1
|
Zarudin NH, Normaya E, Shamsuri SS, Iqbal A, Mat Piah MB, Abdullah Z, Hamzah AS, Ahmad MN. Development of chemometric-assisted supercritical fluid extraction of effective and natural tyrosinase inhibitor from Syzygium aqueum leaves. Int J Biol Macromol 2024; 258:129168. [PMID: 38171432 DOI: 10.1016/j.ijbiomac.2023.129168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Tyrosinase is a key enzyme in enzymatic browning, causing quality losses in food through the oxidation process. Thus, the discovery of an effective and natural tyrosinase inhibitor via green technology is of great interest to the global food market due to food security and climate change issues. In this study, Syzygium aqueum (S. aqueum) leaves, which are known to be rich in phenolic compounds (PC), were chosen as a natural source of tyrosinase inhibitor, and the effect of the sustainable, supercritical fluid extraction (SFE) process was evaluated. Response surface methodology-assisted supercritical fluid extraction (RSM-assisted SFE) was utilized to optimize the PCs extracted from S. aqueum. The highest amount of PC was obtained at the optimum conditions (55 °C, 3350 psi, and 70 min). The IC50 (661.815 μg/mL) of the optimized extract was evaluated, and its antioxidant activity (96.8 %) was determined. Gas chromatography-mass spectrometry (GC-MS) results reveal that 2',6'-dihydroxy-4'-methoxychalcone (2,6-D4MC) (82.65 %) was the major PC in S. aqueum. Chemometric analysis indicated that 2,6-D4MC has similar chemical properties to the tyrosinase inhibitor control (kaempferol). The toxicity and physiochemical properties of the novel 2,6-D4MC from S. aqueum revealed that the 2,6-D4MC is safer than kaempferol as predicted via absorption, distribution, metabolism, and excretion (ADME) evaluation. Enzyme kinetic analysis shows that the type of inhibition of the optimized extract is non-competitive inhibition with Km = 1.55 mM and Vmax = 0.017 μM/s. High-performance liquid chromatography (HPLC) analysis shows the effectiveness of S. aqueum as a tyrosinase inhibitor. The mechanistic insight of the tyrosinase inhibition using 2,6-D4MC was successfully calculated using density functional theory (DFT) and molecular docking approaches. The findings could have a significant impact on food security development by devising a sustainable and effective tyrosinase inhibitor from waste by-products that is aligned with the United Nation's SDG 2, zero hunger.
Collapse
Affiliation(s)
- Nurul Husna Zarudin
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM Kuantan, Pahang, Malaysia; Sustainable Nanotechnology and Computational Modelling (SuNCoM) Research Group, Kulliyyah of Science, IIUM Kuantan, Pahang, Malaysia
| | - Syamimi Sulfiza Shamsuri
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School of Chemical Science, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohd Bijarimi Mat Piah
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Zanariah Abdullah
- Department of Chemistry, Faculty of Science, Universiti of Malaya (UM), 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Ahmad Sazali Hamzah
- Institute of Science (IOS), Level 3, Block C, Kompleks Inspirasi, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM Kuantan, Pahang, Malaysia; Sustainable Nanotechnology and Computational Modelling (SuNCoM) Research Group, Kulliyyah of Science, IIUM Kuantan, Pahang, Malaysia.
| |
Collapse
|
2
|
Khaffache R, Dehane A, Merouani S, Hamdaoui O, Ferkous H, Alrashed MM, Gasmi I, Chibani A. Sonochemistry dosimetries in seawater. ULTRASONICS SONOCHEMISTRY 2023; 101:106647. [PMID: 37944338 PMCID: PMC10654036 DOI: 10.1016/j.ultsonch.2023.106647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Due to the complex physical and chemical interactions taking place in the sonicated medium, various methods have been proposed in the literature for a better understanding of the sonochemical system. In the present paper, the performance of calorimetry, iodometry, Fricke, 4-nitrophenol, H2O2, and ascorbic acid dosimetry techniques have been evaluated over the electric power range from 20 to 80 W (f = 300 kHz). These methods have been analyzed for distilled and seawater in light of the literature findings. It has been found that the lowest temperatures and calorimetric energies were obtained for seawater in comparison to distilled water. However, the discrepancy between both mediums disappears with the increase in the electric power up to 80 W. Compared to the calorimetry results, a similar trend was obtained for the KI dosimetry, where the discrepancy between both solutions (seawater and distilled water) increased with the reduction in the electric power down to 20 W. In contrast, over the whole range of the electric power (20-80 W), the H2O2 dosimetry was drastically influenced by the salt composition of seawater, where, I3- formation was clearly reduced in comparison to the case of the distilled water. On the other hand, a fluctuated behavior was observed for the Fricke and 4-nitrophenol dosimetry methods, especially at the low electric powers (20 and 40 W). It has been found that dosimetry techniques based on ascorbic acid or potassium iodide are the best means for accurate quantification of the sonochemical activity in the irradiated liquid. As a result, it has been concluded, in terms of the dosimetry process's performance, that the dosimetry methods are in the following order: Ascorbic acid ≈ KI > Fricke > 4-nitrophenol > H2O2.
Collapse
Affiliation(s)
- Rabiaa Khaffache
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Aissa Dehane
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria.
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | - Hamza Ferkous
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Maher M Alrashed
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | - Intissar Gasmi
- Laboratoire Ampère, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Atef Chibani
- Research Center in Industrial Technologies CRTI, P.O.Box 64, Cheraga 16014, Algiers, Algeria
| |
Collapse
|
3
|
Yadav J, Srivastava A, Patel SA. Analysis of Thermal Characteristics of Batch Cooling Sonocrystallization: Effect on Crystal Attributes. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jyoti Yadav
- Department of Chemical Engineering Indian Institute of Technology Ropar Rupnagar 140001 India
| | - Abhishek Srivastava
- Department of Chemical Engineering Indian Institute of Technology Ropar Rupnagar 140001 India
| | - Swati A. Patel
- Department of Chemical Engineering Indian Institute of Technology Ropar Rupnagar 140001 India
| |
Collapse
|
4
|
Shahrir N, Anuar N, Abdul Muttalib NA, Yusop SN, Abu Bakar MR, Adam F, Ibrahim SF. The Role of Solvent Hydroxyl Functional Groups on the Interaction Energy and Growth of Form I Paracetamol Crystal Facets. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nurshahzanani Shahrir
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450Shah Alam, Malaysia
| | - Nornizar Anuar
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450Shah Alam, Malaysia
| | - Nur Aisyah Abdul Muttalib
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450Shah Alam, Malaysia
| | - Siti Nurul’ain Yusop
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450Shah Alam, Malaysia
| | - Mohd. Rushdi Abu Bakar
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, 25200Kuantan, Pahang, Malaysia
| | - Fatmawati Adam
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300Kuantan, Pahang, Malaysia
| | - Siti Fatimah Ibrahim
- Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Lot 1988, Kawasan Perindustrian Bandar Vendor, Simpang Ampat, 78000Alor Gajah, Malaysia
| |
Collapse
|
5
|
Enhancement of clozapine solubility in three aqueous choline chloride-based deep eutectic solvents: Experimental and COSMO-RS prediction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Mikolaszek B, Jamrógiewicz M, Mojsiewicz-Pieńkowska K, Sznitowska M. Microscopic and Spectroscopic Imaging and Thermal Analysis of Acrylates, Silicones and Active Pharmaceutical Ingredients in Adhesive Transdermal Patches. Polymers (Basel) 2022; 14:polym14142888. [PMID: 35890664 PMCID: PMC9322838 DOI: 10.3390/polym14142888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Dermal or transdermal patches are increasingly becoming a noteworthy alternative as carriers for active pharmaceutical ingredients (APIs), which makes their detailed physicochemical evaluation essential for pharmaceutical development. This paper demonstrates mid-infrared (FTIR) and Raman spectroscopy with complementary microscopic methods (SEM, optical and confocal Raman microscopy) and differential scanning calorimetry (DSC) as tools for the identification of the state of model API (testosterone TST, cytisine CYT or indomethacin IND) in selected adhesive matrices. Among the employed spectroscopic techniques, FTIR and Raman may be used not only as standard methods for API identification in the matrix, but also as a means of distinguishing commercially available polymeric materials of a similar chemical structures. A novel approach for the preparation of adhesive polymers for the FTIR analysis was introduced. In silicone matrices, all three APIs were suspended, whereas in the case of the acrylic PSA, Raman microscopy confirmed that only IND was dissolved in all three acrylic matrices, and the dissolved fraction of the CYT differed depending on the matrix type. Moreover, the recrystallization of TST was observed in one of the acrylates. Interestingly, a DSC analysis of the acrylic patches did not confirm the presence of the API even if the microscopic images showed suspended particles.
Collapse
Affiliation(s)
- Barbara Mikolaszek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Marzena Jamrógiewicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.J.); (K.M.-P.)
| | - Krystyna Mojsiewicz-Pieńkowska
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.J.); (K.M.-P.)
| | - Małgorzata Sznitowska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Correspondence: ; Tel.: +48-58-349-1080; Fax: +48-58-349-1090
| |
Collapse
|
7
|
Interactions of Ascorbic Acid, 5-Caffeoylquinic Acid, and Quercetin-3-Rutinoside in the Presence and Absence of Iron during Thermal Processing and the Influence on Antioxidant Activity. Molecules 2021; 26:molecules26247698. [PMID: 34946775 PMCID: PMC8706688 DOI: 10.3390/molecules26247698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/07/2023] Open
Abstract
Bioactive compounds in fruit and vegetables influence each other’s antioxidant activity. Pure standards, and mixtures of the common plant compounds, namely ascorbic acid, 5-caffeoylquinic acid, and quercetin-3-rutinoside (sum 0.3 mM), in the presence and absence of iron, were analyzed pre- and post-thermal processing in an aqueous solution. Antioxidant activity was measured by total phenolic content (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (TEAC) radical-scavenging assays. Ionic ferrous iron (Fe2+) and ferric iron (Fe3+) were measured photometrically. For qualification and quantification of reaction products, HPLC was used. Results showed that thermal processing does not necessarily lead to a decreased antioxidant activity, even if the compound concentrations decreased, as then degradation products themselves have an antioxidant activity. In all used antioxidant assays the 2:1 ratio of ascorbic acid and 5-caffeoylquinic acid in the presence of iron had strong synergistic effects, while the 1:2 ratio had strong antagonistic effects. The pro-oxidant iron positively influenced the antioxidant activity in combination with the used antioxidants, while ferrous iron itself interacted with common in vitro assays for total antioxidant activity. These results indicate that the antioxidant activity of compounds is influenced by factors such as interaction with other molecules, temperature, and the minerals present.
Collapse
|
8
|
Chai S, Li E, Zhang L, Du J, Meng Q. Crystallization solvent design based on a new quantitative prediction model of crystal morphology. AIChE J 2021. [DOI: 10.1002/aic.17499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shiyang Chai
- Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Enhui Li
- Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Lei Zhang
- Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Jian Du
- Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Qingwei Meng
- Department of Pharmaceutical Science School of Chemical Engineering, Dalian University of Technology Dalian China
- Ningbo Institute of Dalian University of Technology Ningbo China
| |
Collapse
|
9
|
Panraksa P, Tipduangta P, Jantanasakulwong K, Jantrawut P. Formulation of Orally Disintegrating Films as an Amorphous Solid Solution of a Poorly Water-Soluble Drug. MEMBRANES 2020; 10:membranes10120376. [PMID: 33261025 PMCID: PMC7759778 DOI: 10.3390/membranes10120376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022]
Abstract
The objective of the present study was to develop an orally disintegrating film (ODF) for a poorly water-soluble drug, phenytoin (PHT), using the cosolvent solubilization technique to achieve the amorphization of the drug, followed by the preparation of ODFs. Eleven formulations were prepared with different polymers, such as polyvinyl alcohol (PVA) and high methoxyl pectin (HMP) by the solvent casting method. The prepared films were subjected to characterization for weight variations, thickness, surface pH, disintegration time and mechanical strength properties. Then, differential scanning calorimetry, X-ray diffraction analysis and the drug release patterns of the selected films were evaluated. Among the prepared formulations, the formulation composed of 1% w/w of PVA, 0.04% w/w of sodium starch glycolate with polyethylene glycol 400, glycerin and water as cosolvents (PVA-S4) showed promising results. The physical appearance and mechanical strength properties were found to be good. The PVA-S4 film was clear and colorless with a smooth surface. The surface pH was found to be around 7.47 and the in vitro disintegration time was around 1.44 min. The drug content of the PVA-S4 film was 100.27%. X-ray diffractometry and thermal analysis confirmed the transition of phenytoin in the PVA-S4 film into a partially amorphous state during film preparation using the cosolvent solubilization approach. The resulting PVA-S4 film showed a higher dissolution rate in comparison to the film without a cosolvent. Overall, this study indicated the influence of cosolvents on enhancing the solubility of a poorly water-soluble drug and its film dissolution.
Collapse
Affiliation(s)
- Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (P.T.)
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (P.T.)
| | - Kittisak Jantanasakulwong
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (P.T.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: or ; Tel.: +66-5394-4309
| |
Collapse
|
10
|
Santos GFN, Carvalho LC, Oliveira DAS, Rego DG, Bueno MA, Oliveira BG. The definitive challenge of forming uncommon pseudo‐π···H–F and C···H–F hydrogen bonds on cyclic and cubic nonpolar hydrocarbons. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Leila Cardoso Carvalho
- Centro das Ciências Exatas e das Tecnologias Universidade Federal do Oeste da Bahia Barreiras Brazil
| | | | - Danilo Guimarães Rego
- Centro das Ciências Exatas e das Tecnologias Universidade Federal do Oeste da Bahia Barreiras Brazil
| | - Mauro Alves Bueno
- Centro das Ciências Exatas e das Tecnologias Universidade Federal do Oeste da Bahia Barreiras Brazil
| | - Boaz Galdino Oliveira
- Centro das Ciências Exatas e das Tecnologias Universidade Federal do Oeste da Bahia Barreiras Brazil
| |
Collapse
|
11
|
Hussain MH, Abu Bakar NF, Mustapa AN, Low KF, Othman NH, Adam F. Synthesis of Various Size Gold Nanoparticles by Chemical Reduction Method with Different Solvent Polarity. NANOSCALE RESEARCH LETTERS 2020; 15:140. [PMID: 32617698 PMCID: PMC7332595 DOI: 10.1186/s11671-020-03370-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 06/21/2020] [Indexed: 05/22/2023]
Abstract
Complicated and strict protocols are followed to tune the size of gold nanoparticles (GNPs) in chemical synthesis methods. In this study, we address the polarity of solvents as a tool for tailoring the size of GNPs in the chemical reduction method. The effects of varying polarity index of the reaction medium on synthesizing gold nanoparticles by chemical reduction method have been investigated. Ethanol as a polar solvent, ethanol-water mixture as reaction medium, L-ascorbic acid as reducing agent, and polyvinylpyrrolidone as stabilizer were used to synthesize GNPs. The polarity index of the reaction medium was adjusted by changing the volume ratio of ethanol to water. UV-Vis, dynamic light scattering (DLS), and transmission electron microscopy (TEM) characterizations reveal that the growth of nanoparticles was gradually increased (~ 22 to 219 nm hydrodynamic diameter) with decreasing value of polarity index of the reaction medium (~ 8.2 to 5.2). Furthermore, the high polarity index of the reaction medium produced smaller and spherical nanoparticles, whereas lower polarity index of reaction medium results in bigger size of GNPs with different shapes. These results imply that the mechanistic of the growth, assembly, and aggregation phenomena of ligand or stabilizer-capped GNPs strongly rely on the polarity of solvent molecules. Using the proposed methodology, wide size range of GNPs with different morphology sizes can be synthesized by simply modulating the volume percentage of organic solvent in the reaction medium.
Collapse
Affiliation(s)
- Mohamed Hasaan Hussain
- Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Noor Fitrah Abu Bakar
- Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Ana Najwa Mustapa
- Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Kim-Fatt Low
- Faculty of Applied Science, Universiti Teknologi MARA, Tapah Campus, 35400 Tapah Road, Perak, Malaysia
| | - Nur Hidayati Othman
- Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Fatmawati Adam
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Raya Tun Razak, 26300, Gambang, Pahang, Malaysia
| |
Collapse
|
12
|
Bolourchian N, Nili M, Foroutan SM, Mahboubi A, Nokhodchi A. The use of cooling and anti-solvent precipitation technique to tailor dissolution and physicochemical properties of meloxicam for better performance. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
3D-Printed Solid Dispersion Drug Products. Pharmaceutics 2019; 11:pharmaceutics11120672. [PMID: 31835682 PMCID: PMC6956082 DOI: 10.3390/pharmaceutics11120672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
With the well-known advantages of additive manufacturing methods such as three-dimensional (3D) printing in drug delivery, it is disappointing that only one product has been successful in achieving regulatory approval in the past few years. Further research and development is required in this area to introduce more 3D printed products into the market. Our study investigates the potential of fixed dose combination solid dispersion drug products generated via 3D printing. Two model drugs-fluorescein sodium (FS) and 5-aminosalicyclic acid (5-ASA)-were impregnated onto a polyvinyl alcohol (PVA) filament, and the influence of solvent choice in optimal drug loading as well as other influences such as the physicochemical and mechanical properties of the resultant filaments were investigated prior to development of the resultant drug products. Key outcomes of this work included the improvement of filament drug loading by one- to threefold due to solvent choice on the basis of its polarity and the generation of a 3D-printed product confirmed to be a solid dispersion fixed dose combination with the two model drugs exhibiting favourable in vitro dissolution characteristics.
Collapse
|
14
|
Prediction of ethenzamide solubility in organic solvents by explicit inclusions of intermolecular interactions within the framework of COSMO-RS-DARE. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Abdul Mudalip SK, Abu Bakar MR, Jamal P, Adam F. Prediction of Mefenamic Acid Solubility and Molecular Interaction Energies in Different Classes of Organic Solvents and Water. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siti K. Abdul Mudalip
- Centre of Excellence for Advanced Research in Fluid Flow, Faculty of Chemical & Natural Resources Engineering, University Malaysia Pahang, Gambang, Kuantan, Pahang 26300, Malaysia
| | - Mohd R. Abu Bakar
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang Malaysia
| | - P. Jamal
- Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - F. Adam
- Centre of Excellence for Advanced Research in Fluid Flow, Faculty of Chemical & Natural Resources Engineering, University Malaysia Pahang, Gambang, Kuantan, Pahang 26300, Malaysia
| |
Collapse
|