1
|
Panek A, Wójcik P, Świzdor A, Szaleniec M, Janeczko T. Biotransformation of Δ 1-Progesterone Using Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products' Bioactivity. Int J Mol Sci 2023; 25:508. [PMID: 38203679 PMCID: PMC10779271 DOI: 10.3390/ijms25010508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
This research aimed at obtaining new derivatives of pregn-1,4-diene-3,20-dione (Δ1-progesterone) (2) through microbiological transformation. For the role of catalysts, we used six strains of entomopathogenic filamentous fungi (Beauveria bassiana KCh J1.5, Beauveria caledonica KCh J3.3, Isaria fumosorosea KCh J2, Isaria farinosa KCh KW1.1, Isaria tenuipes MU35, and Metarhizium robertsii MU4). The substrate (2) was obtained by carrying out an enzymatic 1,2-dehydrogenation on an increased scale (3.5 g/L) using a recombinant cholest-4-en-3-one Δ1-dehydrogenase (AcmB) from Sterolibacterium denitrificans. All selected strains were characterized by the high biotransformation capacity for the used substrate. As a result of the biotransformation, six steroid derivatives were obtained: 11α-hydroxypregn-1,4-diene-3,20-dione (3), 6β,11α-dihydroxypregn-1,4-diene-3,20-dione (4), 6β-hydroxypregn-1,4-diene-3,11,20-trione (5), 6β,17α-dihydroxypregn-1,4-diene-3,20-dione (6), 6β,17β-dihydroxyandrost-1,4-diene-3-one (7), and 12β,17α-dihydroxypregn-1,4-diene-3,20-dione (8). The results show evident variability of the biotransformation process between strains of the tested biocatalysts from different species described as entomopathogenic filamentous fungi. The obtained products were tested in silico using cheminformatics tools for their pharmacokinetic and pharmacodynamic properties, proving their potentially high biological activities. This study showed that the obtained compounds may have applications as effective inhibitors of testosterone 17β-dehydrogenase. Most of the obtained products should, also with a high probability, find potential uses as androgen antagonists, a prostate as well as menopausal disorders treatment. They should also demonstrate immunosuppressive, erythropoiesis-stimulating, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Anna Panek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.W.); (M.S.)
| | - Alina Świzdor
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.W.); (M.S.)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
2
|
Fufaeva SR, Dovbnya DV, Ivashina TV, Shutov AA, Donova MV. Reconstruction of the Steroid 1(2)-Dehydrogenation System from Nocardioides simplex VKM Ac-2033D in Mycolicibacterium Hosts. Microorganisms 2023; 11:2720. [PMID: 38004731 PMCID: PMC10672877 DOI: 10.3390/microorganisms11112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Microbial 1(2)-dehydrogenation of 3-ketosteroids is an important basis for the production of many steroid pharmaceuticals and synthons. When using the wild-type strains for whole cell catalysis, the undesirable reduction of the 20-carbonyl group, or 1(2)-hydrogenation, was observed. In this work, the recombinant strains of Mycolicibacterium neoaurum and Mycolicibacterium smegmatis were constructed with blocked endogenous activity of 3-ketosteroid-9α-hydroxylase, 3-ketosteroid-1(2)-dehydrogenase (3-KSD), and expressing 3-KSD encoded by the gene KR76_27125 (kstD2NS) from Nocardioides simplex VKM Ac-2033D. The in vivo activity of the obtained recombinant strains against phytosterol, 6α-methyl-hydrocortisone, and hydrocortisone was studied. When using M. smegmatis as the host strain, the 1(2)-dehydrogenation activity of the constructed recombinant cells towards hydrocortisone was noticeably higher compared to those on the platform of M. neoaurum. A comparison of the strengths of inducible acetamidase and constitutive hsp60 promoters in M. smegmatis provided comparable results. Hydrocortisone biotransformation by M. smegmatis BD/pMhsp_k expressing kstD2NS resulted in 95.4% prednisolone yield, and the selectivity preferred that for N. simplex. Mycolicibacteria showed increased hydrocortisone degradation at 35 °C compared to 30 °C. The presence of endogenous steroid catabolism in Mycolicibacterium hosts does not seem to confer an advantage for the functioning of KstD2NS. The results allow for the evaluation of the prospects for the development of simple technological methods for the selective 1(2)-dehydrogenation of 3-ketosteroids by growing bacterial cells.
Collapse
Affiliation(s)
| | | | | | | | - Marina V. Donova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (S.R.F.); (D.V.D.); (T.V.I.); (A.A.S.)
| |
Collapse
|
3
|
Wójcik P, Glanowski M, Mrugała B, Procner M, Zastawny O, Flejszar M, Kurpiewska K, Niedziałkowska E, Minor W, Oszajca M, Bojarski AJ, Wojtkiewicz AM, Szaleniec M. Structure, Mutagenesis, and QM:MM Modeling of 3-Ketosteroid Δ 1-Dehydrogenase from Sterolibacterium denitrificans─The Role of a New Putative Membrane-Associated Domain and Proton-Relay System in Catalysis. Biochemistry 2023; 62:808-823. [PMID: 36625854 PMCID: PMC9960185 DOI: 10.1021/acs.biochem.2c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenases (KstD) are important microbial flavin enzymes that initiate the metabolism of steroid ring A and find application in the synthesis of steroid drugs. We present a structure of the KstD from Sterolibacterium denitrificans (AcmB), which contains a previously uncharacterized putative membrane-associated domain and extended proton-relay system. The experimental and theoretical studies show that the steroid Δ1-dehydrogenation proceeds according to the Ping-Pong bi-bi kinetics and a two-step base-assisted elimination (E2cB) mechanism. The mechanism is validated by evaluating the experimental and theoretical kinetic isotope effect for deuterium-substituted substrates. The role of the active-site residues is quantitatively assessed by point mutations, experimental activity assays, and QM/MM MD modeling of the reductive half-reaction (RHR). The pre-steady-state kinetics also reveals that the low pH (6.5) optimum of AcmB is dictated by the oxidative half-reaction (OHR), while the RHR exhibits a slight optimum at the pH usual for the KstD family of 8.5. The modeling confirms the origin of the enantioselectivity of C2-H activation and substrate specificity for Δ4-3-ketosteroids. Finally, the cholest-4-en-3-one turns out to be the best substrate of AcmB in terms of ΔG of binding and predicted rate of dehydrogenation.
Collapse
Affiliation(s)
- Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Beata Mrugała
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Magdalena Procner
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
- Jerzy Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343Kraków, Poland
| | - Olga Zastawny
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Monika Flejszar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959Rzeszów, Poland
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Ewa Niedziałkowska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, Virginia22908, United States
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, Virginia22908, United States
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Andrzej J Bojarski
- Jerzy Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343Kraków, Poland
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| |
Collapse
|
4
|
Wojtkiewicz AM, Glanowski M, Waligórski P, Janeczko T, Szaleniec M. 1,2-Hydrogenation and Transhydrogenation Catalyzed by 3-Ketosteroid Δ 1-Dehydrogenase from Sterolibacterium denitrificans-Kinetics, Isotope Labelling and QM:MM Modelling Studies. Int J Mol Sci 2022; 23:14660. [PMID: 36498984 PMCID: PMC9736390 DOI: 10.3390/ijms232314660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Bacteria and fungi that are able to metabolize steroids express 3-ketosteroid-Δ1-dehydrogenases (KstDs). KstDs such as AcmB form Sterolibacterium denitrificans Chol-1 catalyze the enantioselective 1α,2β-dehydrogenation of steroids to their desaturated analogues, e.g., the formation of 1,4-androstadiene-3,17-dione (ADD) from 4-androsten-3,17-dione (AD). The reaction catalyzed by KstD can be reversed if the appropriate electron donor, such as benzyl viologen radical cation, is present. Furthermore, KstDs can also catalyze transhydrogenation, which is the transfer of H atoms between 3-ketosteroids and 1-dehydrosteroids. In this paper, we showed that AcmB exhibits lower pH optima for hydrogenation and dehydrogenation by 3.5-4 pH units than those observed for KstD from Nocardia corallina. We confirmed the enantiospecificity of 1α,2β-hydrogenation and 1α,2β-transhydrogenation catalyzed by AcmB and showed that, under acidic pH conditions, deuterons are introduced not only at 2β but also at the 1α position. We observed a higher degree of H/D exchange at Y363, which activates the C2-H bond, compared to that at FAD, which is responsible for redox at the C1 position. Furthermore, for the first time, we observed the introduction of the third deuteron into the steroid core. This effect was explained through a combination of LC-MS experiments and QM:MM modelling, and we attribute it to a decrease in the enantioselectivity of C2-H activation upon the deuteration of the 2β position. The increase in the activation barrier resulting from isotopic substitution increases the chance of the formation of d3-substituted 3-ketosteroids. Finally, we demonstrate a method for the synthesis of 3-ketosteroids chirally deuterated at 1α,2β positions, obtaining 1α,2β-d2-4-androsten-3,17-dione with a 51% yield (8.61 mg).
Collapse
Affiliation(s)
- Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Piotr Waligórski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
5
|
Wang Y, Zhang R, Feng J, Wu Q, Zhu D, Ma Y. A New 3-Ketosteroid-Δ1–Dehydrogenase with High Activity and Broad Substrate Scope for Efficient Transformation of Hydrocortisone at High Substrate Concentration. Microorganisms 2022; 10:microorganisms10030508. [PMID: 35336084 PMCID: PMC8950399 DOI: 10.3390/microorganisms10030508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
3-Ketosteroid-Δ1-dehydrogenases (KstDs [EC 1.3.99.4]) catalyze the Δ1-dehydrogenation of steroids and are a class of important enzymes for steroid biotransformations. In this study, nine putative kstD genes from different origins were selected and overexpressed in Escherichia coli BL21(DE3). These recombinant enzymes catalyzed the Δ1-desaturation of a variety of steroidal compounds. Among them, the KstD from Propionibacterium sp. (PrKstD) displayed the highest specific activity and broad substrate spectrum. The detailed catalytic characterization of PrKstD showed that it can convert a wide range of 3-ketosteroid compounds with diverse substituents, ranging from substituents at the C9, C10, C11 and C17 position through substrates without C4-C5 double bond, to previously inactive C6-substituted ones such as 11β,17-dihydroxy-6α-methyl-pregn-4-ene-3,20-dione. Reaction conditions were optimized for the biotransformation of hydrocortisone in terms of pH, temperature, co-solvent and electron acceptor. By using 50 g/L wet resting E. coli cells harboring PrKstD enzyme, the conversion of hydrocortisone was about 92.5% within 6 h at the substrate concentration of 80 g/L, much higher than the previously reported results, demonstrating the application potential of this new KstD.
Collapse
|
6
|
Wójcik P, Glanowski M, Wojtkiewicz AM, Rohman A, Szaleniec M. Universal capability of 3-ketosteroid Δ 1-dehydrogenases to catalyze Δ 1-dehydrogenation of C17-substituted steroids. Microb Cell Fact 2021; 20:119. [PMID: 34162386 PMCID: PMC8220720 DOI: 10.1186/s12934-021-01611-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 3-Ketosteroid Δ1-dehydrogenases (KSTDs) are the enzymes involved in microbial cholesterol degradation and modification of steroids. They catalyze dehydrogenation between C1 and C2 atoms in ring A of the polycyclic structure of 3-ketosteroids. KSTDs substrate spectrum is broad, even though most of them prefer steroids with small substituents at the C17 atom. The investigation of the KSTD's substrate specificity is hindered by the poor solubility of the hydrophobic steroids in aqueous solutions. In this paper, we used 2-hydroxpropyl-β-cyclodextrin (HBC) as a solubilizing agent in a study of the KSTDs steady-state kinetics and demonstrated that substrate bioavailability has a pivotal impact on enzyme specificity. RESULTS Molecular dynamics simulations on KSTD1 from Rhodococcus erythropolis indicated no difference in ΔGbind between the native substrate, androst-4-en-3,17-dione (AD; - 8.02 kcal/mol), and more complex steroids such as cholest-4-en-3-one (- 8.40 kcal/mol) or diosgenone (- 6.17 kcal/mol). No structural obstacle for binding of the extended substrates was also observed. Following this observation, our kinetic studies conducted in the presence of HBC confirmed KSTD1 activity towards both types of steroids. We have compared the substrate specificity of KSTD1 to the other enzyme known for its activity with cholest-4-en-3-one, KSTD from Sterolibacterium denitrificans (AcmB). The addition of solubilizing agent caused AcmB to exhibit a higher affinity to cholest-4-en-3-one (Ping-Pong bi bi KmA = 23.7 μM) than to AD (KmA = 529.2 μM), a supposedly native substrate of the enzyme. Moreover, we have isolated AcmB isoenzyme (AcmB2) and showed that conversion of AD and cholest-4-en-3-one proceeds at a similar rate. We demonstrated also that the apparent specificity constant of AcmB for cholest-4-en-3-one (kcat/KmA = 9.25∙106 M-1 s-1) is almost 20 times higher than measured for KSTD1 (kcat/KmA = 4.71∙105 M-1 s-1). CONCLUSIONS We confirmed the existence of AcmB preference for a substrate with an undegraded isooctyl chain. However, we showed that KSTD1 which was reported to be inactive with such substrates can catalyze the reaction if the solubility problem is addressed.
Collapse
Affiliation(s)
- Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
- Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya, 60115, Indonesia
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland.
| |
Collapse
|
7
|
Glanowski M, Wójcik P, Procner M, Borowski T, Lupa D, Mielczarek P, Oszajca M, Świderek K, Moliner V, Bojarski AJ, Szaleniec M. Enzymatic Δ 1-Dehydrogenation of 3-Ketosteroids—Reconciliation of Kinetic Isotope Effects with the Reaction Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Magdalena Procner
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Dawid Lupa
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Przemysław Mielczarek
- Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Katarzyna Świderek
- Department of Physical and Analytical Chemistry, Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- Department of Physical and Analytical Chemistry, Universitat Jaume I, 12071 Castellón, Spain
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
8
|
Rohman A, Dijkstra BW. Application of microbial 3-ketosteroid Δ 1-dehydrogenases in biotechnology. Biotechnol Adv 2021; 49:107751. [PMID: 33823268 DOI: 10.1016/j.biotechadv.2021.107751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
3-Ketosteroid Δ1-dehydrogenase catalyzes the 1(2)-dehydrogenation of 3-ketosteroid substrates using flavin adenine dinucleotide as a cofactor. The enzyme plays a crucial role in microbial steroid degradation, both under aerobic and anaerobic conditions, by initiating the opening of the steroid nucleus. Indeed, many microorganisms are known to possess one or more 3-ketosteroid Δ1-dehydrogenases. In the pharmaceutical industry, 3-ketosteroid Δ1-dehydrogenase activity is exploited to produce Δ1-3-ketosteroids, a class of steroids that display various biological activities. Many of them are used as active pharmaceutical ingredients in drug products, or as key precursors to produce pharmaceutically important steroids. Since 3-ketosteroid Δ1-dehydrogenase activity requires electron acceptors, among other considerations, Δ1-3-ketosteroid production has been industrially implemented using whole-cell fermentation with growing or metabolically active resting cells, in which the electron acceptors are available, rather than using the isolated enzyme. In this review we discuss biotechnological applications of microbial 3-ketosteroid Δ1-dehydrogenases, covering commonly used steroid-1(2)-dehydrogenating microorganisms, the bioprocess for preparing Δ1-3-ketosteroids, genetic engineering of 3-ketosteroid Δ1-dehydrogenases and related genes for constructing new, productive industrial strains, and microbial fermentation strategies for enhancing the product yield. Furthermore, we also highlight the recent development in the use of isolated 3-ketosteroid Δ1-dehydrogenases combined with a FAD cofactor regeneration system. Finally, in a somewhat different context, we summarize the role of 3-ketosteroid Δ1-dehydrogenase in cholesterol degradation by Mycobacterium tuberculosis and other mycobacteria. Because the enzyme is essential for the pathogenicity of these organisms, it may be a potential target for drug development to combat mycobacterial infections.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
9
|
Mao S, Chen Y, Sun J, Wei C, Song Z, Lu F, Qin HM. Enhancing the sustainability of KsdD as a biocatalyst for steroid transformation by immobilization on epoxy support. Enzyme Microb Technol 2021; 146:109777. [PMID: 33812565 DOI: 10.1016/j.enzmictec.2021.109777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 11/18/2022]
Abstract
The Δ1-dehydrogenation of 3-ketosteroid substrates is a crucial reaction in the production of steroids. Although 3-ketosteroid Δ1-dehydrogenase (KsdD) catalyzes this reaction with high efficiency and selectivity, the low stability and high cost of the purified enzyme catalyst have limited its industrial application. In this study, an epoxy support was used to evaluate the covalent immobilization of KsdD from Pimelobacter simplex, and the best androsta-1,4-diene-317-dione (ADD) production was achieved after optimized immobilization of KsdD enzyme in 1.5 M NaH2PO4- Na2HPO4 buffer (pH 6.5) for 12 h at 25 °C. The immobilized KsdD exhibited higher tolerance toward 20 % methanol. The dehydrogenation reaction reached a conversion efficiency of up to 90.0 % in 2 h when using 0.6 mg/mL of 4-androstene-317-dione (AD). The W299A and W299 G mutants of KsdD were also immobilized, and both showed the better catalytic performance with higher kcat/KM values compared with the wild type (WT). The immobilized W299A, W299 G and WT KsdD respectively maintained 70.5, 65.7 and 38.7 % of their initial activity at the end of 15 reaction cycles. Furthermore, the W299A retained 66.3 % of the initial activity after 30 days of incubation at 4 °C, and was more stable than free KsdD, Thus, the immobilized W299A is a promising biocatalyst for steroid dehydrogenation. In this study, we investigated the application of immobilized enzymes for the dehydrogenation of steroids, which will be of great importance for improving the development of green technology and sustainable use of biocatalysts in the steroid manufacturing industry.
Collapse
Affiliation(s)
- Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Ying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Jing Sun
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Zhan Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China.
| |
Collapse
|
10
|
Application of Immobilized Cholest-4-en-3-one Δ1-Dehydrogenase from Sterolibacterium Denitrificans for Dehydrogenation of Steroids. Catalysts 2020. [DOI: 10.3390/catal10121460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cholest-4-en-3-one Δ1-dehydrogenase (AcmB) from Sterolibacterium denitrificans was successfully immobilized on 3-aminopropyltrimethoysilane functionalized mesoporous cellular foam (MCF) and Santa Barbara Amorphous (SBA-15) silica supports using adsorption or covalently with glutaraldehyde or divinyl sulfone linkers. The best catalyst, AcmB on MCF linked covalently with glutaraldehyde, retained the specific activity of the homogenous enzyme while exhibiting a substantial increase of the operational stability. The immobilized enzyme was used continuously in the fed-batch reactor for 27 days, catalyzing 1,2-dehydrogenation of androst-4-en-3-one to androst-1,4-dien-3-one with a final yield of 29.9 mM (8.56 g/L) and 99% conversion. The possibility of reuse of the immobilized catalyst was also demonstrated and resulted in a doubling of the product amount compared to that in the reference homogenous reactor. Finally, it was shown that molecular oxygen from the air can efficiently be used as an electron acceptor either reoxidizing directly the enzyme or the reduced 2,4-dichlorophenolindophenol (DCPIPH2).
Collapse
|