1
|
Gent R, Van Rooyen D, Atkin SL, Swart AC. C11-hydroxy and C11-oxo C 19 and C 21 Steroids: Pre-Receptor Regulation and Interaction with Androgen and Progesterone Steroid Receptors. Int J Mol Sci 2023; 25:101. [PMID: 38203272 PMCID: PMC10778819 DOI: 10.3390/ijms25010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
C11-oxy C19 and C11-oxy C21 steroids have been identified as novel steroids but their function remains unclear. This study aimed to investigate the pre-receptor regulation of C11-oxy steroids by 11β-hydroxysteroid dehydrogenase (11βHSD) interconversion and potential agonist and antagonist activity associated with the androgen (AR) and progesterone receptors (PRA and PRB). Steroid conversions were investigated in transiently transfected HEK293 cells expressing 11βHSD1 and 11βHSD2, while CV1 cells were utilised for agonist and antagonist assays. The conversion of C11-hydroxy steroids to C11-oxo steroids by 11βHSD2 occurred more readily than the reverse reaction catalysed by 11βHSD1, while the interconversion of C11-oxy C19 steroids was more efficient than C11-oxy C21 steroids. Furthermore, 11-ketodihydrotestosterone (11KDHT), 11-ketotestosterone (11KT) and 11β-hydroxydihydrotestosterone (11OHDHT) were AR agonists, while only progestogens, 11β-hydroxyprogesterone (11βOHP4), 11β-hydroxydihydroprogesterone (11βOHDHP4), 11α-hydroxyprogesterone (11αOHP4), 11α-hydroxydihydroprogesterone (11αOHDHP4), 11-ketoprogesterone (11KP4), 5α-pregnan-17α-diol-3,11,20-trione (11KPdione) and 21-deoxycortisone (21dE) exhibited antagonist activity. C11-hydroxy C21 steroids, 11βOHP4, 11βOHDHP4 and 11αOHP4 exhibited PRA and PRB agonistic activity, while only C11-oxo steroids, 11KP4 and 11-ketoandrostanediol (11K3αdiol) demonstrated PRB agonism. While no steroids antagonised the PRA, 11OHA4, 11β-hydroxytestosterone (11OHT), 11KT and 11KDHT exhibited PRB antagonism. The regulatory role of 11βHSD isozymes impacting receptor activation is clear-C11-oxo androgens exhibit AR agonist activity; only C11-hydroxy progestogens exhibit PRA and PRB agonist activity. Regulation by the downstream metabolites of active C11-oxy steroids at the receptor level is apparent-C11-hydroxy and C11-oxo metabolites antagonize the AR and PRB, progestogens the former, androgens the latter. The findings highlight the intricate interplay between receptors and active as well as "inactive" C11-oxy steroids, suggesting novel regulatory tiers.
Collapse
Affiliation(s)
- Rachelle Gent
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Desmaré Van Rooyen
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Stephen L. Atkin
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Amanda C. Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
2
|
Bernhardt R, Neunzig J. Underestimated reactions and regulation patterns of adrenal cytochromes P450. Mol Cell Endocrinol 2021; 530:111237. [PMID: 33722664 DOI: 10.1016/j.mce.2021.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022]
Abstract
Although cytochrome P450 (CYP) systems including the adrenal ones are being investigated since many years, there are still reactions and regulation patterns that have been underestimated ever since. This review discusses neglected ones to bring them into the focus of investigators working in the field. Novel substrates and reactions described for adrenal CYPs recently point to the fact that different from what has been believed for many years, adrenal CYPs are less selective than previously thought. The conversion of steroid sulfates, intermediates of steroid biosynthesis as well as of exogenous compounds are being discussed here in more detail and consequences for further studies are drawn. Furthermore, it was shown that protein-protein interactions may have an important effect not only on the activity of adrenal CYPs, but also on the product pattern of the reactions. It was found that, as expected, the stoichiometry of CYP:redox partner plays an important role for tuning the activity. In addition, competition between different CYPs for the redox partner and for electrons and possible alterations by mutants in the efficiency of electron transfer play an important role for the activity and product pattern. Moreover, the influence of phosphorylation and small charged molecules like natural polyamines on the activity of adrenal systems has been demonstrated in-vitro indicating a possible regulation of adrenal CYP reactions by affecting redox partner recognition and binding affinity. Finally, an effect of the genetic background on the consequences of mutations in adrenal CYPs found in patients was suggested from corresponding in-vitro studies indicating that a different genetic background might be able to significantly affect the activity of a CYP mutant.
Collapse
Affiliation(s)
- Rita Bernhardt
- Department of Biochemistry, Campus B2.2, Saarland University, D-66123, Saarbrücken, Germany.
| | - Jens Neunzig
- Institute of Molecular Plant Biology, Campus A2.4, Saarland University, D-66123, Saarbrücken, Germany
| |
Collapse
|
3
|
Barnard L, du Toit T, Swart AC. Back where it belongs: 11β-hydroxyandrostenedione compels the re-assessment of C11-oxy androgens in steroidogenesis. Mol Cell Endocrinol 2021; 525:111189. [PMID: 33539964 DOI: 10.1016/j.mce.2021.111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Adrenal steroidogenesis has, for decades, been depicted as three biosynthesis pathways -the mineralocorticoid, glucocorticoid and androgen pathways with aldosterone, cortisol and androstenedione as the respective end products. 11β-hydroxyandrostenedione was not included as an adrenal steroid despite the adrenal output of this steroid being twice that of androstenedione. While it is the end of the line for aldosterone and cortisol, as it is in these forms that they exhibit their most potent receptor activities prior to inactivation and conjugation, 11β-hydroxyandrostenedione is another matter entirely. The steroid, which is weakly androgenic, has its own designated pathway yielding 11-ketoandrostenedione, 11β-hydroxytestosterone and the potent androgens, 11-ketotestosterone and 11-ketodihydrotestosterone, primarily in the periphery. Over the last decade, these C11-oxy C19 steroids have once again come to the fore with the rising number of studies contradicting the generally accepted notion that testosterone and it's 5α-reduced product, dihydrotestosterone, are the principal potent androgens in humans. These C11-oxy androgens have been shown to contribute to the androgen milieu in adrenal disorders associated with androgen excess and in androgen dependant disease progression. In this review, we will highlight these overlooked C11-oxy C19 steroids as well as the C11-oxy C21 steroids and their contribution to congenital adrenal hyperplasia, polycystic ovarian syndrome and prostate cancer. The focus is on new findings over the past decade which are slowly but surely reshaping our current outlook on human sex steroid biology.
Collapse
Affiliation(s)
- Lise Barnard
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Therina du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
4
|
Glass SM, Reddish MJ, Child SA, Wilkey CJ, Stec DF, Guengerich FP. Characterization of human adrenal cytochrome P450 11B2 products of progesterone and androstenedione oxidation. J Steroid Biochem Mol Biol 2021; 208:105787. [PMID: 33189850 PMCID: PMC7954869 DOI: 10.1016/j.jsbmb.2020.105787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 (P450) 11B1 and 11B2 both catalyze the 11β-hydroxylation of 11-deoxycorticosterone and the subsequent 18-hydroxylation of the product. P450 11B2, but not P450 11B1, catalyzes a further C-18 oxidation to yield aldosterone. 11-Oxygenated androgens are of interest, and 11-hydroxy progesterone has been reported to be a precursor of these. Oxidation of progesterone by purified recombinant P450 11B2 yielded a mono-hydroxy derivative as the major product, and co-chromatography with commercial standards and 2-D NMR spectroscopy indicated 11β-hydroxylation. 18-Hydroxyprogesterone and a dihydroxyprogesterone were also formed. Similarly, oxidation of androstenedione by P450 11B2 yielded 11β-hydroxyandrostenedione, 18-hydroxyandrostenedione, and a dihydroxyandrostenedione. The steady-state kinetic parameters for androstenedione and progesterone 11β-hydroxylation were similar to those reported for the classic substrate 11-deoxycorticosterone. The source of 11α-hydroxyprogesterone in humans remains unresolved.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Michael J Reddish
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States; Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, 28608, United States
| | - Stella A Child
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Clayton J Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Donald F Stec
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37122, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
5
|
du Toit T, van Rooyen D, Stander MA, Atkin SL, Swart AC. Analysis of 52 C19 and C21 steroids by UPC2-MS/MS: Characterising the C11-oxy steroid metabolome in serum. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122243. [DOI: 10.1016/j.jchromb.2020.122243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023]
|
6
|
van Rooyen D, Yadav R, Scott EE, Swart AC. CYP17A1 exhibits 17αhydroxylase/17,20-lyase activity towards 11β-hydroxyprogesterone and 11-ketoprogesterone metabolites in the C11-oxy backdoor pathway. J Steroid Biochem Mol Biol 2020; 199:105614. [PMID: 32007561 DOI: 10.1016/j.jsbmb.2020.105614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) plays a pivotal role in the regulation of adrenal and gonadal steroid hormone biosynthesis. More recent studies highlighted the enzyme's role in the backdoor pathway leading to androgen production. Increased CYP17A1 activity in endocrine disorders and diseases are associated with elevated C21 and C19 steroids which include 17α-hydroxyprogesterone and androgens, as well as C11-oxy C21 and C11-oxy C19 steroids. We previously reported that 11β-hydroxyprogesterone (11OHP4), 21-deoxycortisol (21dF) and their keto derivatives are converted by 5α-reductases and hydroxysteroid dehydrogenases yielding C19 steroids in the backdoor pathway. In this study the 17α-hydroxylase and 17,20-lyase activity of CYP17A1 towards the unconventional C11-oxy C21 steroid substrates and their 5α- and 3α,5α-reduced metabolites was investigated in transfected HEK-293 cells. CYP17A1 catalysed the 17α-hydroxylation of 11OHP4 to 21dF and 11-ketoprogesterone (11KP4) to 21-deoxycortisone (21dE) with negligible hydroxylation of their 5α-reduced metabolites while no lyase activity was detected. The 3α,5α-reduced C11-oxy C21 steroids-5α-pregnan-3α,11β-diol-20-one (3,11diOH-DHP4) and 5α-pregnan-3α-ol-11,20-dione (alfaxalone) were rapidly hydroxylated to 5α-pregnan-3α,11β,17α-triol-20-one (11OH-Pdiol) and 5α-pregnan-3α,17α-diol-11,20-dione (11K-Pdiol), with the lyase activity subsequently catalysing to conversion to the C11-oxy C19 steroids, 11β-hydroxyandrosterone and 11-ketoandrosterone, respectively. Docking of 11OHP4, 11KP4 and the 5α-reduced metabolites, 5α-pregnan-11β-ol-3,20-dione (11OH-DHP4) and 5α-pregnan-3,11,20-trione (11K-DHP4) with human CYP17A1 showed minimal changes in the orientation of these C11-oxy C21 steroids in the active pocket when compared with the binding of progesterone suggesting the 17,20-lyase is impaired by the C11-hydroxyl and keto moieties. The structurally similar 3,11diOH-DHP4 and alfaxalone showed a greater distance between C17 and the heme group compared to the natural substrate, 17α-hydroxypregnenolone potentially allowing more orientational freedom and facilitating the conversion of the C11-oxy C21 to C11-oxy C19 steroids. In summary, our in vitro assays showed that while CYP17A1 readily hydroxylated 11OHP4 and 11KP4, the enzyme was unable to catalyse the 17,20-lyase reaction of these C11-oxy C21 steroid products. Although CYP17A1 exhibited no catalytic activity towards the 5α-reduced intermediates, once the C4-C5 double bond and the keto group at C3 were reduced, both the hydroxylation and lyase reactions proceeded efficiently. These findings show that the C11-oxy C21 steroids could potentially contribute to the androgen pool in tissue expressing steroidogenic enzymes in the backdoor pathway.
Collapse
Affiliation(s)
- Desmaré van Rooyen
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rahul Yadav
- Medicinal Chemistry Department, University of Michigan, Ann Arbor, MI 48109, United States of America; Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States of America
| | - Emily E Scott
- Medicinal Chemistry Department, University of Michigan, Ann Arbor, MI 48109, United States of America; Departments of Pharmacology and Biological Chemistry and Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Amanda C Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
7
|
du Toit T, Swart AC. The 11β-hydroxyandrostenedione pathway and C11-oxy C 21 backdoor pathway are active in benign prostatic hyperplasia yielding 11keto-testosterone and 11keto-progesterone. J Steroid Biochem Mol Biol 2020; 196:105497. [PMID: 31626910 DOI: 10.1016/j.jsbmb.2019.105497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
Abstract
In clinical approaches to benign prostatic hyperplasia (BPH) and prostate cancer (PCa), steroidogenesis or the disruption thereof is the main thrust in treatments restricting active androgen production. Extensive studies have been undertaken focusing on testosterone and dihydrotestosterone (DHT). However, the adrenal C11-oxy C19 steroid, 11β-hydroxyandrostenedione (11OHA4), also contributes to the active androgen pool in the prostate microenvironment, and while it has been shown to impact castration resistant prostate cancer, the C11-oxy C19 steroids together with the C11-oxy C21 steroids have not been studied in BPH. The study firstly investigated the metabolism of these adrenal steroids in the BPH-1 model. Comprehensive profiles identified 11keto-testosterone as the predominant active androgen in the metabolism of the C11-oxy C19 steroids, and we identified, for the first time, 11β-hydroxy-5α-androstane-3α,17β-diol, a novel steroid in the 11OHA4-pathway. Analysis of the inactivation and reactivation of the metabolites showed that DHT is more readily inactivated than 11keto-dihydrotestosterone (11KDHT). The conversion of 11β-hydroxyprogesterone (11βOHPROG) yielded 11keto-progesterone (11KPROG), while the latter yielded 11keto-dihydroprogesterone (11KDHPROG). BPH tissue analysis identified high levels of 11β-hydroxyandrosterone (4-14 ng/g) and 11keto-androsterone (9-160 ng/g), together with androstenedione (A4; ∼7.5 ng/g). The major C11-oxy C21 steroids detected were 11βOHPROG (∼46 ng/g), 11KPROG (∼130 ng/g) as well as 11KDHPROG (∼282 ng/g). While circulatory 11βOHPROG was detected below the limit of quantification, 11KPROG and 11KDHPROG were detected at 6 and 8.5 nmol/L, respectively. Glucuronide derivatives of both 11KPROG and pregnanetriol were also detected. 11OHA4 was the major free androgen in circulation at 85.9 nmol/L, ±12-fold higher than A4, together with 5α-androstane-3α,17β-diol quantified at 69.3 nmol/L. Circulatory C11-oxy C19 steroids levels were also significantly higher (8-fold) than the C11-oxy C21 steroid levels, while the former were similar to the C19 steroid levels, in contrast to levels in PCa. The study highlights the contribution of adrenal C11-oxy steroids to the androgen pool in BPH underscoring their limited reactivation and elimination, and significant inter-individual variations regarding steroid levels and conjugation. Targeted steroid metabolome analysis is critical to understanding prostate steroidogenesis and disease progression, and analysis of circulatory C11-oxy C19 and C11-oxy C21 steroids, together with intraprostatic levels, add to our current understanding of BPH.
Collapse
Affiliation(s)
- Therina du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|