1
|
Zhang JB, Jin HL, Feng XY, Feng SL, Zhu WT, Nan HM, Yuan ZW. The combination of Lonicerae Japonicae Flos and Forsythiae Fructus herb-pair alleviated inflammation in liver fibrosis. Front Pharmacol 2022; 13:984611. [PMID: 36059967 PMCID: PMC9437263 DOI: 10.3389/fphar.2022.984611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the active components and epigenetic regulation mechanism underlying the anti-inflammatory effects of Lonicerae Japonicae Flos and Forsythiae Fructus herb-pair (LFP) in carbon tetrachloride (CCl4)-induced rat liver fibrosis. Methods: The main active ingredients and disease-related gene targets of LFP were determined using TCMSP and UniProt, and liver fibrosis disease targets were screened in the GeneCards database. A network was constructed with Cytoscape 3.8.0 and the STRING database, and potential protein functions were analyzed using bioinformatics analysis. Based on these analyses, we determined the main active ingredients of LFP and evaluated their effects in a CCl4-induced rat liver fibrosis model. Serum biochemical indices were measured using commercial kits, hepatocyte tissue damage and collagen deposition were evaluated by histopathological studies, and myofibroblast activation and inflammation were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. High-performance liquid chromatography-mass spectrometry was performed to determine the levels of homocysteine, reduced glutathione, and oxidized glutathione, which are involved in inflammation and oxidative stress. Results: The main active components of LFP were quercetin, kaempferol, and luteolin, and its main targets were α-smooth muscle actin, cyclooxygenase-2, formyl-peptide receptor-2, prostaglandin-endoperoxide synthase 1, nuclear receptor coactivator-2, interleukinβ, tumor necrosis factor α, CXC motif chemokine ligand 14, and transforming growth factor β1. A combination of quercetin, kaempferol, and luteolin alleviated the symptoms of liver fibrosis. Conclusion: The results of this study support the role of LFP in the treatment of liver fibrosis, and reveal that LFP reduces collagen formation, inflammation, and oxidative stress. This study suggests a potential mechanism of action of LFP in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jing-Bei Zhang
- Collage of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Hong-Liu Jin
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Ying Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou Medical University, Guangzhou, China
| | - Sen-ling Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou Medical University, Guangzhou, China
| | - Wen-Ting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou Medical University, Guangzhou, China
| | - Hong-Mei Nan
- Collage of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Department of Encephalopathy, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
- *Correspondence: Hong-Mei Nan, ; Zhong-Wen Yuan,
| | - Zhong-Wen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hong-Mei Nan, ; Zhong-Wen Yuan,
| |
Collapse
|
2
|
Meng J, Chen X, Han Z. PFKFB4 promotes lung adenocarcinoma progression via phosphorylating and activating transcriptional coactivator SRC-2. BMC Pulm Med 2021; 21:60. [PMID: 33593309 PMCID: PMC7887818 DOI: 10.1186/s12890-021-01420-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022] Open
Abstract
Background To investigate the role and its potential mechanism of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) in lung adenocarcinoma. Methods Co-immunoprecipitation was performed to analyze the interaction between PFKFB4 and SRC-2. Western blot was used to investigate the phosphorylation of steroid receptor coactivator-2 (SRC-2) on the condition that PFKFB4 was knockdown. Transcriptome sequencing was performed to find the downstream target of SRC-2. Cell Counting Kit-8 (CCK-8) assay, transwell assay and transwell-matrigel assay were used to examine the proliferation, migration and invasion abilities in A549 and NCI-H1975 cells with different treatment. Results In our study we found that PFKFB4 was overexpressed in lung adenocarcinoma associated with SRC family protein and had an interaction with SRC-2. PFKFB4 could phosphorylate SRC-2 at Ser487, which altered SRC-2 transcriptional activity. Functionally, PFKFB4 promoted lung adenocarcinoma cells proliferation, migration and invasion by phosphorylating SRC-2. Furthermore, we identified that CARM1 was transcriptionally regulated by SRC-2 and involved in PFKFB4-SRC-2 axis on lung adenocarcinoma progression. Conclusions Our research reveal that PFKFB4 promotes lung adenocarcinoma cells proliferation, migration and invasion via enhancing phosphorylated SRC-2-mediated CARM1 expression.
Collapse
Affiliation(s)
- Jiguang Meng
- Department of Respiratory Medicine, Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100048, China
| | - Xuxin Chen
- Department of Respiratory Medicine, Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100048, China
| | - Zhihai Han
- Department of Respiratory Medicine, Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100048, China.
| |
Collapse
|
3
|
Lin Z, Yang F, Lu D, Sun W, Zhu G, Lan B. Knockdown of NCOA2 Inhibits the Growth and Progression of Gastric Cancer by Affecting the Wnt Signaling Pathway-Related Protein Expression. Technol Cancer Res Treat 2021; 19:1533033820928072. [PMID: 32489143 PMCID: PMC7273340 DOI: 10.1177/1533033820928072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective: The aim of the study is to determine the role of nuclear receptor coactivator
2 in cell proliferation and invasion ability of gastric cancer cells and to
explore its possible mechanisms. Methods: Immunohistochemical staining was used to determine NCOA2
gene expression in gastric cancer. Western blotting was used to detect Wnt
signal pathways–related protein expression. Colony formation assays, Cell
Counting Kit-8 assays, and transwell assays were used to determine cell
proliferation, metastasis, and invasion ability of gastric cancer cells. A
flow cytometric apoptosis tests determine gastric cancer cell apoptosis
ability after inhibition of the expression of nuclear receptor coactivator
2. Subcutaneous mouse models were used to determine the gastric cancer
growth and peritoneal metastasis differences after inhibition the expression
of nuclear receptor coactivator 2. Results: The expression of nuclear receptor coactivator 2 in gastric cancer cells is
high (P < .01), including lymph node metastasis, TNM
staging, and gender differences in nuclear receptor coactivator 2 expression
were statistically significant (P < .01). Short
interfering nuclear receptor coactivator 2 could inhibit the proliferation
and invasion ability of gastric cancer cells. Short interfering nuclear
receptor coactivator 2 promotes the apoptosis of gastric cancer cells.
Animal experiments showed that short interfering nuclear receptor
coactivator 2 could inhibit the growth and invasion of gastric
cancer-transplantable tumors. Knockdown of the expression of nuclear
receptor coactivator 2 inhibited the Wnt/β-catenin signaling pathway in the
gastric cancer cells. Conclusions: Knockdown of the expression of nuclear receptor coactivator 2 can inhibit the
proliferation and invasion of human gastric cancer in vitro
and in vivo. The underlying mechanism of NOCA2 affects the
Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhenlv Lin
- Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fan Yang
- Department of Pediatric Surgery, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Dong Lu
- Department of Gastrointestinal Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wenjie Sun
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guangwei Zhu
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Bin Lan
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 2020; 13:100845. [PMID: 32781367 PMCID: PMC7419667 DOI: 10.1016/j.tranon.2020.100845] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the 'fittest' for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|