1
|
Li C, Liu X, Liu J, Zhang X, Wu J, Ji X, Niu H, Xu Q. Chromatin accessibility and transcriptional landscape in PK-15 cells during early exposure to Aflatoxin B 1. Biochem Biophys Res Commun 2024; 731:150394. [PMID: 39024978 DOI: 10.1016/j.bbrc.2024.150394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Aflatoxin B1 (AFB1) not only causes significant losses in livestock production but also poses a serious threat to human health. It is the most carcinogenic among known chemicals. Pigs are more susceptible to AFB1 and experience a higher incidence. However, the molecular mechanism of the toxic effect of AFB1 remains unclear. In this study, we used assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq to uncover chromatin accessibility and gene expression dynamics in PK-15 cells during early exposure to AFB1. We observed that the toxic effects of AFB1 involve signaling pathways such as p53, PI3K-AKT, Hippo, MAPK, TLRs, apoptosis, autophagy, and cancer pathways. Basic leucine zipper (bZIP) transcription factors (TFs), including AP-1, Fos, JunB, and Fra2, play a crucial role in regulating the biological processes involved in AFB1 challenge. Several new TFs, such as BORIS, HNF1b, Atf1, and KNRNPH2, represent potential targets for the toxic mechanism of AFB1. In addition, it is crucial to focus on the concentration of intracellular zinc ions. These findings will contribute to a better understanding of the mechanisms underlying AFB1-induced nephrotoxicity and offer new molecular targets.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China; Henan Pig Bio-breeding Research Institute, Zhengzhou, Henan, China; Henan Livestock and Poultry Genetic Resources Protection Engineering Technology Research Center, Zhengzhou, China.
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.
| | - Jiaxin Liu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Xuanxuan Zhang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Xiangbo Ji
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China; Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Hui Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China; Henan Pig Bio-breeding Research Institute, Zhengzhou, Henan, China; Henan Livestock and Poultry Genetic Resources Protection Engineering Technology Research Center, Zhengzhou, China.
| |
Collapse
|
2
|
Liu Y, Wang J, Chang Z, Li S, Zhang Z, Liu S, Wang S, Wei L, Lv Q, Ding K, Zhang Z. SeMet alleviates AFB 1-induced oxidative stress and apoptosis in rabbit kidney by regulating Nrf2//Keap1/NQO1 and PI3K/AKT signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115742. [PMID: 38039849 DOI: 10.1016/j.ecoenv.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
The purpose of this study was to explore the protective effect of SeMet on renal injury induced by AFB1 in rabbits and its molecular mechanism. Forty rabbits of 35 days old were randomly divided into control group, AFB1 group (0.3 mg AFB1/kg b.w), 0.2 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.2 mg SeMet/kg feed) and 0.4 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.4 mg SeMet/kg feed). The SeMet treatment group was fed different doses of SeMet diets every day for 21 days. On the 17-21 day, the AFB1 treatment group, the 0.2 mg/kg Se + AFB1 group and the 0.4 mg/kg Se + AFB1 group were administered 0.3 mg AFB1 /kg b.w by gavage (dissolved in 0.5 ml olive oil) respectively. The results showed that AFB1 poisoning resulted in the changes of renal structure, the increase of renal coefficient and serum biochemical indexes, the ascent of ROS and MDA levels, the descent of antioxidant enzyme activity, and the significant down-regulation of Nrf2, HO-1 and NQO1. Besides, AFB1 poisoning increased the number of renal apoptotic cells, rised the levels of PTEN, Bax, Caspase-3 and Caspase-9, and decreased the levels of PI3K, AKT, p-AKT and Bcl-2. In summary, SeMet was added to alleviate the oxidative stress injury and apoptosis of kidney induced by AFB1, and the effect of 0.2 mg/kg Se + AFB1 is better than 0.4 mg/kg Se + AFB1.
Collapse
Affiliation(s)
- Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jianing Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Zhaoyang Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | | | - Zhikai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Shiyang Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Shuaishuai Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ke Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
3
|
He Z, Yang HY. Mechanism of hepatocytes differentiation and dedifferentiation in liver regeneration: Process and exploration. Hepatobiliary Pancreat Dis Int 2023; 22:331-332. [PMID: 36456429 DOI: 10.1016/j.hbpd.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Zhangyuting He
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hua-Yu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
4
|
Melnik BC, John SM, Carrera-Bastos P, Cordain L, Leitzmann C, Weiskirchen R, Schmitz G. The Role of Cow's Milk Consumption in Breast Cancer Initiation and Progression. Curr Nutr Rep 2023; 12:122-140. [PMID: 36729355 PMCID: PMC9974716 DOI: 10.1007/s13668-023-00457-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW This review evaluates cow milk's impact on breast carcinogenesis by linking recent epidemiological evidence and new insights into the molecular signaling of milk and its constituents in breast cancer (BCa) pathogenesis. RECENT FINDINGS Recent prospective cohort studies support the association between cow's milk consumption and the risk of estrogen receptor-α-positive (ER+) BCa. Milk is a complex biological fluid that increases systemic insulin-like growth factor 1 (IGF-1), insulin and estrogen signaling, and interacting hormonal promoters of BCa. Further potential oncogenic components of commercial milk include exosomal microRNAs (miR-148a-3p, miR-21-5p), bovine meat and milk factors, aflatoxin M1, bisphenol A, pesticides, and micro- and nanoplastics. Individuals with BRCA1 loss-of-function mutations and FTO and IGF1 gain-of-function polymorphisms enhancing IGF-1/mTORC1 signaling may be at increased risk for milk-induced ER+ BCa. Recent prospective epidemiological and pathobiochemical studies identify commercial milk consumption as a critical risk factor of ER+ BCa. Large meta-analyses gathering individuals of different ethnic origins with milk derived from dairy cows of varying genetic backgrounds and diverse feeding procedures as well as missing data on thermal processing of milk (pasteurization versus ultra-heat treatment) make multi-national meta-analyses unsuitable for BCa risk estimations in susceptible populations. Future studies are required that consider all vulnerable periods of breast carcinogenesis to cow's milk exposure, beginning during the perinatal period and puberty, since these are the most critical periods of mammary gland morphogenesis. Notwithstanding the need for better studies including detailed information on milk processing and vulnerable periods of human breast carcinogenesis, the available evidence suggests that dietary guidelines on milk consumption may have to be reconsidered.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076, Osnabrück, Germany.
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076, Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm) at the University of Osnabrück, Lower-Saxonian Institute of Occupational Dermatology (NIB), Osnabrück, Germany
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, 205 02, Malmö, Sweden
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670, Madrid, Spain
- Centro de Estudios Avanzados en Nutrición (CEAN), 11007, Cádiz, Spain
| | | | - Claus Leitzmann
- Institute of Nutrition, University of Giessen, 35390, Giessen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074, Aachen, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
5
|
Fu B, Yang L, Chen Q, Zhang Q, Zhang L, Yu P. Enhanced biosynthesis of physiologically active vitamin D3 by constructing recombinant Escherichia coli BL21 with a multienzyme system. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Wang J, Qiu F, Zhao Y, Gu S, Wang J, Zhang H. Exploration of fetal growth restriction induced by vitamin D deficiency in rats via Hippo-YAP signaling pathway. Placenta 2022; 128:91-99. [PMID: 36103800 DOI: 10.1016/j.placenta.2022.08.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Maternal vitamin D deficiency (VDD) is associated with intrauterine growth restriction (IUGR), but the exact mechanism remains unclear. Here we explored the mechanism through which VDD induced IUGR. METHODS Female SD rats were fed a control normal diet (VD > 800 IU/Kg) or VDD diet (VD: 0 IU/Kg) for 8 weeks. Then, females were mated with 12-week-old male SD rats, and fetal and placental tissue were collected on the gestational day 13 (GD13) or 18 (GD18) to analyze the effects of VDD on pregnancy outcome and embryonic development. In vitro, the VDR gene of HTR-8/SVneo cells was knocked down to establish VDD model. Then, HTR-8/SVneo cells were treated with the MST1/2 inhibitor XMU-MP-1 or 0.1 μM/L calcitriol for 24 h (h). The mechanism of Hippo-YAP signaling pathway in VDD-induced placental dysplasia was further investigated by western blot, invasion assay, wound healing assay and Hoechst/PI staining. RESULTS The IUGR of the pregnant rats in the VDD group was significant, the placental structure and function were damaged, and there was an obvious inflammatory response, accompanied by a significant increase in the level of the transcription co-activator YAP phosphorylation. In vitro, VDD significantly inhibited the migratory and invasive abilities of HTR-8/SVneo cells, accompanied by decreased EMT capacity and increased apoptosis. When intervening with XMU-MP-1 in advance, we found that the effects of VDD were neutralized by Hippo-YAP signaling blocker. DISCUSSION Maternal VDD causes placental dysplasia and IUGR, and these abnormal changes may be associated with the activation of Hippo-YAP signaling pathway.
Collapse
Affiliation(s)
- Jiongnan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Fubin Qiu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
| | - Yimin Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Siyu Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Jia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Huifeng Zhang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050073, China
| |
Collapse
|
7
|
Xu Y, Shu D, Shen M, Wu Q, Peng Y, Liu L, Tang Z, Gao S, Wang Y, Liu S. Development and Validation of a Novel PPAR Signaling Pathway-Related Predictive Model to Predict Prognosis in Breast Cancer. J Immunol Res 2022; 2022:9412119. [PMID: 35692496 PMCID: PMC9184151 DOI: 10.1155/2022/9412119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 12/27/2022] Open
Abstract
This study is aimed at exploring the potential mechanism of the PPAR signaling pathway in breast cancer (BRCA) and constructing a novel prognostic-related risk model. We used various bioinformatics methods and databases to complete our exploration in this research. Based on TCGA database, we use multiple extension packages based on the R language for data conversion, processing, and statistics. We use LASSO regression analysis to establish a prognostic-related risk model in BRCA. And we combined the data of multiple online websites, including GEPIA, ImmuCellAI, TIMER, GDSC, and the Human Protein Atlas database to conduct a more in-depth exploration of the risk model. Based on the mRNA data in TCGA database, we conducted a preliminary screening of genes related to the PPAR signaling pathway through univariate Cox analysis, then used LASSO regression analysis to conduct a second screening, and successfully established a risk model consisting of ten genes in BRCA. The results of ROC curve analysis show that the risk model has good prediction accuracy. We can successfully divide breast cancer patients into high- and low-risk groups with significant prognostic differences (P = 1.92e - 05) based on this risk model. Combined with the clinical data in TCGA database, there is a correlation between the risk model and the patient's N, T, gender, and fustat. The results of multivariate Cox regression show that the risk score of this risk model can be used as an independent risk factor for BRCA patients. In particular, we draw a nomogram that can predict the 5-, 7-, and 10-year survival rates of BRCA patients. Subsequently, we conducted a series of pancancer analyses of CNV, SNV, OS, methylation, and immune infiltration for this risk model gene and used GDSC data to investigate drug sensitivity. Finally, to gain insight into the predictive value and protein expression of these risk model genes in breast cancer, we used GEO and HPA databases for validation. This study provides valuable clues for future research on the PPAR signaling pathway in BRCA.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Dan Shu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Meiying Shen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qiulin Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Li Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shun Gao
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yuan Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
8
|
Xu Y, Shu D, Shen M, Wu Q, Peng Y, Liu L, Tang Z, Gao S, Wang Y, Liu S. Development and Validation of a Novel PPAR Signaling Pathway-Related Predictive Model to Predict Prognosis in Breast Cancer. J Immunol Res 2022; 2022:9412119. [PMID: 35692496 PMCID: PMC9184151 DOI: 10.1155/2022/9412119;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 10/11/2024] Open
Abstract
This study is aimed at exploring the potential mechanism of the PPAR signaling pathway in breast cancer (BRCA) and constructing a novel prognostic-related risk model. We used various bioinformatics methods and databases to complete our exploration in this research. Based on TCGA database, we use multiple extension packages based on the R language for data conversion, processing, and statistics. We use LASSO regression analysis to establish a prognostic-related risk model in BRCA. And we combined the data of multiple online websites, including GEPIA, ImmuCellAI, TIMER, GDSC, and the Human Protein Atlas database to conduct a more in-depth exploration of the risk model. Based on the mRNA data in TCGA database, we conducted a preliminary screening of genes related to the PPAR signaling pathway through univariate Cox analysis, then used LASSO regression analysis to conduct a second screening, and successfully established a risk model consisting of ten genes in BRCA. The results of ROC curve analysis show that the risk model has good prediction accuracy. We can successfully divide breast cancer patients into high- and low-risk groups with significant prognostic differences (P = 1.92e - 05) based on this risk model. Combined with the clinical data in TCGA database, there is a correlation between the risk model and the patient's N, T, gender, and fustat. The results of multivariate Cox regression show that the risk score of this risk model can be used as an independent risk factor for BRCA patients. In particular, we draw a nomogram that can predict the 5-, 7-, and 10-year survival rates of BRCA patients. Subsequently, we conducted a series of pancancer analyses of CNV, SNV, OS, methylation, and immune infiltration for this risk model gene and used GDSC data to investigate drug sensitivity. Finally, to gain insight into the predictive value and protein expression of these risk model genes in breast cancer, we used GEO and HPA databases for validation. This study provides valuable clues for future research on the PPAR signaling pathway in BRCA.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Dan Shu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Meiying Shen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qiulin Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Li Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shun Gao
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yuan Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
9
|
Chen S, Wu H, Wang Z, Jia M, Guo J, Jin J, Li X, Meng D, Lin L, He AR, Zhou P, Zhi X. Loss of SPTBN1 Suppresses Autophagy Via SETD7-mediated YAP Methylation in Hepatocellular Carcinoma Initiation and Development. Cell Mol Gastroenterol Hepatol 2021; 13:949-973.e7. [PMID: 34737104 PMCID: PMC8864474 DOI: 10.1016/j.jcmgh.2021.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Loss of Spectrin beta, non-erythrocytic 1 (SPTBN1) plays an important role in the carcinogenesis of hepatocellular carcinoma (HCC); however, the mechanisms underlying its involvement remain poorly understood. Defects in autophagy contribute to hepatic tumor formation. Hence, in this study, we explored the role and mechanism of SPTBN1 in the autophagy of hepatic stem cells (HSCs) and HCC cells. METHODS Expansion, autophagy, and malignant transformation of HSCs were detected in the injured liver of Sptbn1+/- mice induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine treatment. Hippo pathway and Yes-associated protein (YAP) stabilization were examined in isolated HSCs, Huh-7, and PLC/PRF/5 HCC cells and hepatocytes with or without loss of SPTBN1. RESULTS We found that heterozygous SPTBN1 knockout accelerated liver tumor development with 3,5-diethoxycarbonyl-1,4-dihydrocollidine induction. Rapamycin promoted autophagy in murine HSCs and reversed the increased malignant transformation induced by heterozygous SPTBN1 deletion. Loss of SPTBN1 also decreased autophagy and increased YAP stability and nuclear localization in human HCC cells and tissues, whereas YAP inhibition attenuated the effects of SPTBN1 deficiency on autophagy. Finally, we found that SPTBN1 positively regulated the expression of suppressor of variegation 3-9-enhancer of zeste-trithorax domain containing lysine methyltransferase 7 to promote YAP methylation, which may lead to YAP degradation and inactivation. CONCLUSIONS Our findings provide the first demonstration that loss of SPTBN1 impairs autophagy of HSCs to promote expansion and malignant transformation during hepatocarcinogenesis. SPTBN1 also cooperates with suppressor of variegation 3-9-enhancer of zeste-trithorax domain containing lysine methyltransferase 7 to inactive YAP, resulting in enhanced autophagy of HCC cells. These results may open new avenues targeting SPTBN1 for the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Shuyi Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijie Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhengyang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Lin
- Department of Medicine and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Aiwu Ruth He
- Department of Medicine and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
The Intervention and Mechanism of Action for Aloin against Subchronic Aflatoxin B1 Induced Hepatic Injury in Rats. Int J Mol Sci 2021; 22:ijms222111620. [PMID: 34769051 PMCID: PMC8584096 DOI: 10.3390/ijms222111620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/17/2022] Open
Abstract
As a class of difurancoumarin compounds with similar structures, aflatoxins (AF) are commonly found in the environment, soil, and food crops. AF pose a serious threat to the health of humans, poultry, and livestock. This study aimed to investigate the neuroprotective effect and detailed mechanism of aloin on hepatic injury induced by subchronic AFB1 in rats. The result showed that aloin could significantly inhibit the decrease in food intake, body weight growth, immune organ index, and serum albumin content caused by long-term AFB1 exposure. Meanwhile, aloin reduced the level of serum liver function and improved renal swelling and pathological changes of liver tissue. Aloin could also inhibit liver lipid peroxidation and improve liver antioxidant capacity. Further investigation revealed that aloin inhibited the activity and expression of hepatic CYP1A2 and CYP3A4 and down-regulated IL-1β expression in subchronic AFB1-induced liver injury rats. The above study demonstrated that aloin played an important role in blocking or delaying the development process of subchronic AFB1-induced hepatotoxicity. Therefore, aloin is considered to have a potential role as a protective agent against AFB1.
Collapse
|
11
|
Adelani IB, Rotimi OA, Maduagwu EN, Rotimi SO. Vitamin D: Possible Therapeutic Roles in Hepatocellular Carcinoma. Front Oncol 2021; 11:642653. [PMID: 34113565 PMCID: PMC8185231 DOI: 10.3389/fonc.2021.642653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a unique type of liver cancer instigated by underlying liver diseases. Pre-clinical evidence suggests that HCC progression, like other cancers, could be aided by vitamin D deficiency. Vitamin D is a lipid-soluble hormone usually obtained through sunlight. Vitamin D elucidates its biological responses by binding the vitamin D receptor; thus, promoting skeletal mineralization, and maintain calcium homeostasis. Other reported Vitamin D functions include specific roles in proliferation, angiogenesis, apoptosis, inflammation, and cell differentiation. This review highlighted studies on vitamin D's functional roles in HCC and discussed the specific therapeutic targets from various in vivo, in vitro and clinical studies over the years. Furthermore, it described recent advancements in vitamin D's anticancer effects and its metabolizing enzymes' roles in HCC development. In summary, the review elucidated specific vitamin D-associated target genes that play critical functions in the inhibition of tumorigenesis through inflammation, oxidative stress, invasion, and apoptosis in HCC progression.
Collapse
|
12
|
Yi Z, Wang L, Tu X. Effect of Vitamin D Deficiency on Liver Cancer Risk: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2021; 22:991-997. [PMID: 33906289 PMCID: PMC8325142 DOI: 10.31557/apjcp.2021.22.4.991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/21/2021] [Indexed: 01/11/2023] Open
Abstract
Epidemiological studies have showed that vitamin D deficiency can increase the risk of liver cancers. Hence, we conducted a meta-analysis to explore the relationship between 25-hydroxyvitamin D [25(OH)D] levels and liver cancer risk. METHODS Cochrane Library, Medline, Web of Science, and Embase were searched up to Mar. 2020, and the references of those studies were also searched by hand. A meta-analysis of 11 studies was performed which met the inclusion criteria. Six case-control studies and five cohort studies were included. RESULTS A total of 11 studies (6 case-control and 5 cohort studies) with 12,895 incident cases were included in the meta-analysis. The meta-analysis showed that liver cancer risk was significantly increased for vitamin D deficiency, and the pooled RR and its 95% CIs was 2.16 (1.2, 3.88; P = 0.01). In comparative analyses between 25(OH)D levels in patients with hepatocellular carcinoma(HCC) and those in the control group individuals, the summary RR of liver cancer was -1.11 (95% CI=-1.96 to -0.25). The subgroup analysis of the different geographical region of the population showed that the risk of liver cancer in Asian subgroup, European subgroup and Egyptian subgroup increased for vitamin D deficiency (RR=1.34,95% CI 0.72 to 2.48, p <0.00001; RR=2.53,95% CI 1.62 to 3.93,p <0.0001;RR=29.5,95% CI 4.14 to 209.93, P=0.88). CONCLUSION The results of this meta-analysis indicate that vitamin D deficiency is associated with increased risk of liver cancer. The 25(OH)D3 levels are lower in HCC patients than those in health controls. Maintenance of sufficient serum vitamin D levels would be beneficial for prevention of liver cancer.
Collapse
Affiliation(s)
- Zhenghui Yi
- Department of General Surgery, Civil Aviation General Hospital, No.1 Gaojing, Chaoyang Street, Beijing, China.
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Xiangqun Tu
- Department of General Surgery, Civil Aviation General Hospital, No.1 Gaojing, Chaoyang Street, Beijing, China.
| |
Collapse
|
13
|
Liu J, Feng X, Tian Y, Wang K, Gao F, Yang L, Li H, Tian Y, Yang R, Zhao L, Miao X, Huang J, Liu Q, Zhang W, Li Y, Wang C, Duan H, Liu S. Knockdown of TRIM27 expression suppresses the dysfunction of mesangial cells in lupus nephritis by FoxO1 pathway. J Cell Physiol 2019; 234:11555-11566. [PMID: 30648253 DOI: 10.1002/jcp.27810] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022]
Abstract
TRIM27 (tripartite motif-containing 27) is a member of the TRIM (tripartite motif) protein family and participates in a variety of biological processes. Some research has reported that TRIM27 was highly expressed in certain kinds of carcinoma cells and tissues and played an important role in the proliferation of carcinoma cells. However, whether TRIM27 takes part in the progression of lupus nephritis (LN) especially in cells proliferation remains unclear. Our study revealed that the overexpression of TRIM27 was observed in the kidneys of patients with LN, lupus mice and mesangial cells exposed to LN plasma which correlated with the proliferation of mesangial cells and ECM (extracellular matrix) deposition. Downregulation of TRIM27 expression suppressed the proliferation of mesangial cells and ECM accumulation in MRL/lpr mice and cultured human mesangial cells (HMCs) by regulating the FoxO1 pathway. Furthermore, the overexpression of FoxO1 remarkably decreased HMCs proliferation level and ECM accumulation in LN plasma-treated HMCs. In addition, the protein kinase B (Akt) signal pathway inhibitor LY294002 significantly reduced the expression of TRIM27 and inhibited the dysfunction of mesangial cells. These above data suggested that TRIM27 mediated abnormal mesangial cell proliferation in kidney of lupus and might be the potential target for treating mesangial cell proliferation of lupus nephritis.
Collapse
Affiliation(s)
- Jinxi Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xiaojuan Feng
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yu Tian
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Kexin Wang
- Clinical Medicine, College of Basic Medicine,Hebei Medical University, Shijiazhuang, China
| | - Fan Gao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Lin Yang
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongbo Li
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yuexin Tian
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Ran Yang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Lu Zhao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xinyan Miao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Jie Huang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Qingjuan Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Wei Zhang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yuzhe Li
- Clinical Medicine, College of Basic Medicine,Hebei Medical University, Shijiazhuang, China
| | - Chunlin Wang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | | | | |
Collapse
|