1
|
Coimbra JLP, Campolina-Silva G, Lair DF, Guimarães-Ervilha LO, Souza ACF, Oliveira CA, Costa GMJ, Machado-Neves M. Subchronic intake of arsenic at environmentally relevant concentrations causes histological lesions and oxidative stress in the prostate of adult Wistar rats. Reprod Toxicol 2024; 128:108647. [PMID: 38909693 DOI: 10.1016/j.reprotox.2024.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
The prostate gland is one of the main sites of hyperplasia and cancer in elderly men. Numerous factors have been demonstrated to disrupt prostate homeostasis, including exposure to environmental pollutants. Arsenic is a metalloid found ubiquitously in soil, air, and water, which favors human poisoning through the involuntary intake of contaminated drinking water and food and has harmful effects by increasing the oxidative stress response. This study aimed to investigate the effects of prolonged exposure to arsenic at environmentally relevant concentrations on the prostate biology of adult Wistar rats. Thirty 80-day-old male rats were divided into three experimental groups. Rats from the control group received filtered water, whereas animals from the arsenic groups ingested 1 mg L-1 and 10 mg L-1 of arsenic, in the form of sodium arsenite, daily. The arsenic solutions were provided ad libitum in the drinking water for eight weeks. Our results showed that 1 mg L-1 and 10 mg L-1 of arsenic made the prostate susceptible to evolving benign and premalignant histopathological changes. While the ingestion of 1 mg L-1 of arsenic reduced SOD activity only, 10 mg L-1 diminished SOD and CAT activity in the prostate tissue, culminating in high MDA production. These doses, however, did not affect the intraprostatic levels of DHT and estradiol. In conclusion, exposure to arsenic at environmentally relevant concentrations through drinking water induces histological and oxidative stress-related changes in the prostate of adult rats, strengthening the between arsenic exposure and prostate disorders.
Collapse
Affiliation(s)
- John L P Coimbra
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of General Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Gabriel Campolina-Silva
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Québec, QC, Canada; CHU de Quebec Research Center, Université Laval, Québec, QC, Canada
| | - Daniel F Lair
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana C F Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleida A Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme M J Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
2
|
Fendler A, Stephan C, Ralla B, Jung K. Discordant Health Implications and Molecular Mechanisms of Vitamin D in Clinical and Preclinical Studies of Prostate Cancer: A Critical Appraisal of the Literature Data. Int J Mol Sci 2024; 25:5286. [PMID: 38791324 PMCID: PMC11120741 DOI: 10.3390/ijms25105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Clinical and preclinical studies have provided conflicting data on the postulated beneficial effects of vitamin D in patients with prostate cancer. In this opinion piece, we discuss reasons for discrepancies between preclinical and clinical vitamin D studies. Different criteria have been used as evidence for the key roles of vitamin D. Clinical studies report integrative cancer outcome criteria such as incidence and mortality in relation to vitamin D status over time. In contrast, preclinical vitamin D studies report molecular and cellular changes resulting from treatment with the biologically active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (calcitriol) in tissues. However, these reported changes in preclinical in vitro studies are often the result of treatment with biologically irrelevant high calcitriol concentrations. In typical experiments, the used calcitriol concentrations exceed the calcitriol concentrations in normal and malignant prostate tissue by 100 to 1000 times. This raises reasonable concerns regarding the postulated biological effects and mechanisms of these preclinical vitamin D approaches in relation to clinical relevance. This is not restricted to prostate cancer, as detailed data regarding the tissue-specific concentrations of vitamin D metabolites are currently lacking. The application of unnaturally high concentrations of calcitriol in preclinical studies appears to be a major reason why the results of preclinical in vitro studies hardly match up with outcomes of vitamin D-related clinical studies. Regarding future studies addressing these concerns, we suggest establishing reference ranges of tissue-specific vitamin D metabolites within various cancer entities, carrying out model studies on human cancer cells and patient-derived organoids with biologically relevant calcitriol concentrations, and lastly improving the design of vitamin D clinical trials where results from preclinical studies guide the protocols and endpoints within these trials.
Collapse
Affiliation(s)
- Annika Fendler
- Department of Urology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (A.F.); (B.R.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
| | - Carsten Stephan
- Department of Urology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (A.F.); (B.R.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
| | - Bernhard Ralla
- Department of Urology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (A.F.); (B.R.)
| | - Klaus Jung
- Department of Urology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (A.F.); (B.R.)
| |
Collapse
|
3
|
Talvas J, Norgieux C, Burban E, Giraudet C, Patrac V, Salles J, Rigaudière JP, Capel F, le Bacquer O, Ouchchane L, Richard R, Walrand S. Vitamin D deficiency contributes to overtraining syndrome in excessive trained C57BL/6 mice. Scand J Med Sci Sports 2023; 33:2149-2165. [PMID: 37452567 DOI: 10.1111/sms.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Overtraining syndrome is a condition resulting from excessive training load associated with inadequate recovery and poor sleep quality, leading to performance decrements and fatigue. Here we hypothesized that vitamin D (VitD) deficiency is a lead factor in the development of the overtraining syndrome. To test this hypothesis, two groups of 60-week-old C57BL/6 mice followed a 16-week excessive eccentric-based overtraining by excessive downhill running with or without dietary VitD depletion (EX and EX-D- groups). Two control groups were trained by uphill running at the same load with or without VitD depletion (CX and CX-D- groups). Handgrip strength decreased throughout the protocol for all groups but the decrease was sharper in EX-D- group (VitD × training, p = 0.0427). At the end of the protocol, the mass of Triceps brachii muscle, which is heavily stressed by eccentric contractions, was reduced in eccentric-trained groups (training effect, p = 0.0107). This atrophy was associated with a lower concentration of the anabolic myokine IL-15 (training effect, p = 0.0314) and a tendency to a higher expression of the atrogene cathepsin-L (training effect, p = 0.0628). VitD depletion led to a 50% decrease of the fractional protein synthesis rate in this muscle (VitD effect, p = 0.0004) as well as decreased FGF21 (VitD effect, p = 0.0351) and increased osteocrin (VitD effect, p = 0.038) concentrations that would lead to metabolic defects. Moreover, the proportion of anti-inflammatory Th2 lymphocytes was significantly decreased by the combination of eccentric training with VitD depletion (vitD × training, p = 0.0249) suggesting a systemic inflammation. Finally, exploratory behavior time of mice was decreased by VitD depletion (VitD effect, p = 0.0146) suggesting a cognitive dysfunction. Our results suggest that VitD deficiency exacerbates the effects of overtraining.
Collapse
Affiliation(s)
- J Talvas
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
| | - C Norgieux
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
| | - E Burban
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
| | - C Giraudet
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
| | - V Patrac
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
| | - J Salles
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
| | - J-P Rigaudière
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
| | - F Capel
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
| | - O le Bacquer
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
| | - L Ouchchane
- CHU Clermont-Ferrand, Biostatistics and Medical Computing Unit, Clermont-Ferrand, France
| | - R Richard
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
| | - S Walrand
- Human Nutrition Unit, UMR 1019 INRAE/UCA, CRNH-Auvergne, Clermont-Ferrand, France
- Department of Clinical Nutrition, Clermont-Ferrand University Hospital Center, Clermont-Ferrand, France
| |
Collapse
|