1
|
Mazaira GI, Piwien Pilipuk G, Galigniana MD. Corticosteroid receptors as a model for the Hsp90•immunophilin-based transport machinery. Trends Endocrinol Metab 2021; 32:827-838. [PMID: 34420854 DOI: 10.1016/j.tem.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
Steroid receptors form soluble heterocomplexes with the 90-kDa heat-shock protein (Hsp90) and other chaperones and co-chaperones. The assembly and composition of the oligomer is influenced by the presence and nature of the bound steroid. Although these receptors shuttle dynamically in and out of the nucleus, their primary localization in the absence of steroid can be mainly cytoplasmic, mainly nuclear, or partitioned into both cellular compartments. Upon steroid binding, receptors become localized to the nucleus via the transportosome, a retrotransport molecular machinery that comprises Hsp90, a high-molecular-weight immunophilin, and dynein motors. This molecular machinery, first evidenced in steroid receptors, can also be used by other soluble proteins. In this review, we dissect the complete model of this transport machinery system.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Mario D Galigniana
- Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Lang YD, Jou YS. PSPC1 is a new contextual determinant of aberrant subcellular translocation of oncogenes in tumor progression. J Biomed Sci 2021; 28:57. [PMID: 34340703 PMCID: PMC8327449 DOI: 10.1186/s12929-021-00753-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/24/2021] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of nucleocytoplasmic shuttling is commonly observed in cancers and emerging as a cancer hallmark for the development of anticancer therapeutic strategies. Despite its severe adverse effects, selinexor, a selective first-in-class inhibitor of the common nuclear export receptor XPO1, was developed to target nucleocytoplasmic protein shuttling and received accelerated FDA approval in 2019 in combination with dexamethasone as a fifth-line therapeutic option for adults with relapsed refractory multiple myeloma (RRMM). To explore innovative targets in nucleocytoplasmic shuttling, we propose that the aberrant contextual determinants of nucleocytoplasmic shuttling, such as PSPC1 (Paraspeckle component 1), TGIF1 (TGF-β Induced Factor Homeobox 1), NPM1 (Nucleophosmin), Mortalin and EBP50, that modulate shuttling (or cargo) proteins with opposite tumorigenic functions in different subcellular locations could be theranostic targets for developing anticancer strategies. For instance, PSPC1 was recently shown to be the contextual determinant of the TGF-β prometastatic switch and PTK6/β-catenin reciprocal oncogenic nucleocytoplasmic shuttling during hepatocellular carcinoma (HCC) progression. The innovative nucleocytoplasmic shuttling inhibitor PSPC1 C-terminal 131 polypeptide (PSPC1-CT131), which was developed to target both the shuttling determinant PSPC1 and the shuttling protein PTK6, maintained their tumor-suppressive characteristics and exhibited synergistic effects on tumor suppression in HCC cells and mouse models. In summary, targeting the contextual determinants of nucleocytoplasmic shuttling with cargo proteins having opposite tumorigenic functions in different subcellular locations could be an innovative strategy for developing new therapeutic biomarkers and agents to improve cancer therapy.
Collapse
Affiliation(s)
- Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan.
| |
Collapse
|
3
|
Diakatou M, Dubois G, Erkilic N, Sanjurjo-Soriano C, Meunier I, Kalatzis V. Allele-Specific Knockout by CRISPR/Cas to Treat Autosomal Dominant Retinitis Pigmentosa Caused by the G56R Mutation in NR2E3. Int J Mol Sci 2021; 22:ijms22052607. [PMID: 33807610 PMCID: PMC7961898 DOI: 10.3390/ijms22052607] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal dystrophy that causes progressive vision loss. The G56R mutation in NR2E3 is the second most common mutation causing autosomal dominant (ad) RP, a transcription factor that is essential for photoreceptor development and maintenance. The G56R variant is exclusively responsible for all cases of NR2E3-associated adRP. Currently, there is no treatment for NR2E3-related or, other, adRP, but genome editing holds promise. A pertinent approach would be to specifically knockout the dominant mutant allele, so that the wild type allele can perform unhindered. In this study, we developed a CRISPR/Cas strategy to specifically knockout the mutant G56R allele of NR2E3 and performed a proof-of-concept study in induced pluripotent stem cells (iPSCs) of an adRP patient. We demonstrate allele-specific knockout of the mutant G56R allele in the absence of off-target events. Furthermore, we validated this knockout strategy in an exogenous overexpression system. Accordingly, the mutant G56R-CRISPR protein was truncated and mis-localized to the cytosol in contrast to the (peri)nuclear localizations of wild type or G56R NR2E3 proteins. Finally, we show, for the first time, that G56R iPSCs, as well as G56R-CRISPR iPSCs, can differentiate into NR2E3-expressing retinal organoids. Overall, we demonstrate that G56R allele-specific knockout by CRISPR/Cas could be a clinically relevant approach to treat NR2E3-associated adRP.
Collapse
Affiliation(s)
- Michalitsa Diakatou
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
| | - Gregor Dubois
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
| | - Nejla Erkilic
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, 34295 Montpellier, France
| | - Carla Sanjurjo-Soriano
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
| | - Isabelle Meunier
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, 34295 Montpellier, France
| | - Vasiliki Kalatzis
- INM, University of Montpellier, Inserm, 34091 Montpellier, France; (M.D.); (G.D.); (N.E.); (C.S.-S.); (I.M.)
- Correspondence:
| |
Collapse
|
4
|
Liu H, Huang L, Wang J. Effects of loach skin collagen peptides in reducing osteoporosis in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Moriyama T, Yoneda Y, Oka M, Yamada M. Transportin-2 plays a critical role in nucleocytoplasmic shuttling of oestrogen receptor-α. Sci Rep 2020; 10:18640. [PMID: 33122699 PMCID: PMC7596556 DOI: 10.1038/s41598-020-75631-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oestrogen receptor-α (ERα) shuttles continuously between the nucleus and the cytoplasm, and functions as an oestrogen-dependent transcription factor in the nucleus and as an active mediator of signalling pathways, such as phosphatidylinositol 3-kinase (PI3K)/AKT, in the cytoplasm. However, little is known regarding the mechanism of ERα nucleocytoplasmic shuttling. In this study, we found that ERα is transported into the nucleus by importin-α/β1. Furthermore, we found that Transportin-2 (TNPO2) is involved in 17β-oestradiol (E2)-dependent cytoplasmic localisation of ERα. Interestingly, it was found that TNPO2 does not mediate nuclear export, but rather is involved in the cytoplasmic retention of ERα via the proline/tyrosine (PY) motifs. Moreover, we found that TNPO2 competitively binds to the basic nuclear localisation signal (NLS) of ERα with importin-α to inhibit importin-α/β-dependent ERα nuclear import. Finally, we confirmed that TNPO2 knockdown enhances the nuclear localisation of wild-type ERα and reduces PI3K/AKT phosphorylation in the presence of E2. These results reveal that TNPO2 regulates nucleocytoplasmic shuttling and cytoplasmic retention of ERα, so that ERα has precise functions depending on the stimulation.
Collapse
Affiliation(s)
- Tetsuji Moriyama
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Yoshihiro Yoneda
- Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Life Science Research Laboratory, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
6
|
Matsuzaka Y, Uesawa Y. Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library. Molecules 2020; 25:molecules25122764. [PMID: 32549344 PMCID: PMC7356846 DOI: 10.3390/molecules25122764] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The interaction of nuclear receptors (NRs) with chemical compounds can cause dysregulation of endocrine signaling pathways, leading to adverse health outcomes due to the disruption of natural hormones. Thus, identifying possible ligands of NRs is a crucial task for understanding the adverse outcome pathway (AOP) for human toxicity as well as the development of novel drugs. However, the experimental assessment of novel ligands remains expensive and time-consuming. Therefore, an in silico approach with a wide range of applications instead of experimental examination is highly desirable. The recently developed novel molecular image-based deep learning (DL) method, DeepSnap-DL, can produce multiple snapshots from three-dimensional (3D) chemical structures and has achieved high performance in the prediction of chemicals for toxicological evaluation. In this study, we used DeepSnap-DL to construct prediction models of 35 agonist and antagonist allosteric modulators of NRs for chemicals derived from the Tox21 10K library. We demonstrate the high performance of DeepSnap-DL in constructing prediction models. These findings may aid in interpreting the key molecular events of toxicity and support the development of new fields of machine learning to identify environmental chemicals with the potential to interact with NR signaling pathways.
Collapse
|
7
|
Levy D. Lysine methylation signaling of non-histone proteins in the nucleus. Cell Mol Life Sci 2019; 76:2873-2883. [PMID: 31123776 PMCID: PMC11105312 DOI: 10.1007/s00018-019-03142-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Lysine methylation, catalyzed by protein lysine methyltransferases (PKMTs), is a central post-translational modification regulating many signaling pathways. It has direct and indirect effects on chromatin structure and transcription. Accumulating evidence suggests that dysregulation of PKMT activity has a fundamental impact on the development of many pathologies. While most of these works involve in-depth analysis of methylation events in the context of histones, in recent years, it has become evident that methylation of non-histone proteins also plays a pivotal role in cell processes. This review highlights the importance of non-histone methylation, with focus on methylation events taking place in the nucleus. Known experimental platforms which were developed to identify new methylation events, as well as examples of specific lysine methylation signaling events which regulate key transcription factors, are presented. In addition, the role of these methylation events in normal and disease states is emphasized.
Collapse
Affiliation(s)
- Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beersheba, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beersheba, Israel.
| |
Collapse
|
8
|
Cruz-Ramos E, Sandoval-Hernández A, Tecalco-Cruz AC. Differential expression and molecular interactions of chromosome region maintenance 1 and calreticulin exportins in breast cancer cells. J Steroid Biochem Mol Biol 2019; 185:7-16. [PMID: 29981820 DOI: 10.1016/j.jsbmb.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/20/2022]
Abstract
Chromosome region maintenance 1 (CRM-1) and calreticulin (CALR) are two proteins that act as exportins for some nuclear receptors, in addition to other critical functions for cellular homeostasis. In several cancer types, CRM-1 and CALR are upregulated suggesting an imbalance in their functions. However, the regulation of CRM-1 and CALR, and their biological implications, are not completely known. Here, we evaluated the interplay between the levels of CRM-1 and CALR, and estrogen receptor alpha (ERα) status, in breast cancer cells. CRM-1 and CALR were upregulated in mammary tumors relative to normal mammary tissue. Furthermore, the mRNA and protein levels of CRM-1 and CALR were higher in breast cancer cells lacking ERα, in comparison with those that express ERα. Additionally, both proteins were distributed in the nucleus and cytoplasm in the two cell types. Importantly, we identified novel interactions for these exportins. First, we showed an interaction between CRM-1 and CALR, and then we identified that SUN1 and SUN2, two proteins localized in the nuclear envelop, were able to interact specifically with CRM-1, but not CALR. Interestingly, SUN1 and SUN2 expression seemed to be decreased in breast cancer, thereby affecting the interactions of these proteins with CRM-1, and possibly its actions as an exportin. Thus, our data suggest that expression levels for CRM-1 and CALR, the interaction between these exportins, and specific interactions of SUN1 and SUN2 with CRM-1 but not CALR, may be central elements in nucleo-cytoplasmic transport. Furthermore, deregulation of these elements may have serious implications in the progression of breast and other types of cancer.
Collapse
Affiliation(s)
- Eduardo Cruz-Ramos
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, México D.F. 04510, Mexico
| | - Antonio Sandoval-Hernández
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, México D.F. 04510, Mexico
| | - Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, México D.F. 04510, Mexico.
| |
Collapse
|
9
|
Non-muscle myosin IIA is post-translationally modified by interferon-stimulated gene 15 in breast cancer cells. Int J Biochem Cell Biol 2018; 107:14-26. [PMID: 30529400 DOI: 10.1016/j.biocel.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/17/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022]
Abstract
ISG15 (interferon-stimulated gene 15) exists as free ISG15 or conjugated ISG15 modifying its target proteins via ISGylation. Few proteins have been identified and studied as ISGylation targets, and their relevance is not completely clear. Here, we isolated ISG15 from MDA-MB-231 breast cancer cells using immunoprecipitation and identified non-muscle myosin IIA (NMIIA) using mass spectrometry as endogenously associated with ISG15. The identification of NMIIA as an ISG15-interacting protein was important, because levels of NMIIA mRNA were not deregulated in all breast cancers, and because our in silico analysis indicated that NMIIA was the target of different posttranslational modifications and had an interactome associated with cytoskeletal remodeling. Furthermore, our experimental assays of co-immunoprecipitation and immunofluorescence confirmed that ISG15 was covalently associated with NMIIA in the cytoplasm of breast cancer cells and that interferon γ (IFN-γ) increased this association without alterations in the NMIIA levels. Thus, NMIIA ISGylation is regulated by IFN-γ, and this modification may modulate its interactions with proteins that remodel the cytoskeleton, participating in the growth and progression of mammary tumors.
Collapse
|
10
|
Tecalco-Cruz AC, Cortés-González CC, Cruz-Ramos E, Ramírez Jarquín JO, Romero-Mandujano AK, Sosa-Garrocho M. Interplay between interferon-stimulated gene 15/ISGylation and interferon gamma signaling in breast cancer cells. Cell Signal 2018; 54:91-101. [PMID: 30500379 DOI: 10.1016/j.cellsig.2018.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that conjugates to its target proteins to modify them through ISGylation, but the relevance of ISG15 expression and its effects have been not completely defined. Herein, we examined the interplay between ISG15/ISGylation and the interferon-gamma (IFN-γ) signaling pathway in mammary tumors and compared it with that in normal mammary tissues. Our results indicated that mammary tumors had higher levels of ISG15 mRNA and ISG15 protein than the adjacent normal mammary tissue. Furthermore, the expression of IFN-γ signaling components was altered in breast cancer. Interestingly, IFN-γ treatment induced morphological changes in MCF-7 and MDA-MB-231 breast cancer cell lines due to cytoskeletal reorganization. This cellular process seems to be related to the increase in ISGylation of cytoplasmic IQ Motif Containing GTPase Activating Protein 1 (IQGAP1). Interactome analysis also indicated that IFN-γ signaling and the ISGylation system are associated with several proteins implicated in cytoskeletal remodeling, including IQGAP1. Thus, ISG15 may present a potential biomarker for breast cancer, and IFN-γ signaling and protein ISGylation may participate in the regulation of the cytoskeleton in breast cancer cells.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Carlo César Cortés-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan, C.P. 14080 Mexico City, Mexico
| | - Eduardo Cruz-Ramos
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Josué O Ramírez Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Aline Kay Romero-Mandujano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan, C.P. 14080 Mexico City, Mexico
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
11
|
Natural Anti-Estrogen Receptor Alpha Antibodies Able to Induce Estrogenic Responses in Breast Cancer Cells: Hypotheses Concerning Their Mechanisms of Action and Emergence. Int J Mol Sci 2018; 19:ijms19020411. [PMID: 29385743 PMCID: PMC5855633 DOI: 10.3390/ijms19020411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/04/2023] Open
Abstract
The detection of human anti-estrogen receptor α antibodies (ERαABs) inducing estrogenic responses in MCF-7 mammary tumor cells suggests their implication in breast cancer emergence and/or evolution. A recent report revealing a correlation between the titer of such antibodies in sera from patients suffering from this disease and the percentage of proliferative cells in samples taken from their tumors supports this concept. Complementary evidence of the ability of ERαABs to interact with an epitope localized within the estradiol-binding core of ERα also argues in its favor. This epitope is indeed inserted in a regulatory platform implicated in ERα-initiated signal transduction pathways and transcriptions. According to some experimental observations, two auto-immune reactions may already be advocated to explain the emergence of ERαABs: one involving probably the idiotypic network to produce antibodies acting as estrogenic secretions and the other based on antibodies able to abrogate the action of a natural ERα inhibitor or to prevent the competitive inhibitory potency of released receptor degradation products able to entrap circulating estrogens and co-activators. All of this information, the aspect of which is mainly fundamental, may open new ways in the current tendency to combine immunological and endocrine approaches for the management of breast cancer.
Collapse
|