of the first case of DSD in domestic animals caused by a deleterious variant of a gene involved in testosterone synthesis showed that these genes are important candidates in such studies.
Collapse
Affiliation(s)
- P Krzeminska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - W Nizanski
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 49, 50-366, Wroclaw, Poland
| | - J Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - M Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| |
Collapse
|
20
|
León NY, Reyes AP, Harley VR. A clinical algorithm to diagnose differences of sex development. Lancet Diabetes Endocrinol 2019; 7:560-574. [PMID: 30803928 DOI: 10.1016/s2213-8587(18)30339-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
The diagnosis and management of children born with ambiguous genitalia is challenging for clinicians. Such differences of sex development (DSDs) are congenital conditions in which chromosomal, gonadal, or anatomical sex is atypical. The aetiology of DSDs is very heterogenous and a precise diagnosis is essential for management of genetic, endocrine, surgical, reproductive, and psychosocial issues. In this Review, we outline a step-by-step approach, compiled in a diagnostic algorithm, for the clinical assessment and molecular diagnosis of a patient with ambiguity of the external genitalia on initial presentation. We appraise established and emerging technologies and their effect on diagnosis, and discuss current controversies.
Collapse
Affiliation(s)
- Nayla Y León
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Alejandra P Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Genetics Department, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
| |
Collapse
|