1
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
2
|
Fang S, Huang X, Cai F, Qiu G, Lin F, Cai X. Design, synthesis and molecular docking of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazole derivatives that act as iNOS/COX-2 inhibitors with potent anti-inflammatory activity against LPS-induced RAW264.7 macrophage cells. J Steroid Biochem Mol Biol 2024; 240:106478. [PMID: 38430971 DOI: 10.1016/j.jsbmb.2024.106478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Inflammation, an important biological protective response to tissue damage or microbial invasion, is considered to be an alarming signal for the progress of varied biological complications. Based on the previous reports in the literature that proved the noticeable efficacy of pyrazole and thiazole scaffold as well as nitrogen heterocyclic based compounds against acute and chronic inflammatory disease, a new set of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazole derivatives were synthesized and evaluated their anti-inflammatory activities in vitro. Preliminary structure-activity relationship (SAR) analysis was conducted by their inhibitory activities against nitric oxide (NO) release in lipopolysaccharide (LPS)-induced RAW 264.7 cells, and the optimal compound 12b [3β-hydroxy-pregn-5-en-17β-yl-5'- (o- chlorophenyl)- 1'-(4''- phenyl -[1'', 3'']- thiazol-2''- yl) - 4',5'-dihydro - 1'H-pyrazol - 3'- yl] exhibited more potent anti-inflammatory activity than the positive control treatment methylprednisolone (MPS), with an IC50 value of 2.59 μM on NO production and low cytotoxicity against RAW 264.7 cells. In further mechanism study, our results showed that compound 12b significantly suppressed the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and inhibited the expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) through blocking NF-κB p65 nuclear translocation and phosphorylation of IκBα. Compound 12b also attenuated LPS-induced activation of c-Jun amino-terminal kinase (JNK) and p38 phosphorylation in RAW 264.7 cells. Molecular docking study revealed the strong binding affinity of compound 12b to the active site of the COX-2 proteins, which confirmed that compound 12b acted as an anti-inflammatory mediator. These results indicate that steroidal derivatives bearing 4,5-dihydropyrazole thiazole structure might be considered for further research and scaffold optimization in designing anti-inflammatory drugs and compound 12b might be a promising therapeutic anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Shuopo Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaodan Huang
- Department of Digestive Medical Oncology, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fen Cai
- Department of Nosocomial Infection Management, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Guodong Qiu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fei Lin
- Department of Pharmacy Intravenous Admixture Services (PIVAS), The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Xiaorui Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
3
|
Cybulski M, Sidoryk K, Zaremba-Czogalla M, Trzaskowski B, Kubiszewski M, Tobiasz J, Jaromin A, Michalak O. The Conjugates of Indolo[2,3- b]quinoline as Anti-Pancreatic Cancer Agents: Design, Synthesis, Molecular Docking and Biological Evaluations. Int J Mol Sci 2024; 25:2573. [PMID: 38473820 DOI: 10.3390/ijms25052573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
New amide conjugates of hydroxycinnamic acids (HCAs) and the known antineoplastic 5,11-dimethyl-5H-indolo[2,3-b]quinoline (DiMIQ), an analog of the natural alkaloid neocryptolepine, were synthesized and tested in vitro for anticancer activity. The compound 9-[((2-hydroxy)cinnamoyl)amino]-5,11-dimethyl-5H-indolo[2,3-b]quinoline (2), which contains the ortho-coumaric acid fragment, demonstrated dose-dependent effectiveness against both normal BxPC-3 and metastatic AsPC-1 pancreatic cancer cells. The IC50 values for AsPC-1 and BxPC-3 were 336.5 nM and 347.5 nM, respectively, with a selectivity index of approximately 5 for both pancreatic cancer cells compared to normal dermal fibroblasts. Conjugate 2 did not exhibit any hemolytic activity against human erythrocytes at the tested concentration. Computational studies were performed to predict the pharmacokinetic profile and potential mechanism of action of the synthesized conjugates. These studies focused on the ADME properties of the conjugates and their interactions with DNA, as well as DNA-topoisomerase alpha and beta complexes. All of the conjugates studied showed approximately one order of magnitude stronger binding to DNA compared to the reference DiMIQ, and approximately two orders of magnitude stronger binding to the topoisomerase II-DNA complex compared to DiMIQ. Conjugate 2 was predicted to have the strongest binding to the enzyme-DNA complex, with a Ki value of 2.8 nM.
Collapse
Affiliation(s)
- Marcin Cybulski
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Katarzyna Sidoryk
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marek Kubiszewski
- Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Joanna Tobiasz
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Olga Michalak
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| |
Collapse
|
4
|
Kosari M, Khorvash F, Sayyah MK, Ansari Chaharsoughi M, Najafi A, Momen-Heravi M, Karimian M, Akbari H, Noureddini M, Salami M, Ghaderi A, Amini Mahabadi J, Khamechi SP, Yeganeh S, Banafshe HR. The influence of propolis plus Hyoscyamus niger L. against COVID-19: A phase II, multicenter, placebo-controlled, randomized trial. Phytother Res 2024; 38:400-410. [PMID: 37992760 DOI: 10.1002/ptr.8047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 11/24/2023]
Abstract
The incubation period of COVID-19 symptoms, along with the proliferation and high transmission rate of the SARS-CoV-2 virus, is the cause of an uncontrolled epidemic worldwide. Vaccination is the front line of prevention, and antiinflammatory and antiviral drugs are the treatment of this disease. In addition, some herbal therapy approaches can be a good way to deal with this disease. The aim of this study was to evaluate the effect of propolis syrup with Hyoscyamus niger L. extract in hospitalized patients with COVID-19 with acute disease conditions in a double-blinded approach. The study was performed on 140 patients with COVID-19 in a double-blind, randomized, and multicentral approach. The main inclusion criterion was the presence of a severe type of COVID-19 disease. The duration of treatment with syrup was 6 days and 30 CC per day in the form of three meals. On Days 0, 2, 4, and 6, arterial blood oxygen levels, C-reactive protein (CRP), erythrocyte sedimentation rate, and white blood cell, as well as the patient's clinical symptoms such as fever and chills, cough and shortness of breath, chest pain, and other symptoms, were recorded and analyzed. Propolis syrup with H. niger L. significantly reduces cough from the second day, relieving shortness of breath on the fourth day, and significantly reduces CRP, weakness, and lethargy, as well as significantly increased arterial blood oxygen pressure on the sixth day compared to the placebo group (p < 0.05). The results in patients are such that in the most severe conditions of the disease 80% < SpO2 (oxygen saturation), the healing process of the syrup on reducing CRP and increasing arterial blood oxygen pressure from the fourth day is significantly different compared with the placebo group (p < 0.05). The use of syrup is associated with a reduction of 3.6 days in the hospitalization period compared with the placebo group. Propolis syrup with H. niger L. has effectiveness in the viral and inflammatory phases on clinical symptoms and blood parameters and arterial blood oxygen levels of patients with COVID-19. Also, it reduces referrals to the intensive care unit and mortality in hospitalized patients with COVID-19. So, this syrup promises to be an effective treatment in the great challenge of COVID-19.
Collapse
Affiliation(s)
- Morteza Kosari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzin Khorvash
- Department of Infectious Disease, Medical School, Isfahan University of Medical Science, Isfahan, Iran
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazem Sayyah
- Department of Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Ansari Chaharsoughi
- Department of Infectious Diseases, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Najafi
- Department of Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mansooreh Momen-Heravi
- Department of Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Hossein Akbari
- Social Determinants of Health Research Center, Department of Biostatistics and Epidemiology, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Noureddini
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medical, Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Amini Mahabadi
- Anatomical Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Sarem Fertility and Infertility Research Center, Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Sarem Cell Research Center, Sarem Women's Hospital, Tehran, Iran
| | - Seyed Peyman Khamechi
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Yeganeh
- Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Spanoudaki M, Giaginis C, Karafyllaki D, Papadopoulos K, Solovos E, Antasouras G, Sfikas G, Papadopoulos AN, Papadopoulou SK. Exercise as a Promising Agent against Cancer: Evaluating Its Anti-Cancer Molecular Mechanisms. Cancers (Basel) 2023; 15:5135. [PMID: 37958310 PMCID: PMC10648074 DOI: 10.3390/cancers15215135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Cancer cases are continuously increasing, while the prevalence rates of physical inactivity are also continuously increasing. Physical inactivity is a causative factor in non-communicable diseases, including cancer. However, the potential beneficial effects of exercise on cancer treatment have not received much attention so far. The aim of this study was to highlight the relationship between cancer and exercise on a molecular basis. METHODS Comprehensive and in-depth research was conducted in the most accurate scientific databases by using relevant and effective keywords. RESULTS The mechanisms by which exercise may reduce cancer risk and/or progression may include the metabolic profile of hormones, systemic inflammation reduction, insulin sensitivity increase, antioxidant capacity augmentation, the boost to the immune system, and the direct effect on the tumor. There is currently substantial evidence that the effect of exercise may predict a stronger association with cancer and could supplementarily be embedded in cancer clinical practice to improve disease progression and prognosis. CONCLUSION The field of this study requires interconnecting the overall knowledge of exercise physiology with cancer biology and cancer clinical oncology to provide the basis for personalized targeting strategies that can be merged with training as a component of a holistic co-treatment approach to optimize cancer healthcare.
Collapse
Affiliation(s)
- Maria Spanoudaki
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (M.S.); (A.N.P.); (S.K.P.)
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.P.); (G.S.)
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece;
| | - Dimitra Karafyllaki
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42132 Trikala, Greece;
| | | | - Evangelos Solovos
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.P.); (G.S.)
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42132 Trikala, Greece;
| | - Georgios Antasouras
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece;
| | - Georgios Sfikas
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.P.); (G.S.)
| | - Athanasios N. Papadopoulos
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (M.S.); (A.N.P.); (S.K.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (M.S.); (A.N.P.); (S.K.P.)
| |
Collapse
|
6
|
Michalak O, Cybulski M, Szymanowski W, Gornowicz A, Kubiszewski M, Ostrowska K, Krzeczyński P, Bielawski K, Trzaskowski B, Bielawska A. Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents. Int J Mol Sci 2023; 24:ijms24108875. [PMID: 37240221 DOI: 10.3390/ijms24108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A series of new ursolic acid (UA) derivatives substituted with various amino acids (AAs) or dipeptides (DP) at the C-3 position of the steroid skeleton was designed and synthesized. The compounds were obtained by the esterification of UA with the corresponding AAs. The cytotoxic activity of the synthesized conjugates was determined using the hormone-dependent breast cancer cell line MCF-7 and the triple-negative breast cancer cell line MDA. Three derivatives (l-seryloxy-, l-prolyloxy- and l-alanyl-l-isoleucyloxy-) showed micromolar IC50 values and reduced the concentrations of matrix metalloproteinases 2 and 9. Further studies revealed that for two compounds (l-seryloxy- and l-alanyl-l-isoleucyloxy-), a possible mechanism of their antiproliferative action is the activation of caspase-7 and the proapoptotic Bax protein in the apoptotic pathway. The third compound (l-prolyloxy- derivative) showed a different mechanism of action as it induced autophagy as measured by an increase in the concentrations of three autophagy markers: LC3A, LC3B, and beclin-1. This derivative also showed statistically significant inhibition of the proinflammatory cytokines TNF-α and IL-6. Finally, for all synthesized compounds, we computationally predicted their ADME properties as well as performed molecular docking to the estrogen receptor to assess their potential for further development as anticancer agents.
Collapse
Affiliation(s)
- Olga Michalak
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Marcin Cybulski
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Marek Kubiszewski
- Analytical Research Section, Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Kinga Ostrowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Piotr Krzeczyński
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 2C Banacha Str., 02-097 Warsaw, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| |
Collapse
|
7
|
Ren QL, Wang Q, Zhang XQ, Wang M, Hu H, Tang JJ, Yang XT, Ran YH, Liu HH, Song ZX, Liu JG, Li XL. Anticancer Activity of Diosgenin and Its Molecular Mechanism. Chin J Integr Med 2023:10.1007/s11655-023-3693-1. [PMID: 36940072 PMCID: PMC10026233 DOI: 10.1007/s11655-023-3693-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 03/21/2023]
Abstract
Diosgenin, a steroidal sapogenin, obtained from Trigonella foenum-graecum, Dioscorea, and Rhizoma polgonati, has shown high potential and interest in the treatment of various cancers such as oral squamous cell carcinoma, laryngeal cancer, esophageal cancer, liver cancer, gastric cancer, lung cancer, cervical cancer, prostate cancer, glioma, and leukemia. This article aims to provide an overview of the in vivo, in vitro, and clinical studies reporting the diosgenin's anticancer effects. Preclinical studies have shown promising effects of diosgenin on inhibiting tumor cell proliferation and growth, promoting apoptosis, inducing differentiation and autophagy, inhibiting tumor cell metastasis and invasion, blocking cell cycle, regulating immunity and improving gut microbiome. Clinical investigations have revealed clinical dosage and safety property of diosgenin. Furthermore, in order to improve the biological activity and bioavailability of diosgenin, this review focuses on the development of diosgenin nano drug carriers, combined drugs and the diosgenin derivatives. However, further designed trials are needed to unravel the diosgenin's deficiencies in clinical application.
Collapse
Affiliation(s)
- Qun-Li Ren
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Qian Wang
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xin-Qun Zhang
- Zheng'an County people's Hospital, Zunyi, Guizhou Province, 563000, China
| | - Miao Wang
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan Hu
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jun-Jie Tang
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiong-Tong Yang
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Ying-Hui Ran
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan-Huan Liu
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Zhi-Xing Song
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jian-Guo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiao-Lan Li
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China.
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
8
|
García-Morales S, Corzo-Jiménez IJ, Silva-Córdova NF, Soto-Cordero AM, Rodríguez-Mejía DI, Pardo-Núñez J, León-Morales JM. Comparative study of steroidal sapogenins content in leaves of five Agave species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5653-5659. [PMID: 35368099 DOI: 10.1002/jsfa.11912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Agaves are mainly used to produce alcoholic beverages such as tequila, mezcal and bacanora. However, the leaves constitute more than 50% of the plant and are not used in the production process, so they are considered waste. This plant material can be used as a source of bioactive compounds such as terpenes, flavonoids and saponins. Therefore, the objective of this study was to characterize the aglycone type of saponins and to quantify three steroidal sapogenins in leaves of five Agave species collected in different regions of Guerrero and Oaxaca, Mexico. RESULTS Analysis by gas chromatography-flame ionization detection of the hydrolyzed methanolic extracts showed that diosgenin and tigogenin were the most abundant sapogenins identified in the five Agave species. Differences in the content of these sapogenins were found in the same species collected in different localities. The leaves of Agave americana var. oaxacensis L. (Oaxaca) had the highest diosgenin-derived saponin content, while the leaves of A. angustifolia Haw. (Guerrero) had the highest tigogenin-derived saponin content. Only in A. cupreata was sarsasapogenin identified, all three sapogenins occurring in the leaves of this species. For the first time, information is provided on the aglycones of the saponins produced in A. potatorum Zucc. and A. karwinskii Zucc. CONCLUSION This study made it possible to compare the content of diosgenin and tigogenin-derived saponins in leaves of Agave species from Guerrero and Oaxaca. This information will be useful for better utilization of this plant material and add value to the process of mezcal elaboration. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Soledad García-Morales
- Department of Plant Biotechnology, CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Jalisco, Mexico
| | - Ilenia Janeth Corzo-Jiménez
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Jalisco, Mexico
| | | | | | | | - Joaliné Pardo-Núñez
- Laboratory of Technological Prospecting for the Innovative Development of Food and Nutrition, CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Jalisco, Mexico
| | - Janet María León-Morales
- Department of Plant Biotechnology, CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, AC, Jalisco, Mexico
| |
Collapse
|
9
|
Drug D, a Diosgenin Derive, Inhibits L-Arginine-Induced Acute Pancreatitis through Meditating GSDMD in the Endoplasmic Reticulum via the TXNIP/HIF-1α Pathway. Nutrients 2022; 14:nu14132591. [PMID: 35807771 PMCID: PMC9268286 DOI: 10.3390/nu14132591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is one of the most common causes of hospitalization for gastrointestinal diseases, with high morbidity and mortality. Endoplasmic reticulum stress (ERS) and Gasdermin D (GSDMD) mediate AP, but little is known about their mutual influence on AP. Diosgenin has excellent anti-inflammatory and antioxidant effects. This study investigated whether Diosgenin derivative D (Drug D) inhibits L-arginine-induced acute pancreatitis through meditating GSDMD in the endoplasmic reticulum (ER). Our studies were conducted in a mouse model of L-arginine-induced AP as well as in an in vitro model on mouse pancreatic acinar cells. The GSDMD accumulation in ER was found in this study, which caused ERS of acinar cells. GSDMD inhibitor Disulfiram (DSF) notably decreased the expression of GSDMD in ER and TXNIP/HIF-1α signaling. The molecular docking study indicated that there was a potential interaction between Drug D and GSDMD. Our results showed that Drug D significantly inhibited necrosis of acinar cells dose-dependently, and we also found that Drug D alleviated pancreatic necrosis and systemic inflammation by inhibiting the GSDMD accumulation in the ER of acinar cells via the TXNIP/HIF-1α pathway. Furthermore, the level of p-IRE1α (a marker of ERS) was also down-regulated by Drug D in a dose-dependent manner in AP. We also found that Drug D alleviated TXNIP up-regulation and oxidative stress in AP. Moreover, our results revealed that GSDMD-/- mitigated AP by inhibiting TXNIP/HIF-1α. Therefore, Drug D, which is extracted from Dioscorea zingiberensis, may inhibit L-arginine-induced AP by meditating GSDMD in the ER by the TXNIP /HIF-1α pathway.
Collapse
|
10
|
Study on the Mechanism of Diosgenin Targeting STAT3 to Inhibit Colon Cancer Proliferation and Migration. DISEASE MARKERS 2022; 2022:7494887. [PMID: 35698571 PMCID: PMC9188474 DOI: 10.1155/2022/7494887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
To elucidate regulatory effects and molecular mechanisms of diosgenin on colon cancer, this study administered diosgenin at concentrations of 10 (low), 50 (medium), and 100 μmol/L (high concentration group) at the cell level, respectively. EdU, colony formation, and Transwell assays were implemented to determine SW480 cellular proliferation and migration. Assays of flow cytometry and TUNEL were employed to estimate cell apoptosis. Additionally, nude mouse tumorigenesis assay was used to further verify the regulatory function of diosgenin on colon cancer. The target protein of diosgenin was predicted via molecular docking. The results showed that all three concentrations of diosgenin could reduce colon cancer cellular proliferation and migration, and after diosgenin treatment, colon cancer cellular apoptosis was markedly increased, and the 100 μmol/L diosgenin group produced the most satisfactory inhibition on colon cancer cell proliferation. Ki67 expression was markedly reduced whereas those of Bax and caspase3 were greatly increased after diosgenin treatment. The nude mouse tumorigenesis assay indicated that the parameters of tumorous volume and mass of diosgenin treatment group were greatly decreased as compared to control, and as the concentration of diosgenin increased, the inhibitory effect was more significant. Molecular docking indicated that STAT3 served as a target protein of diosgenin. Moreover, after diosgenin treatment on colon cancer cells, the STAT3 expression was markedly reduced. The STAT3 overexpression would counteract the inhibitory effect of 50 μmol/L diosgenin in both suppressing colon cancer cellular proliferation and migration and promoting apoptosis. Taken together, all our outcomes demonstrated the diosgenin effects in not only inhibiting colon cancer cellular proliferation and migration but also promoting cancerous cellular apoptosis. Diosgenin is a regulatory player in targeting and regulating STAT3.
Collapse
|
11
|
Wang L, Yao M, Hu Y, Chen C, Jin L, Ma X, Yang H. Synthesis and Antitumor Activity of Diosgenin Hydroxamic Acid and Quaternary Phosphonium Salt Derivatives. ACS Med Chem Lett 2022; 13:786-791. [PMID: 35586422 PMCID: PMC9109269 DOI: 10.1021/acsmedchemlett.1c00581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/15/2022] [Indexed: 11/28/2022] Open
Abstract
Diosgenin, a component separated from Dioscorea plants, is an important starting material for steroid hormone drugs and semisynthetic steroids. In the work, two series of diosgenin derivatives were designed, synthesized, and evaluated for their cellular anticancer activities. Most of the target compounds exhibited good inhibitory activities against four cell lines, Aspc-1 (human colon adenocarcinoma cells), H358 (human nonsmall cell lung cancer cells), HCT116 (human colorectal adenocarcinoma cells), and SW620 (human metastatic pancreatic cancer cells). Among them, the representative compound 2.2f exhibited 7.9-341.7-fold antiproliferative activities against the above-mentioned four cell lines compared with the lead compound diosgenin.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Maoling Yao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yuegao Hu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Congdi Chen
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hongjun Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
12
|
Synthesis of diosgenin derivatives by A and B ring modifications and low-valent titanium (Ti0)-catalysed McMurry coupling reactions and designing to create novel biological agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Tewari D, Priya A, Bishayee A, Bishayee A. Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin Transl Med 2022; 12:e795. [PMID: 35384373 PMCID: PMC8982327 DOI: 10.1002/ctm2.795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer is the world's second leading cause of death, but a significant advancement in cancer treatment has been achieved within the last few decades. However, major adverse effects and drug resistance associated with standard chemotherapy have led towards targeted treatment options. OBJECTIVES Transforming growth factor-β (TGF-β) signaling plays a key role in cell proliferation, differentiation, morphogenesis, regeneration, and tissue homeostasis. The prime objective of this review is to decipher the role of TGF-β in oncogenesis and to evaluate the potential of various natural and synthetic agents to target this dysregulated pathway to confer cancer preventive and anticancer therapeutic effects. METHODS Various authentic and scholarly databases were explored to search and obtain primary literature for this study. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria was followed for the review. RESULTS Here we provide a comprehensive and critical review of recent advances on our understanding of the effect of various bioactive natural molecules on the TGF-β signaling pathway to evaluate their full potential for cancer prevention and therapy. CONCLUSION Based on emerging evidence as presented in this work, TGF-β-targeting bioactive compounds from natural sources can serve as potential therapeutic agents for prevention and treatment of various human malignancies.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of PharmacognosySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anu Priya
- Department of PharmacologySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | | | - Anupam Bishayee
- College of Osteopathic MedicineLake Erie College of Osteopathic MedicineBradentonFloridaUSA
| |
Collapse
|
14
|
An R, Zhang W, Huang X. Developments in the Antitumor Activity, Mechanisms of Action, Structural Modifications, and Structure-Activity Relationships of Steroidal Saponins. Mini Rev Med Chem 2022; 22:2188-2212. [PMID: 35176980 DOI: 10.2174/1389557522666220217113719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Steroidal saponins, a class of natural products formed by the combination of spirosteranes with sugars, are widely distributed in plants and have various biological activities, such as anti-tumor, anti-inflammatory, anti-bacterial, anti-Alzheimer's, anti-oxidation, etc. Particularly, extensive researches on the antitumor property of steroidal saponins have been received. Steroidal sapogenins, the aglycones of steroidal saponins, also have attracted much attention due to a vast range of pharmacological activities similar to steroidal saponins. In the past few years, structural modifications on the aglycones and sugar chains of steroidal saponins have been carried out and some achievements have been made. In this mini-review, the antitumor activity, action mechanisms, and structural modifications along with the structure-activity relationships of steroidal saponins and their derivatives are summarized.
Collapse
Affiliation(s)
- Renfeng An
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| | - Wenjin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| | - Xuefeng Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| |
Collapse
|
15
|
Wu Q, Yin CH, Li Y, Cai JQ, Yang HY, Huang YY, Zheng YX, Xiong K, Yu HL, Lu AP, Wang KX, Guan DG, Chen YP. Detecting Critical Functional Ingredients Group and Mechanism of Xuebijing Injection in Treating Sepsis. Front Pharmacol 2021; 12:769190. [PMID: 34938184 PMCID: PMC8687625 DOI: 10.3389/fphar.2021.769190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by various infectious or noninfectious factors, which can lead to shock, multiple organ dysfunction syndrome, and death. It is one of the common complications and a main cause of death in critically ill patients. At present, the treatments of sepsis are mainly focused on the controlling of inflammatory response and reduction of various organ function damage, including anti-infection, hormones, mechanical ventilation, nutritional support, and traditional Chinese medicine (TCM). Among them, Xuebijing injection (XBJI) is an important derivative of TCM, which is widely used in clinical research. However, the molecular mechanism of XBJI on sepsis is still not clear. The mechanism of treatment of "bacteria, poison and inflammation" and the effects of multi-ingredient, multi-target, and multi-pathway have still not been clarified. For solving this issue, we designed a new systems pharmacology strategy which combines target genes of XBJI and the pathogenetic genes of sepsis to construct functional response space (FRS). The key response proteins in the FRS were determined by using a novel node importance calculation method and were condensed by a dynamic programming strategy to conduct the critical functional ingredients group (CFIG). The results showed that enriched pathways of key response proteins selected from FRS could cover 95.83% of the enriched pathways of reference targets, which were defined as the intersections of ingredient targets and pathogenetic genes. The targets of the optimized CFIG with 60 ingredients could be enriched into 182 pathways which covered 81.58% of 152 pathways of 1,606 pathogenetic genes. The prediction of CFIG targets showed that the CFIG of XBJI could affect sepsis synergistically through genes such as TAK1, TNF-α, IL-1β, and MEK1 in the pathways of MAPK, NF-κB, PI3K-AKT, Toll-like receptor, and tumor necrosis factor signaling. Finally, the effects of apigenin, baicalein, and luteolin were evaluated by in vitro experiments and were proved to be effective in reducing the production of intracellular reactive oxygen species in lipopolysaccharide-stimulated RAW264.7 cells, significantly. These results indicate that the novel integrative model can promote reliability and accuracy on depicting the CFIGs in XBJI and figure out a methodological coordinate for simplicity, mechanism analysis, and secondary development of formulas in TCM.
Collapse
Affiliation(s)
- Qi- Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuan-Hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Han-Yun Yang
- The First Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Ying-Ying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Xu Zheng
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Ke-Xin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
HUANG N, YU D, WU J, DU X. Diosgenin: an important natural pharmaceutical active ingredient. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.94521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nannan HUANG
- Heilongjiang University of Chinese Medicine, China
| | - Dan YU
- Heilongjiang University of Chinese Medicine, China
| | - Junkai WU
- Heilongjiang University of Chinese Medicine, China
| | - Xiaowei DU
- Heilongjiang University of Chinese Medicine, China
| |
Collapse
|
17
|
Li G, Li Q, Sun H, Li W. Novel diosgenin-1,4-quinone hybrids: Synthesis, antitumor evaluation, and mechanism studies. J Steroid Biochem Mol Biol 2021; 214:105993. [PMID: 34478831 DOI: 10.1016/j.jsbmb.2021.105993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/21/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022]
Abstract
In this research, a series of novel diosgenin-1,4-quinone hybrids were synthesized and evaluated in antiproliferative assays against three human cancer cell lines (MCF-7, HepG2, and HeLa). Structure-activity relationship analysis revealed that the activities depended on the type of 1,4-quinone moiety. Among them, hybrid 11a exhibited significant cytotoxicity against the HepG2 cell line with a IC50 of 1.76 μM, which was 35-fold more potent than diosgenin (IC50 = 43.96 μM). Western blot analysis showed that hybrid 11a upregulated Bax, Cl-caspase-3/9, and Cl-PARP levels, and downregulated Bcl-2 level of HepG2 cell line. Meanwhile, hybrid 11a could increase the generation of intracellular reactive oxygen species. The molecular docking study revealed an interaction between hybrid 11a and NQO1 enzyme. Our present studies suggested that hybrid 11a as a potential substrate for NQO1 enzyme could be a promising anticancer agent for further investigation.
Collapse
Affiliation(s)
- Guolong Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Qi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
18
|
Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:269-295. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants and microbes interact with each other via different chemical signaling pathways. At the risophere level, the microbes can secrete molecules, called elicitors, which act on their receptors located in plant cells. The so-called elicitor molecules as well as their actions differ according to the mcirobes and induce different bilogical responses in plants such as the synthesis of secondary metabolites. Microbial compounds induced phenotype changes in plants are known as elicitors and signaling pathways which integrate elicitor's signals in plants are called elicitation. In this review, the impact of microbial elicitors on the synthesis and the secretion of secondary metabolites in plants was highlighted. Moreover, biological properties of these bioactive compounds were also highlighted and discussed. Indeed, several bacteria, fungi, and viruses release elicitors which bind to plant cell receptors and mediate signaling pathways involved in secondary metabolites synthesis. Different phytochemical classes such as terpenoids, phenolic acids and flavonoids were synthesized and/or increased in medicinal plants via the action of microbial elicitors. Moreover, these compounds compounds exhibit numerous biological activities and can therefore be explored in drugs discovery.
Collapse
Affiliation(s)
- Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de, Institut Scientifique Rabat, Maroc; University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203 Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
19
|
Shahrajabian MH, Sun W, Marmitt DJ, Cheng Q. Diosgenin and galactomannans, natural products in the pharmaceutical sciences. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00288-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diosgenin is an isospirostane derivative, which is a steroidal sapogenin and the product of acids or enzymes hydrolysis process of dioscin and protodioscin. Galactomannans are heteropolysaccharides composed of D-mannose and D-galactose, which are major sources of locust bean, guar, tara and fenugreek.
Methods
Literature survey was accomplished using multiple databases including PubMed, Science Direct, ISI web of knowledge and Google Scholar.
Results
Four major sources of seed galactomannans are locust bean (Ceratonia siliqua), guar (Cyamopsis tetragonoloba), tara (Caesalpinia spinosa Kuntze), and fenugreek (T.foenum-graecum). Diosgenin has effect on immune system, lipid system, inflammatory and reproductive systems, caner, metabolic process, blood system, blood glucose and calcium regulation. The most important pharmacological benefits of galactomannan are antidiabetic, antioxidant, anticancer, anticholinesterase, antiviral activities, and appropriate for dengue virus and gastric diseases.
Conclusions
Considering the importance of diosgenin and galactomannans, the obtained findings suggest potential of diosgenin and galactomannans as natural products in pharmaceutical industries.
Collapse
|
20
|
Kosari M, Noureddini M, Khamechi SP, Najafi A, Ghaderi A, Sehat M, Banafshe HR. The effect of propolis plus Hyoscyamus niger L. methanolic extract on clinical symptoms in patients with acute respiratory syndrome suspected to COVID-19: A clinical trial. Phytother Res 2021; 35:4000-4006. [PMID: 33860587 PMCID: PMC8251320 DOI: 10.1002/ptr.7116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/27/2021] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
The outbreak of Coronavirus disease 2019 (COVID‐19) has caused a global health crisis. Nevertheless, no antiviral treatment has yet been proven effective for treating COVID‐19 and symptomatic supportive cares have been the most common treatment. Therefore, the present study was designed to evaluate the effects of propolis and Hyoscyamus niger L. extract in patients with COVID‐19. This randomized clinical trial was conducted on 50 cases referred to Akhavan and Sepehri Clinics, Kashan university of medical sciences, Iran. Subjects were divided into two groups (intervention and placebo). This syrup (containing 1.6 mg of methanolic extract along with 450 mg of propolis per 10 mL) was administered three times a day to each patient for 6 days. The clinical symptoms of COVID‐19 such as: dry cough, shortness of breath, sore throat, chest pain, fever, dizziness, headache, abdominal pain, and diarrhea were reduced with propolis plus Hyoscyamus niger L. extract than the placebo group. However, the administration of syrup was not effective in the control of nausea and vomiting. In conclusion, syrup containing propolis and Hyoscyamus niger L. extract had beneficial effects in ameliorating the signs and symptoms of COVID‐19 disease, in comparison with placebo groups.
Collapse
Affiliation(s)
- Morteza Kosari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Noureddini
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Peyman Khamechi
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Evidence Based Integrative Medicine Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Najafi
- Department of Internal Medicine, School of Medicine, Kashan University of Medical sciences, Kashan, Iran
| | - Amir Ghaderi
- Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran.,Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojtaba Sehat
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran.,Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Promising applications of steroid сonjugates for cancer research and treatment. Eur J Med Chem 2020; 210:113089. [PMID: 33321260 DOI: 10.1016/j.ejmech.2020.113089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
The conjugation of biologically active molecules is a powerful tool for drug discovery used to target a variety of multifunctional diseases including cancer. Conjugated drugs can provide combination therapies in a single multi-functional agent and, by doing so, be more specific and powerful than conventional classic treatments. Steroids are widely used for conjugation with other biological active molecules. This review refers to investigations of steroid conjugates as potential anticancer agents carried out mostly over the past decade. It consists of five parts in which the data concerning structure and anticancer activity of steroid conjugates with DNA alkylating agents, metallocomplexes, approved drugs, some biological active molecules, some natural compounds and related synthetic analogs are described.
Collapse
|
22
|
Gong N, Yu H, Wang Y, Xing C, Hu K, Du G, Lu Y. Crystal Structures, Stability, and Solubility Evaluation of a 2:1 Diosgenin-Piperazine Cocrystal. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:261-267. [PMID: 32632767 PMCID: PMC7367958 DOI: 10.1007/s13659-020-00256-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/17/2020] [Indexed: 05/03/2023]
Abstract
A cocrystal of diosgenin with piperazine in 2:1 stoichiometry was successfully synthesized. The solid form was prepared by liquid assisted grinding, slurry and crystallization methods. The cocrystal was characterized by powder X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, and structure determined by single crystal X-ray diffraction, the hydrogen bonds formed into fish bone structure along the [010] direction and all the molecules packed into 3D layer structure along a axis. After formation of cocrystal, the solubility of diosgenin was improved, and the solubility value in 0.2% SDS solution was approximately 1.5 times as large as that of the parent material.
Collapse
Affiliation(s)
- Ningbo Gong
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongmei Yu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Wang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cheng Xing
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kun Hu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
23
|
Sidoryk K, Michalak O, Kubiszewski M, Leś A, Cybulski M, Stolarczyk EU, Doubsky J. Synthesis of Thiol Derivatives of Biological Active Compounds for Nanotechnology Application. Molecules 2020; 25:molecules25153470. [PMID: 32751592 PMCID: PMC7435828 DOI: 10.3390/molecules25153470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
An efficient method of thiol group introduction to the structure of common natural products and synthetic active compounds with recognized biological efficacy such genistein (1), 5,11-dimethyl-5H-indolo[2,3-b]quinolin (2), capecitabine (3), diosgenin (4), tigogenin (5), flumethasone (6), fluticasone propionate (7), ursolic acid methyl ester (8), and β-sitosterol (9) was developed. In most cases, the desired compounds were obtained easily via two-step processes involving esterification reaction employing S-trityl protected thioacetic acid and the corresponding hydoxy-derivative, followed by removal of the trityl-protecting group to obtain the final compounds. The results of our preliminary experiments forced us to change the strategy in the case of genistein (1), and the derivatization of diosgenin (4), tigogenin (5), and capecitabine (3) resulted in obtaining different compounds from those designed. Nevertheless, in all above cases we were able to obtain thiol-containing derivatives of selected biological active compounds. Moreover, a modelling study for the two-step thiolation of genistein and some of its derivatives was accomplished using the density functional theory (B3LP). A hypothesis on a possible reason for the unsuccessful deprotection of the thiolated genistein is also presented based on the semiempirical (PM7) calculations. The developed methodology gives access to new sulphur derivatives, which might find a potential therapeutic benefit.
Collapse
Affiliation(s)
- Katarzyna Sidoryk
- Department of Biomedical Technology, Cosmetic Chemicals and Electrochemistry, Team of Chemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland; (O.M.); (M.C.)
- Correspondence:
| | - Olga Michalak
- Department of Biomedical Technology, Cosmetic Chemicals and Electrochemistry, Team of Chemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland; (O.M.); (M.C.)
| | - Marek Kubiszewski
- Analytical Department, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland; (M.K.); (E.U.S.)
| | - Andrzej Leś
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland;
| | - Marcin Cybulski
- Department of Biomedical Technology, Cosmetic Chemicals and Electrochemistry, Team of Chemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland; (O.M.); (M.C.)
| | - Elżbieta U. Stolarczyk
- Analytical Department, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland; (M.K.); (E.U.S.)
| | - Jan Doubsky
- Zentiva k.s., U Kabelovny 130, 102 37 Prague 10, Czech Republic;
| |
Collapse
|