1
|
Hanifi S, Dekamin MG, Eslami M. Magnetic BiFeO 3 nanoparticles: a robust and efficient nanocatalyst for the green one-pot three-component synthesis of highly substituted 3,4-dihydropyrimidine-2(1H)-one/thione derivatives. Sci Rep 2024; 14:22201. [PMID: 39333595 PMCID: PMC11436662 DOI: 10.1038/s41598-024-72407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
In this research, magnetic bismuth ferrite nanoparticles (BFO MNPs) were prepared through a convenient method and characterized. The structure and morphological characteristics of the prepared nanomaterial were confirmed through analyses using Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, powder X-ray diffraction (XRD), N2 adsorption-desorption isotherms and vibrating sample magnetometry (VSM) techniques. The obtained magnetic BFO nanomaterial was investigated, as a heterogeneous Lewis acid, in three component synthesis of 3,4-dihydropyrimidin-2 (1H)-ones/thiones (DHPMs/DHPMTs). It was found that the BFO MNPs exhibit remarkable efficacy in the synthesis of various DHPMs as well as their thione analogues. It is noteworthy that this research features low catalyst loading, good to excellent yields, environmentally friendly conditions, short reaction time, simple and straightforward work-up, and the reusability of the catalyst, distinguishing it from other recently reported protocols. Additionally, the structure of the DHPMs/DHPMTs was confirmed through 1H NMR, FTIR, and melting point analyses. This environmentally-benign methodology demonstrates the potential of the catalyst for more sustainable and efficient practices in green chemistry.
Collapse
Affiliation(s)
- Safa Hanifi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Eslami
- Department of Chemistry, Behbahan Khatam Alanbia University of Technology, Behbahan, 63616-63973, Iran
| |
Collapse
|
2
|
Pumice as a Novel Natural Heterogeneous Catalyst for the Designation of 3,4-Dihydropyrimidine-2-(1 H)-ones/thiones under Solvent-Free Conditions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186044. [PMID: 36144781 PMCID: PMC9503633 DOI: 10.3390/molecules27186044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
In this study, pumice is used as a novel natural heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidine-2-(1H)-ones/thiones via the one-pot multi-component condensation of aromatic aldehydes, urea/thiourea, and ethyl acetoacetate or acetylacetone in excellent yields (up to 98%). The physical and chemical properties of the catalyst were studied. Their geochemical analysis revealed a basaltic composition. Furthermore, X-ray diffraction showed that it is composed of amorphous materials with clinoptilolite and heulandites zeolite minerals in its pores. Moreover, pumice has a porosity range from 78.2–83.9% (by volume) and is characterized by a mesoporous structure (pore size range from 21.1 to 64.5 nm). Additionally, it has a pore volume between 0.00531 and 0.00781 m2/g and a surface area between 0.053 and 1.47 m2/g. The latter facilitated the reaction to proceed in a short time frame as well as in excellent yields. It is worth noting that our strategy tolerates the use of readily available, cheap, non-toxic, and thermally stable pumice catalyst. The reactions proceeded smoothly under solvent-free conditions, and products were isolated without tedious workup procedures in good yields and high purity. Indeed, pumice can be reused for at least five reuse cycles without affecting its activity.
Collapse
|
3
|
Shekh A, Mombeni Goodajdar B, Asghariganjeh MR. Three-Component Solvent-Free Synthesis of 3, 4-Dihydropyrimidones and Thiones by Iron-Phosphonate Nanoparticle. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1948875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Asma Shekh
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | | | | |
Collapse
|
4
|
Sonawane SA, Pore DM. L-Proline nitrate: An Efficient Amino Acid Ionic Liquid Catalyzed Synthesis of 5-aryl-[1, 2, 4]-triazolidine-3-thiones. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220128141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
An environmentally benign, simple, rapid synthesis of 1,2,4-triazolidine-3-thiones at room temperature is reported using amino acid-derived Brønsted acidic ionic liquid L-proline nitrate [Pro+NO3-] from aldehyde and thiosemicarbazide in an aqueous medium. A cost-effective and energy-efficient catalyst with the reusability of up to five cycles without significant loss in the catalytic activity makes this protocol superior. A faster reaction, easy work-up with excellent yields are the added advantages of this protocol.
Collapse
Affiliation(s)
- Suraj A. Sonawane
- Department of Chemistry, Shivaji University, Kolhapur, Maharashtra (INDIA)
| | | |
Collapse
|
5
|
Vinoth N, Lalitha A. Synthesis of new
1
H
‐spiro[acridine‐9,3′‐indoline]‐1,2′(
2
H
,
10
H
)‐dione derivatives using aqueous ethanol as a reaction medium. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Rode N, Tantray A, Shelar A, Patil R, Terdale S. Amino acid ionic liquid-catalyzed synthesis, anti-Leishmania activity, molecular docking, molecular dynamic simulation, and ADME study of 3,4-dihydropyrimidin-2(1H)-(thio)ones. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2010757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nitin Rode
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Aafaq Tantray
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Santosh Terdale
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
7
|
Patil PG, Satkar Y, More DH. L-Proline based ionic liquid: A highly efficient and homogenous catalyst for synthesis of 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione and pyrano[2,3-d] pyrimidine diones under ultrasonic irradiation. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1811987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Paresh G. Patil
- Postgraduate and, Research Recognized Department of Chemistry, S.P.D.M. College Shirpur, Shirpur, India
| | - Yuvraj Satkar
- Postgraduate and, Research Recognized Department of Chemistry, S.P.D.M. College Shirpur, Shirpur, India
| | - Dhananjay H. More
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India
| |
Collapse
|
8
|
Taheri Hatkehlouei SF, Mirza B, Soleimani-Amiri S. Solvent-Free One-Pot Synthesis of Diverse Dihydropyrimidinones/Tetrahydropyrimidinones Using Biginelli Reaction Catalyzed by Fe3O4@C@OSO3H. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1781203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Behrooz Mirza
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
9
|
Chopda LV, Dave PN. Recent Advances in Homogeneous and Heterogeneous Catalyst in Biginelli Reaction from 2015‐19: A Concise Review. ChemistrySelect 2020. [DOI: 10.1002/slct.202000742] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lakha V. Chopda
- Department of Chemistry Krantiguru Shyamji Krishna Verma Kachchh University Bhuj,Gujarat India, Vallabh Vidyanagar, India
| | - Pragnesh N. Dave
- Department of Chemistry Krantiguru Shyamji Krishna Verma Kachchh University Bhuj,Gujarat India, Vallabh Vidyanagar, India
- Department Of Chemistry Sardar Patel University Vallabh Vidyanagar India
| |
Collapse
|
10
|
Moradi F, Abdoli-Senejani M, Ramezani M. Isoniazid-functionalized Fe3O4 Magnetic Nanoparticles as a Green and Efficient Catalyst for the Synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and their Sulfur Derivatives. Curr Org Synth 2020; 17:46-54. [PMID: 32103717 DOI: 10.2174/1570179416666191118110316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/05/2019] [Accepted: 11/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND A wide variety of dihydropyrimidins (DHPMs) exhibit pharmacological and biological activities. Herein, an efficient one-pot synthesis of some 3, 4-dihydropyrimidin-2(1H)-one derivatives is reported using Fe3O4 @SiO2-Pr-INH. OBJECTIVE Recently, several catalysts have been used to improve the Biginellis-reaction. However, some of these catalysts have imperfections. Herein, a convenient method for the synthesis of 3, 4-dihydropyrimidin- 2(1H)-ones and their sulfur derivatives using Fe3O4 @SiO2-Pr-INH is reported. MATERIALS AND METHODS Firstly, the catalyst was synthesized through a simple four-step method. The Fe3O4 MNPs were synthesized using the chemical co-precipitation method, coated with a layer of silica using TEOS, and then functionalized with CPTMS. Subsequently, a nucleophilic substitution of Cl by isoniazid resulted in the formation of the magnetic Fe3O4@SiO2-Pr-INH. After the preparation and characterization of Fe3O4@SiO2-Pr-INH, its catalytic activity was studied in the synthesis of 3, 4-dihydropyrimidin-2(1H)-one derivatives. Following the optimization of the reaction conditions, several 3, 4-dihydropyrimidin-2(1H)-one derivatives were synthesized by the reaction of ethyl acetoacetate or acetylacetone, thiourea or urea and aromatic aldehydes at 80 °C under solvent-free conditions. RESULTS Isoniazid-functionalized Fe3O4 magnetic nanoparticles (Fe3O4@SiO2-Pr-INH) were prepared using Fe3O4 with silica layer and their surface was modified with isoniazid. They were characterized successfully by infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and were used for the synthesis of some 3, 4-dihydropyrimidin-2(1H)-one derivatives as catalysts. Aromatic aldehydes with electron-donating or electron-withdrawing groups afforded 3, 4- dihydropyrimidin-2(1H)-ones and their sulfur derivatives in good to excellent yields in short reaction times. CONCLUSION Isoniazid-functionalized Fe3O4 magnetic nanoparticles (Fe3O4@SiO2-Pr-INH) were used as an efficient catalyst for Biginelli-type synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and 3, 4-dihydropyrimidin- 2(1H)-thiones in good to excellent yields and short reaction times. It is noteworthy that this method has several advantages such as simple experimental procedures, the absence of solvent, environmentally benign process, stability and reusability of the catalyst.
Collapse
Affiliation(s)
- Farzaneh Moradi
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak, Iran
| | - Masumeh Abdoli-Senejani
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak, Iran
| | - Majid Ramezani
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak, Iran
| |
Collapse
|
11
|
Bahekar SP, Agrawal NR, Sarode PB, Agrawal AR, Chandak HS. L-
Proline Nitrate: An Amino Acid Ionic Liquid for Green and Efficient Conjugate Addition of Thiols to Sulfonamide Chalcones. ChemistrySelect 2017. [DOI: 10.1002/slct.201701891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sandeep P. Bahekar
- Department of Chemistry; G. S. Science, Arts and Commerce College; Khamgaon 444303, Maharashtra India
| | - Nikita R. Agrawal
- Department of Chemistry; G. S. Science, Arts and Commerce College; Khamgaon 444303, Maharashtra India
| | - Prashant B. Sarode
- Department of Chemistry; G. S. Science, Arts and Commerce College; Khamgaon 444303, Maharashtra India
| | | | - Hemant S. Chandak
- Department of Chemistry; G. S. Science, Arts and Commerce College; Khamgaon 444303, Maharashtra India
| |
Collapse
|