1
|
Deng Y, Ding W, Ma K, Zhan M, Sun L, Zhou Z, Lu L. SPOP point mutations regulate substrate preference and affect its function. Cell Death Dis 2024; 15:172. [PMID: 38409107 PMCID: PMC10897488 DOI: 10.1038/s41419-024-06565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
The adaptor SPOP recruits substrates to CUL3 E3 ligase for ubiquitination and degradation. Structurally, SPOP harbors a MATH domain for substrate recognition, and a BTB domain responsible for binding CUL3. Reported point mutations always occur in SPOP's MATH domain and are through to disrupt affinities of SPOP to substrates, thereby leading to tumorigenesis. In this study, we identify the tumor suppressor IRF2BP2 as a novel substrate of SPOP. SPOP enables to attenuate IRF2BP2-inhibited cell proliferation and metastasis in HCC cells. However, overexpression of wild-type SPOP alone suppresses HCC cell proliferation and metastasis. In addition, a HCC-derived mutant, SPOP-M35L, shows an increased affinity to IRF2BP2 in comparison with wild-type SPOP. SPOP-M35L promotes HCC cell proliferation and metastasis, suggesting that M35L mutation possibly reprograms SPOP from a tumor suppressor to an oncoprotein. Taken together, this study uncovers mutations in SPOP's MATH lead to distinct functional consequences in context-dependent manners, rather than simply disrupting its interactions with substrates, raising a noteworthy concern that we should be prudent to select SPOP as therapeutic target for cancers.
Collapse
Affiliation(s)
- Yanran Deng
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China
| | - Wenhao Ding
- College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Kaize Ma
- College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 519000, Zhuhai, Guangdong, China
| | - Li Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China.
| | - Zizhang Zhou
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China.
- College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 519000, Zhuhai, Guangdong, China.
| |
Collapse
|
2
|
García-Aznar JM, Maneiro Pampín E, García Ramos M, Acuña Pérez MJ, Paz Gandiaga N, Minguell Domingo L, Calavia O, Soler-Palacin P, Colobran R, Novoa Bolívar EM, Ocejo Vinyals JG. Novel frameshift variants expand the map of the genetic defects in IRF2BP2. Front Immunol 2023; 14:1279171. [PMID: 37876937 PMCID: PMC10593445 DOI: 10.3389/fimmu.2023.1279171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Background At present, the knowledge about disease-causing mutations in IRF2BP2 is very limited because only a few patients affected by this condition have been reported. As previous studies have described, the haploinsufficiency of this interferon transcriptional corepressors leads to the development of CVID. Very recently, a more accurate phenotype produced by truncating variants in this gene has been defined, manifesting CVID with gastrointestinal inflammatory symptoms and autoimmune manifestations. Methods We analyzed 5 index cases with suspected primary immunodeficiency by high throughput sequencing. They were submitted for a genetic test with a panel of genes associated with immune system diseases, including IRF2BP2. The screening of SNVs, indels and CNVs fulfilling the criteria with very low allelic frequency and high protein impact, revealed five novel variants in IRF2BP2. In addition, we isolated both wild-type and mutated allele of the cDNA from one of the families. Results In this study, we report five novel loss-of-function (LoF) mutations in IRF2BP2 that likely cause primary immunodeficiency, with CVID as more frequent phenotype, variable expression of inflammatory gastrointestinal features, and one patient with predisposition of viral infection. All identified variants were frameshift changes, and one of them was a large deletion located on chromosome 1q42, which includes the whole sequence of IRF2BP2, among other genes. Both de novo and dominant modes of inheritance were observed in the families here presented, as well as incomplete penetrance. Conclusions We describe novel variants in a delimited low-complex region, which may be considered a hotspot in IRF2BP2. Moreover, this is the first time that a large CNV in IRF2BP2 has been reported to cause CVID. The distinct mechanisms than LoF in IRF2BP2 could cause different phenotype compared with the mainly described. Further investigations are necessary to comprehend the regulatory mechanisms of IRF2BP2, which could be under variable expression of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Nerea Paz Gandiaga
- Genetics Division, Universitary Hospital Marqués de Valdecilla, Santander, Canatabria, Spain
| | | | - Olga Calavia
- Pediatrics Division, Hospital Joan XXIII, Tarragona, Catalonia, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children’s Hospital, Barcelona, Catalonia, Spain
- Infection and Immunity in Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Roger Colobran
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
| | | | | |
Collapse
|
3
|
Liu J, Xie X, Qin K, Xu L, Peng J, Li X, Li X, Liu Z. Dexamethasone and potassium canrenoate alleviate hyperalgesia by competitively regulating IL-6/JAK2/STAT3 signaling pathway during inflammatory pain in vivo and in vitro. Immun Inflamm Dis 2022; 10:e721. [PMID: 36301041 PMCID: PMC9597488 DOI: 10.1002/iid3.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Dexamethasone (Dexa) and potassium canrenoate (Cane) modulate nociceptive behavior via glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) by two mechanisms (genomic and nongenomic pathways). This study was designed to investigate the Dexa- or Cane-mediated nongenomic and genomic effects on mechanical nociception and inflammation-induced changes in interleukin-6 (IL-6) mediated signaling pathway in rats. METHODS Freund's complete adjuvant (FCA) was used to trigger an inflammation of the right hind paw in male Sprague-Dawley rats. First, the mechanical nociceptive behavioral changes were examined following intraplantar administration of GR agonist Dexa and/or MR antagonist Cane in vivo. Subsequently, the protein levels of IL-6, IL-6Rα, JAK2, pJAK2, STAT3, pSTAT3Ser727 , migration inhibitory factor, and cyclooxygenase-2 were assessed by Western blot following intraplantar injection of Dexa or Cane or the combination. Moreover, the molecular docking studies determined the interaction between Dexa, Cane, and IL-6. The competition binding assay was carried out using enzyme-linked immunosorbent assays (ELISA). RESULTS Administration of Dexa and Cane dose-dependently attenuated FCA-induced inflammatory pain. The sub-additive effect of Dexa/Cane combination was elucidated by isobologram analysis, accompanied by decrease in the spinal levels of IL-6, pJAK2, and pSTAT3Ser727 . The molecular docking study demonstrated that both Dexa and Cane displayed a firm interaction with THR138 binding site of IL-6 via a strong hydrogen bond. ELISA revealed that Dexa has a higher affinity to IL-6 than Cane. CONCLUSIONS There was no additive or negative effect of Dexa and Cane, and they modulate the IL-6/JAK2/STAT3 signaling pathway through competitive binding with IL-6 and relieves hypersensitivity during inflammatory pain.
Collapse
Affiliation(s)
- Jie Liu
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiaolan Xie
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Kai Qin
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Le Xu
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Juxiang Peng
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiangyu Li
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiongjuan Li
- Department of Anesthesiology, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenGuangdongChina
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenGuangdongChina
| |
Collapse
|
4
|
Jyonouchi H, Geng L. Whole-exome sequencing in a subject with fluctuating neuropsychiatric symptoms, immunoglobulin G1 deficiency, and subsequent development of Crohn's disease: a case report. J Med Case Rep 2022; 16:187. [PMID: 35538558 PMCID: PMC9092677 DOI: 10.1186/s13256-022-03404-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mutations or polymorphisms of genes that are associated with inflammasome functions are known to predispose individuals to Crohn's disease and likely affect clinical presentations and responses to therapeutic agents in patients with Crohn's disease. The presence of additional gene mutations/polymorphisms that can modify immune responses may further affect clinical features, making diagnosis and management of Crohn's disease even more challenging. Whole-exome sequencing is expected to be instrumental in understanding atypical presentations of Crohn's disease and the selection of therapeutic measures, especially when multiple gene mutations/polymorphisms affect patients with Crohn's disease. We report the case of a non-Hispanic Caucasian female patient with Crohn's disease who was initially diagnosed with pediatric acute-onset neuropsychiatric syndrome with fluctuating anxiety symptoms at 9 years of age. This patient was initially managed with pulse oral corticosteroid treatment and then intravenous immunoglobulin due to her immunoglobulin G1 deficiency. At 15 years of age, she was diagnosed with Crohn's disease, following onset of acute abdomen. Treatment with oral corticosteroid and then tumor necrosis factor-α blockers (adalimumab and infliximab) led to remission of Crohn's disease. However, she continued to suffer from chronic abdominal pain, persistent headache, general fatigue, and joint ache involving multiple joints. Extensive gastrointestinal workup was unrevealing, but whole-exome sequencing identified two autosomal dominant gene variants: NLRP12 (loss of function) and IRF2BP2 (gain of function). Based on whole-exome sequencing findings, infliximab was discontinued and anakinra, an interleukin-1β blocker, was started, rendering marked improvement of her clinical symptoms. However, Crohn's disease lesions recurred following Yersinia enterocolitis. The patient was successfully treated with a blocker of interleukin-12p40 (ustekinumab), and anakinra was discontinued following remission of her Crohn's disease lesions. CONCLUSION Loss-of-function mutation of NRLRP12 gene augments production of interleukin-1β and tumor necrosis factor-α, while gain-of-function mutation of IRF2BP2 impairs cytokine production and B cell differentiation. We propose that the presence of these two autosomal dominant variants caused an atypical clinical presentation of Crohn's disease.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, USA. .,Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, SPUH, 254 Easton Ave., New Brunswick, NJ, 08901, USA.
| | - Lee Geng
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, USA
| |
Collapse
|
5
|
Yokoyama A, Kouketsu T, Otsubo Y, Noro E, Sawatsubashi S, Shima H, Satoh I, Kawamura S, Suzuki T, Igarashi K, Sugawara A. Identification and Functional Characterization of a Novel Androgen Receptor Coregulator, EAP1. J Endocr Soc 2021; 5:bvab150. [PMID: 34585037 PMCID: PMC8462380 DOI: 10.1210/jendso/bvab150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) plays an essential role in the development of prostate cancer, and androgen-deprivation therapy is used as a first-line treatment for prostate cancer. However, under androgen-deprivation therapy, castration-resistant prostate cancer inevitably arises, suggesting that the interacting transcriptional coregulators of AR are promising targets for developing novel therapeutics. In this study, we used novel proteomic techniques to evaluate the AR interactome, including biochemically labile binding proteins, which might go undetected by conventional purification methods. Using rapid immunoprecipitation mass spectrometry of endogenous proteins, we identified enhanced at puberty 1 (EAP1) as a novel AR coregulator, whereas its interaction with AR could not be detected under standard biochemical conditions. EAP1 enhanced the transcriptional activity of AR via the E3 ubiquitin ligase activity, and its ubiquitination substrate proteins included AR and HDAC1. Furthermore, in prostate cancer specimens, EAP1 expression was significantly correlated with AR expression as well as a poor prognosis of prostate cancer. Together, these results suggest that EAP1 is a novel AR coregulator that promotes AR activity and potentially plays a role in prostate cancer progression.
Collapse
Affiliation(s)
- Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Takumi Kouketsu
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuri Otsubo
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Erika Noro
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Shun Sawatsubashi
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Ikuro Satoh
- Department of Pathology, Miyagi Cancer Center, Natori, Miyagi 981-1293, Japan
| | - Sadafumi Kawamura
- Department of Urology, Miyagi Cancer Center, Natori, Miyagi 981-1293, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
6
|
Palmroth M, Viskari H, Seppänen MRJ, Keskitalo S, Virtanen A, Varjosalo M, Silvennoinen O, Isomäki P. IRF2BP2 Mutation Is Associated with Increased STAT1 and STAT5 Activation in Two Family Members with Inflammatory Conditions and Lymphopenia. Pharmaceuticals (Basel) 2021; 14:ph14080797. [PMID: 34451894 PMCID: PMC8402006 DOI: 10.3390/ph14080797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Interferon regulatory factor 2 binding protein 2 (IRF2BP2) is a transcriptional coregulator that has an important role in the regulation of the immune response. IRF2BP2 has been associated with the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway, but its exact role remains elusive. Here, we identified a novel clinical variant, IRF2BP2 c.625_665del, from two members of a family with inflammatory conditions and investigated the function of IRF2BP2 and c.625_665del mutation in JAK-STAT pathway activation and inflammatory signaling. The levels of constitutive and cytokine-induced phosphorylation of STATs and total STAT1 in peripheral blood monocytes, T cells, and B cells from the patients and four healthy controls were measured by flow cytometry. Inflammation-related gene expression was studied in peripheral blood mononuclear cells using direct digital detection of mRNA (NanoString). Finally, we studied the relationship between IRF2BP2 and STAT1 activation using a luciferase reporter system in a cell model. Our results show that patients having the IRF2BP2 c.625_665del mutation presented overexpression of STAT1 protein and increased constitutive activation of STAT1. In addition, interferon-induced JAK-STAT signaling was upregulated, and several interferon-inducible genes were overexpressed. Constitutive phosphorylation of STAT5 was also found to be upregulated in CD4+ T cells from the patients. Using a cell model, we show that IRF2BP2 was needed to attenuate STAT1 transcriptional activity and that IRF2BP2 c.625_665del mutation failed in this. We conclude that IRF2BP2 has an important role in suppressing immune responses elicited by STAT1 and STAT5 and suggest that aberrations in IRF2BP2 can lead to abnormal function of intrinsic immunity.
Collapse
Affiliation(s)
- Maaria Palmroth
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.P.); (A.V.); (O.S.)
| | - Hanna Viskari
- Department of Internal Medicines, Tampere University Hospital, 33520 Tampere, Finland;
- Faculty of Medicine and Life Sciences, Tampere University, 33520 Tampere, Finland
| | - Mikko R. J. Seppänen
- Rare Disease and Pediatric Research Centers, Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland;
| | - Salla Keskitalo
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; (S.K.); (M.V.)
| | - Anniina Virtanen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.P.); (A.V.); (O.S.)
| | - Markku Varjosalo
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; (S.K.); (M.V.)
| | - Olli Silvennoinen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.P.); (A.V.); (O.S.)
- Fimlab Laboratories, Pirkanmaa Hospital District, 33520 Tampere, Finland
- HiLIFE Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Pia Isomäki
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.P.); (A.V.); (O.S.)
- Centre for Rheumatic Diseases, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence:
| |
Collapse
|
7
|
Wang K, Dong S, Higazy D, Jin L, Zou Q, Chen H, Inayat A, Hu S, Cui M. Inflammatory Environment Promotes the Adhesion of Tumor Cells to Brain Microvascular Endothelial Cells. Front Oncol 2021; 11:691771. [PMID: 34222020 PMCID: PMC8244540 DOI: 10.3389/fonc.2021.691771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/31/2021] [Indexed: 01/28/2023] Open
Abstract
Cancer patients usually suffer from unfavorable prognosis, particularly with the occurrence of brain metastasis of lung cancer. The key incident of brain metastasis initiation is crossing of blood-brain barrier (BBB) by cancer cells. Although preventing brain metastasis is a principal goal of cancer therapy, the cellular mechanisms and molecular regulators controlling the transmigration of cancer cells into the brain are still not clearly illustrated. We analyzed the mRNA expression profiles of metastatic brain tissues and TNF-α treated cancer cells to understand the changes in adhesion molecule expression during the tumor phase. To imitate the tumor microenvironment, an in vitro model was developed and the low or high metastatic potential lung tumor cells (A549 or H358) were cultured with the human brain microvascular endothelial cells (hBMECs) under TNF-α treatment. The analysis of online database indicated an altered expression for adhesion molecules and enrichment of their associated signaling pathways. TNF-α treatment activated hBMECs via up-regulating several adhesion molecules, including ICAM1, CD112, CD47, and JAM-C. Meanwhile, TNF-α induced an increased expression of adhesion molecule ligands such as ALCAM and CD6 in both A549 and H358. Moreover, the expression of adhesion molecules and the ligands were also increased both in A549- or H358-hBMECs mixed culture system, which promoted tumor cells adhesion to endothelial cells. These results suggested that the enhanced interaction between tumor cells and brain microvascular endothelium might facilitate the incidence of metastatic brain tumors and further offer a better comprehension of brain metastasis prevention and treatment.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Doaa Higazy
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China.,Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Lijing Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Qingcui Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Haowei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Aakif Inayat
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Cancer Center, Wuhan, China.,The Office of Hubei Provincial Cancer Prevention, Wuhan, China.,The Cancer Quality Control Center of Hubei Province, Wuhan, China.,College of Health Science, Huazhong Agricultural University, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
8
|
Pastor TP, Peixoto BC, Viola JPB. The Transcriptional Co-factor IRF2BP2: A New Player in Tumor Development and Microenvironment. Front Cell Dev Biol 2021; 9:655307. [PMID: 33996817 PMCID: PMC8116537 DOI: 10.3389/fcell.2021.655307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon regulatory factor 2-binding protein 2 (IRF2BP2) encodes a member of the IRF2BP family of transcriptional regulators, which includes IRF2BP1, IRF2BP2, and IRF2BPL (EAP1). IRF2BP2 was initially identified as a transcriptional corepressor that was dependent on Interferon regulatory factor-2 (IRF-2). The IRF2BP2 protein is found in different organisms and has been described as ubiquitously expressed in normal and tumor cells and tissues, indicating a possible role for this transcriptional cofactor in different cell signaling pathways. Recent data suggest the involvement of IRF2BP2 in the regulation of several cellular functions, such as the cell cycle, cell death, angiogenesis, inflammation and immune response, thereby contributing to physiological cell homeostasis. However, an imbalance in IRF2BP2 function may be related to the pathophysiology of cancer. Some studies have shown the association of IRF2BP2 expression in hematopoietic and solid tumors through mechanisms based on gene fusion and point mutations in gene coding sequences, and although the biological functions of these types of hybrid and mutant proteins are not yet known, they are thought to be involved in an increase in the likelihood of tumor development. In this review, we address the possible involvement of IRF2BP2 in tumorigenesis through its regulation of important pathways involved in tumor development.
Collapse
Affiliation(s)
- Tatiane P Pastor
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Barbara C Peixoto
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - João P B Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Chemical systems biology reveals mechanisms of glucocorticoid receptor signaling. Nat Chem Biol 2021; 17:307-316. [PMID: 33510451 PMCID: PMC8783757 DOI: 10.1038/s41589-020-00719-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids display remarkable anti-inflammatory activity, but their use is limited by on-target adverse effects including insulin resistance and skeletal muscle atrophy. We used a chemical systems biology approach, ligand class analysis, to examine ligands designed to modulate glucocorticoid receptor activity through distinct structural mechanisms. These ligands displayed diverse activity profiles, providing the variance required to identify target genes and coregulator interactions that were highly predictive of their effects on myocyte glucose disposal and protein balance. Their anti-inflammatory effects were linked to glucose disposal but not muscle atrophy. This approach also predicted selective modulation in vivo, identifying compounds that were muscle-sparing or anabolic for protein balance and mitochondrial potential. Ligand class analysis defined the mechanistic links between the ligand-receptor interface and ligand-driven physiological outcomes, a general approach that can be applied to any ligand-regulated allosteric signaling system.
Collapse
|
10
|
Paakinaho V, Lempiäinen JK, Sigismondo G, Niskanen EA, Malinen M, Jääskeläinen T, Varjosalo M, Krijgsveld J, Palvimo J. SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites. Nucleic Acids Res 2021; 49:1951-1971. [PMID: 33524141 PMCID: PMC7913686 DOI: 10.1093/nar/gkab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoid receptor (GR) is an essential transcription factor (TF), controlling metabolism, development and immune responses. SUMOylation regulates chromatin occupancy and target gene expression of GR in a locus-selective manner, but the mechanism of regulation has remained elusive. Here, we identify the protein network around chromatin-bound GR by using selective isolation of chromatin-associated proteins and show that the network is affected by receptor SUMOylation, with several nuclear receptor coregulators and chromatin modifiers preferring interaction with SUMOylation-deficient GR and proteins implicated in transcriptional repression preferring interaction with SUMOylation-competent GR. This difference is reflected in our chromatin binding, chromatin accessibility and gene expression data, showing that the SUMOylation-deficient GR is more potent in binding and opening chromatin at glucocorticoid-regulated enhancers and inducing expression of target loci. Blockage of SUMOylation by a SUMO-activating enzyme inhibitor (ML-792) phenocopied to a large extent the consequences of GR SUMOylation deficiency on chromatin binding and target gene expression. Our results thus show that SUMOylation modulates the specificity of GR by regulating its chromatin protein network and accessibility at GR-bound enhancers. We speculate that many other SUMOylated TFs utilize a similar regulatory mechanism.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
11
|
Barysch SV, Stankovic-Valentin N, Miedema T, Karaca S, Doppel J, Nait Achour T, Vasudeva A, Wolf L, Sticht C, Urlaub H, Melchior F. Transient deSUMOylation of IRF2BP proteins controls early transcription in EGFR signaling. EMBO Rep 2021; 22:e49651. [PMID: 33480129 PMCID: PMC7926235 DOI: 10.15252/embr.201949651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Molecular switches are essential modules in signaling networks and transcriptional reprogramming. Here, we describe a role for small ubiquitin‐related modifier SUMO as a molecular switch in epidermal growth factor receptor (EGFR) signaling. Using quantitative mass spectrometry, we compare the endogenous SUMO proteomes of HeLa cells before and after EGF stimulation. Thereby, we identify a small group of transcriptional coregulators including IRF2BP1, IRF2BP2, and IRF2BPL as novel players in EGFR signaling. Comparison of cells expressing wild type or SUMOylation‐deficient IRF2BP1 indicates that transient deSUMOylation of IRF2BP proteins is important for appropriate expression of immediate early genes including dual specificity phosphatase 1 (DUSP1, MKP‐1) and the transcription factor ATF3. We find that IRF2BP1 is a repressor, whose transient deSUMOylation on the DUSP1 promoter allows—and whose timely reSUMOylation restricts—DUSP1 transcription. Our work thus provides a paradigm how comparative SUMO proteome analyses serve to reveal novel regulators in signal transduction and transcription.
Collapse
Affiliation(s)
- Sina V Barysch
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Tim Miedema
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Samir Karaca
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Judith Doppel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Thiziri Nait Achour
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Aarushi Vasudeva
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics, Heidelberg, Germany.,BioQuant & Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Center of Medical Research, Bioinformatic and Statistic, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Construction of a MicroRNA-mRNA Network Underlying Decidualized Endometriotic Cyst Stromal Cells Using Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9246868. [PMID: 32923489 PMCID: PMC7453232 DOI: 10.1155/2020/9246868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 01/28/2023]
Abstract
Background Decidualization of ectopic endometrium often leads to the extensive proliferation of local tissue and is easily misdiagnosed as malignant tumors. The study is aimed at constructing a microRNA- (miRNA-) mRNA network underlying decidualized endometriotic cyst stromal cells (ECSCs). Methods All data were collected from the Gene Expression Omnibus (GEO) database. Firstly, the differentially expressed genes (DEGs, adj. P-Val < 0.05, | log FC | ≥1) and miRNAs (DEMs, P-Val < 0.05, ∣log FC | ≥1) were analyzed by the limma package. Secondly, we predicted the target genes (TGs) of these DEMs through the TargetScan, miRDB, and miRTarBase databases. The overlapping genes between DEGs and TGs were screened out. Thirdly, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses of the overlapping genes were performed for integrated discovery, visualization, and annotation. Then, the protein-protein interaction (PPI) network of the overlapping genes was conducted by the STRING database. Finally, we combined the PPI network and the miRNA-mRNA pairs to build a miRNA-mRNA network. Results There are 29 DEMs and 523 DEGs. Fourteen overlapping genes were screened out, and these genes were significantly enriched in metabolism and immunity. What is more, a miRNA-mRNA network, including 14 mRNAs and 9 miRNAs, was successfully constructed. Conclusions Taken together, the miRNA-mRNA regulatory networks described in this study may provide new insights in the decidualization of ECSCs, suggesting further investigations in novel pathogenic mechanisms.
Collapse
|
13
|
Lempiäinen JK, Manjur ABMK, Malinen M, Ketola K, Niskanen EA, Palvimo JJ. BCOR-coupled H2A monoubiquitination represses a subset of androgen receptor target genes regulating prostate cancer proliferation. Oncogene 2020; 39:2391-2407. [PMID: 31925334 DOI: 10.1038/s41388-020-1153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
We have identified BCL6 corepressor (BCOR) as a hormone-dependent interaction partner of androgen receptor (AR), a key transcription factor in the development of normal and cancerous prostate. BCOR is often mutated in cancers and hematological diseases and as a component of a non-canonical polycomb repressive complex 1 (ncPRC1.1) required for arranging many facets of cellular differentiation. However, its role in androgen signaling or prostate cancer cells remains unknown. Here, our genome-wide analyses reveal that BCOR is recruited in an androgen-dependent fashion to majority of AR-binding chromatin sites in castration-resistant prostate cancer (CRPC) cells. Interestingly, depletion of BCOR has a significant effect on the expression of androgen-repressed genes linked to regulation of cell proliferation, differentiation and development. At many of these genes, such as HOX genes, the depletion leads to a decrease in H2A K119 monoubiquitination and an increase in mRNA expression. Consistently, BCOR depletion impairs the proliferation and viability of CRPC cells, inducing their apoptosis. Collectively, our data indicate a key role for the BCOR-ncPRC1.1 complex in the corepression of an important subset of AR target genes and the regulation of prostate cancer cell proliferation.
Collapse
Affiliation(s)
| | | | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|