1
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. Tissue Eng Part A 2024. [PMID: 39556321 DOI: 10.1089/ten.tea.2024.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated [Hep] and fully desulfated [Hep-]) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of tumor necrosis factor-stimulated gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo, thus facilitating comparisons between delivery from heparin derivatives on the level of tissue repair in two different areas of muscle (near the myotendious junction [MTJ] and in the muscle belly [MB]) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization and that release from Hep would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells were analyzed by flow cytometry 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (day 7 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by day 7, particularly in the MTJ region of the muscle. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear.
Collapse
Affiliation(s)
- Joseph J Pearson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Jiahui Mao
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608812. [PMID: 39229126 PMCID: PMC11370378 DOI: 10.1101/2024.08.20.608812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated (Hep) and fully desulfated (Hep-)) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of Tumor Necrosis Factor Stimulated Gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo , thus facilitating comparisons between delivery from heparin derivatives on level of tissue repair in two different areas of muscle (near the myotendious junction (MTJ) and in the muscle belly (MB)) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization, and that release from a fully sulfated heparin derivative (Hep) would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells, were analyzed by flow cytometery 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to Day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (Day 14 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by Day 7, particularly in the MTJ region of the muscle, compared to release from desulfated heparin hydrogels. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear. IMPACT STATEMENT Rotator cuff tear is a significant problem that can cause muscle degeneration. In this study, a hydrogel particle system was developed for sustained release of an anti-inflammatory protein, Tumor Necrosis Factor Stimulated Gene 6 (TSG-6), to injured muscle. Release of the protein from a fully sulfated heparin hydrogel-based carrier demonstrated greater changes in amount inflammatory cells and more early regenerative effects than a less-sulfated carrier. Thus, this work provides a novel strategy for localized, controlled delivery of an anti-inflammatory protein to enhance muscle healing after rotator cuff tear.
Collapse
|
3
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
4
|
Gan K, Bi M, Zhou K, Xia C, Ding W, Ding S, Li J. Bridging repair reinforced with artificial ligament as an internal brace for irreparable massive rotator cuff tears. J Shoulder Elbow Surg 2024; 33:e322-e335. [PMID: 38072033 DOI: 10.1016/j.jse.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND The irreparable massive rotator cuff tear (IMRCT) is challenging to manage. Although various surgical options have been proposed to treat IMRCTs, the optimal surgical technique remains controversial. Arthroscopic bridging patch repair is clinically used for treating IMRCTs, but the healing rate of the patch graft is negatively affected by superior shift of the humeral head. This study aimed to evaluate the clinical efficacy of artificial ligament as an internal brace (IB) reinforcing fascia lata autograft bridging repair (ABR) in the treatment of IMRCTs. METHODS The data of 50 patients with IMRCTs who underwent ABR reinforced with artificial ligament as an IB (ABR + IB) (internal brace group) or ABR alone (control group) were retrospectively evaluated preoperatively and at 2-year follow-up. Clinical outcomes were assessed based on the shoulder activity, of which the strength was measured using a 0-10 points manual muscle test scale, American Shoulder and Elbow Surgeons score, and visual analog scale for pain. Imaging outcomes were evaluated based on acromiohumeral distance (AHD), Hamada grade, Goutallier grade, and the status of fascia lata grafts as per radiographs or magnetic resonance imaging findings. RESULTS Both groups showed significantly better results in shoulder activity, American Shoulder and Elbow Surgeons score, visual analog scale score, and AHD at 2-year follow-up compared with preoperative levels (P < .001). Compared with the control group (n = 24), the internal brace group (n = 26) had better mean AHD (7.0 ± 1.4 mm vs. 5.9 ± 1.0 mm, P = .002), mean improvement in AHD (3.3 ± 1.5 mm vs. 2.0 ± 0.6 mm, P < .001), healing rate of autografts (92.3% vs. 54.2%, P = .002), and improvement rate of Hamada grade (73.1% vs. 41.7%, P = .025) at 2-year follow-up. No significant differences were found in active elevation, active external rotation, active internal rotation, abduction strength, external rotation strength, internal rotation strength, American Shoulder and Elbow Surgeons score, or visual analog scale between the 2 groups at 2-year follow-up. CONCLUSION Both the ABR + IB and ABR improved the postoperative short-term clinical and imaging outcomes in managing IMRCTs, the ABR + IB is statistically superior to ABR alone in terms of healing rate of the bridging graft, AHD, and Hamada grade at 2-year follow-up, while further clinical investigations with larger sample size and longer follow-ups are required to validate the clinical significance of this novel technique for IMRCTs.
Collapse
Affiliation(s)
- Kaifeng Gan
- Department of Orthopaedics, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Republic of China
| | - Mingguang Bi
- Department of Orthopaedics, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Republic of China
| | - Ke Zhou
- Department of Orthopaedics, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Republic of China
| | - Chenjie Xia
- Department of Orthopaedics, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Republic of China
| | - Wei Ding
- Department of Orthopaedics, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Republic of China
| | - Shaohua Ding
- Department of Orthopaedics, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Republic of China
| | - Jin Li
- Department of Orthopaedics, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Republic of China.
| |
Collapse
|
5
|
Umehara J, Ueda Y, Yagi M, Nojiri S, Tachibana T, Nobuhara K, Ichihashi N. Mechanical characteristic of supraspinatus muscle changes independent of its size and intramuscular fat in patient with rotator cuff repair. J Electromyogr Kinesiol 2023; 73:102831. [PMID: 37871509 DOI: 10.1016/j.jelekin.2023.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/23/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
PURPOSE This study aimed i) to investigate the mechanical, morphological, and compositional characteristics of the supraspinatus muscle after rotator cuff repair by using ultrasound shear wave elastography (SWE) and B-mode imaging, and ii) to determine whether the morphological or compositional characteristics are associated with the mechanical characteristic of the supraspinatus during contraction. METHODS Using SWE and B-mode imaging, active and passive shear moduli, muscle thickness, and echo intensity of the supraspinatus were measured from the repaired and contralateral control shoulders of 22 patients with rotator cuff repair. The shear modulus, muscle thickness, and echo intensity were compared between the repaired and control shoulders. The association between the active shear modulus and the other variables was determined. RESULTS While the active and passive shear moduli were lower in the repaired shoulder compared to the control, the muscle thickness and echo intensity did not vary between them. Interestingly, the passive shear modulus was positively correlated with the active shear modulus only in the control shoulder. CONCLUSION The mechanical characteristic of supraspinatus remains impaired, even without degenerative changes in the morphological and compositional characteristics after rotator cuff repair. Furthermore, the association between contractile and elastic characteristics in the supraspinatus was deteriorated in control shoulder.
Collapse
Affiliation(s)
- Jun Umehara
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Faculty of Rehabilitation, Kansai Medical University, Osaka, Japan.
| | - Yasuyuki Ueda
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Faculty of Health Science, Takarazuka University of Medical and Healthcare, Takarazuka, Japan
| | - Masahide Yagi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shusuke Nojiri
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Kim HT, Lee SH, Lee JK, Chung SW. Influence of Vitamin D Deficiency on the Expression of Genes and Proteins in Patients With Medium Rotator Cuff Tears. Am J Sports Med 2023; 51:2650-2658. [PMID: 37449678 DOI: 10.1177/03635465231184392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Whether vitamin D deficiency is related to rotator cuff muscle and tendon physiology is controversial. PURPOSE To assess the relationship between vitamin D deficiency and various gene expression patterns in patients with rotator cuff tears. STUDY DESIGN Controlled laboratory study. METHODS During arthroscopic surgery, samples from the supraspinatus muscle, deltoid muscle, and supraspinatus tendon were acquired from 12 patients with vitamin D deficiency (serum 25-hydroxyvitamin D concentration <20 ng/dL) and 12 patients with sufficient vitamin D levels (control group, serum 25-hydroxyvitamin D concentration ≥30 ng/dL) who were matched for age, sex, and tear size. Alterations in the expression of genes and proteins associated with myogenesis, muscle atrophy, adipogenesis, inflammation, and apoptosis, as well as in vitamin D receptor expression, were assessed using quantitative reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry and were compared between the 2 groups. RESULTS Vitamin D receptor gene expression in the deltoid muscle was significantly lower in the vitamin D deficiency group than in the control group (P = .043). Additionally, in the deltoid muscle, myoDgene expression levels were lower and atrogin levels were higher in the vitamin D deficiency group than in the control group (P = .034 and P = .011, respectively). However, in the supraspinatus muscle, no differences were observed between groups in the expression of myogenesis- or atrophy-related genes (all P > .05). The expression of inflammation-related genes (interleukin (IL)-1β and IL-6) was significantly higher in the vitamin D deficiency group, in both the deltoid and supraspinatus muscles (all P < .05). The supraspinatus tendon tissue did not show any significant differences in any gene expression evaluated (all P > .05). A correlation between gene and protein expression was observed for atrogin and IL-1β in the deltoid muscle (P = .019 and P = .037, respectively) and for IL-6 in the supraspinatus muscle (P = .044). CONCLUSION Vitamin D deficiency was not associated with the expression of myogenesis-related or muscle atrophy-related genes in the supraspinatus muscle of patients with rotator cuff tears, unlike in the deltoid muscle; rather, vitamin D deficiency was associated with increased proinflammatory cytokine expression. CLINICAL RELEVANCE In patients with rotator cuff tears, vitamin D deficiency was observed to be associated with increased levels of proinflammatory cytokines in the rotator cuff muscles, without significant changes in gene expression related to myogenesis or muscle atrophy.
Collapse
Affiliation(s)
- Hyun Tae Kim
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| | - Su Hyun Lee
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| | - Jeong Kun Lee
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| | - Seok Won Chung
- Research Institute of Medical Science, Konkuk University School of medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Papalia GF, Franceschetti E, Giurazza G, Parisi FR, Gregori P, Zampogna B, Longo UG, Papalia R. MicroRNA expression changes in the development of rotator cuff tendon injuries. JSES REVIEWS, REPORTS, AND TECHNIQUES 2023; 3:343-349. [PMID: 37588508 PMCID: PMC10426526 DOI: 10.1016/j.xrrt.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Traumatic or degenerative rotator cuff (RC) tendon injuries are a leading cause of persistent shoulder pain and reduction of mobility with associated disability and dysfunction, which require each year more than 250,000 surgical repairs in the United States. MicroRNAs (miRNAs) are small noncoding RNAs, that in the posttranscriptional phase lead to the development and function of tissues. The aim of this review was to identify miRNA expression changes in patients with RC pathologies and to determine their relevance as a potential novel diagnostic and potentially therapeutic tool for RC disorders. Various miRNAs seemed to be key regulators in the muscle architecture, determining several modifications in muscle atrophy, skeletal muscle mechanical adaptation, lipid accumulation, and fibrosis in the presence of RC tears. The search was executed using PubMed, Medline, Scopus, and Cochrane Central. We included studies written in English that evaluated the role of miRNA in diagnosis, physiopathology, and potential therapeutic application of RC tendon injuries. We included 11 studies in this review. Many miRNAs emerged as key regulators in the pathogenesis of RC tears, inflammation, and muscle fatty degeneration. In fact, they are involved in the regulation of myogenesis, inflammatory cytokines, metalloproteases expression, muscle adaptation, adipogenesis, fibrogenic factors, and extracellular matrix synthesis. The gene expression may be altered in the pathological processes of tendon lesions. Therefore, the knowledge of all the gene mechanisms underlying RC tendinopathy should be achieved with future diagnostic and clinical studies.
Collapse
Affiliation(s)
- Giuseppe Francesco Papalia
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Edoardo Franceschetti
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Giancarlo Giurazza
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Francesco Rosario Parisi
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Pietro Gregori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Biagio Zampogna
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Umile Giuseppe Longo
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Rocco Papalia
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| |
Collapse
|
8
|
Lacheta L, Siebenlist S, Scheiderer B, Beitzel K, Woertler K, Imhoff AB, Buchmann S, Willinger L. Intact revision rotator cuff repair stabilizes muscle atrophy and fatty infiltration after minimum follow up of two years. BMC Musculoskelet Disord 2023; 24:515. [PMID: 37353825 DOI: 10.1186/s12891-023-06616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND The extent of fatty infiltration and rotator cuff (RC) atrophy is crucial for the clinical results after rotator cuff repair (RCR). The purpose of this study was to evaluate changes in fatty infiltration and RC atrophy after revision RCR and to correlate them with functional outcome parameters. METHODS Patients who underwent arthroscopic revision RCR for symptomatic recurrent full-thickness tear of the supraspinatus tendon between 2008 and 2014 and were retrospectively reviewed with a minimum follow up of 2 years. Magnetic resonance imaging (MRI) was performed pre- and postoperatively to assess 1) tendon integrity after revision RCR according to Sugaya classification, (2) RC atrophy according to Thomazeau classification, and (3) fatty infiltration according to Fuchs MRI classification. Constant score (CS) and the American Shoulder and Elbow Surgeon (ASES) score were used to correlate functional outcome, tendon integrity, and muscle degeneration. RESULTS 19 patients (17 males and 2 females) with a mean age of 57.5 years (range, 34 to 72) were included into the study at a mean follow-up of 50.3 months (range, 24 - 101). At final evaluation, 9 patients (47%) presented with intact RCR and 10 patients (53%) suffered a re-tear after revision repair. No progress of fatty infiltration was observed postoperatively in the group with intact RC, atrophy progressed in only 1 out of 9 patient (11%). Fatty infiltration progressed in 5/10 patients (50%) and RC atrophy increased in 2/10 patients (20%) within the re-tear group. CS (42.7 ± 17.7 preop, 65.2 ± 20.1 postop) and ASES (47.7 ± 17.2 preop, 75.4 ± 23.7 postop) improved significantly from pre- to postoperatively (p < 0.001). A positive correlation between fatty infiltration and RC integrity was detected (r = 0.77, p < 0.01). No correlation between clinical outcome and tendon integrity or RC atrophy was observed. CONCLUSION Arthroscopic revision RCR leads to reliable functional outcomes even in case of a recurrent RC retear. An intact RCR maintains the preoperative state of fatty infiltration and muscle atrophy but does not lead to muscle regeneration. LEVEL OF EVIDENCE Level IV; Therapeutic study.
Collapse
Affiliation(s)
- Lucca Lacheta
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian Siebenlist
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bastian Scheiderer
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Knut Beitzel
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- ATOS Orthoparc Klinik, Cologne, Germany
| | - Klaus Woertler
- Musculoskeletal Radiology Section, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andreas B Imhoff
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stefan Buchmann
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Orthopaedisches Fachzentrum (OFZ) Weilheim/Garmisch/Starnberg/Penzberg, Weilheim, Germany
| | - Lukas Willinger
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
9
|
Zhong Y, Jin W, Gao H, Sun L, Wang P, Zhang J, Ong MTY, Sai Chuen Bruma F, Chen S, Chen J. A Knitted PET Patch Enhances the Maturation of Regenerated Tendons in Bridging Reconstruction of Massive Rotator Cuff Tears in a Rabbit Model. Am J Sports Med 2023; 51:901-911. [PMID: 36802867 DOI: 10.1177/03635465231152186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Although nondegradable synthetic grafts for bridging reconstruction of massive rotator cuff tears (MRCTs) have shown satisfactory clinical outcomes, their function and details on graft-tendon healing and enthesis regeneration have not been fully studied. HYPOTHESIS The knitted polyethylene terephthalate (PET) patch as a nondegradable synthetic graft could provide sustained mechanical support, facilitating enthesis and tendon regeneration in the treatment of MRCTs. STUDY DESIGN Controlled laboratory study. METHODS A knitted PET patch was fabricated for bridging reconstruction (PET group) in a New Zealand White rabbit model of MRCTs (negative control group), and an autologous Achilles tendon was used as a control (autograft group). The animals were sacrificed, and tissue samples were harvested for gross observation as well as histological and biomechanical analyses at 4, 8, and 12 weeks postoperatively. RESULTS Histological analysis showed no significant difference in the graft-bone interface score between the PET and autograft groups at 4, 8, and 12 weeks postoperatively. Interestingly, in the PET group, Sharpey-like fibers were observed at 8 weeks, while fibrocartilage formation and the ingrowth of chondrocytes were recognized at 12 weeks. Meanwhile, the tendon maturing score was significantly higher in the PET group than in the autograft group (19.7 ± 1.5 vs 15.3 ± 1.2, respectively; P = .008) at 12 weeks, with parallel-oriented collagen fibers around the knitted PET patch. Moreover, the ultimate failure load of the PET group was similar to that of a healthy rabbit tendon at 8 weeks (125.6 ± 13.6 vs 130.8 ± 28.6 N, respectively; P > .05) and no different from that of the autograft group at 4, 8, and 12 weeks. CONCLUSION The knitted PET patch could not only immediately reconstruct the mechanical support for the torn tendon postoperatively in the rabbit model of MRCTs but also enhanced maturation of the regenerated tendon by fibrocartilage formation and improved the organization of collagen fibers. Herein, the knitted PET patch could be a promising candidate graft adopted in bridging reconstruction of MRCTs. CLINICAL RELEVANCE A nondegradable knitted PET patch can safely bridge MRCTs with satisfactory mechanical strength and the promotion of tissue regeneration.
Collapse
Affiliation(s)
- Yuting Zhong
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhe Jin
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Han Gao
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Luyi Sun
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Wang
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Michael Tim Yun Ong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Fu Sai Chuen Bruma
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Shiyi Chen
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Chen
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Meyer GA, Thomopoulos S, Abu-Amer Y, Shen KC. Tenotomy-induced muscle atrophy is sex-specific and independent of NFκB. eLife 2022; 11:e82016. [PMID: 36508247 PMCID: PMC9873255 DOI: 10.7554/elife.82016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The nuclear factor-κB (NFκB) pathway is a major thoroughfare for skeletal muscle atrophy and is driven by diverse stimuli. Targeted inhibition of NFκB through its canonical mediator IKKβ effectively mitigates loss of muscle mass across many conditions, from denervation to unloading to cancer. In this study, we used gain- and loss-of-function mouse models to examine the role of NFκB in muscle atrophy following rotator cuff tenotomy - a model of chronic rotator cuff tear. IKKβ was knocked down or constitutively activated in muscle-specific inducible transgenic mice to elicit a twofold gain or loss of NFκB signaling. Surprisingly, neither knockdown of IKKβ nor overexpression of caIKKβ significantly altered the loss of muscle mass following tenotomy. This finding was consistent across measures of morphological adaptation (fiber cross-sectional area, fiber length, fiber number), tissue pathology (fibrosis and fatty infiltration), and intracellular signaling (ubiquitin-proteasome, autophagy). Intriguingly, late-stage tenotomy-induced atrophy was exacerbated in male mice compared with female mice. This sex specificity was driven by ongoing decreases in fiber cross-sectional area, which paralleled the accumulation of large autophagic vesicles in male, but not female muscle. These findings suggest that tenotomy-induced atrophy is not dependent on NFκB and instead may be regulated by autophagy in a sex-specific manner.
Collapse
Affiliation(s)
- Gretchen A Meyer
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
- Department of Orthopaedic Surgery, Washington University School of MedicineSt LouisUnited States
- Departments of Neurology and Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| | - Stavros Thomopoulos
- Departments of Orthopaedic Surgery and Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of MedicineSt LouisUnited States
- Department of Cell Biology & Physiology, Washington University School of MedicineSt. LouisUnited States
- Shriners Hospital for ChildrenSt. LouisUnited States
| | - Karen C Shen
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
11
|
Kelley N, Khodaee M. Posterior Shoulder Pain and Muscle Wasting in an Older Adult. Cureus 2022; 14:e28850. [PMID: 36225517 PMCID: PMC9536398 DOI: 10.7759/cureus.28850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Musculoskeletal injuries are among the most common chief complaints in the geriatric population. Shoulder pain with associated deformity should be evaluated for possible joint dislocations, fractures, and musculotendinous tears. A comprehensive evaluation beginning with history and physical examination is important. Typical imaging utilized for the diagnosis of shoulder injuries includes plain radiography, ultrasound, and magnetic resonance imaging (MRI). We present a case of a 75-year-old male with massive rotator cuff tears and subsequent shoulder deformity. Management with non-surgical or surgical approaches should begin as soon as possible to delay the development of rotator cuff arthropathy.
Collapse
|
12
|
Geometric modeling predicts architectural adaptations are not responsible for the force deficit following tenotomy in the rotator cuff. J Biomech 2022; 138:111105. [DOI: 10.1016/j.jbiomech.2022.111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
13
|
Flück M, Kasper S, Benn MC, Clement Frey F, von Rechenberg B, Giraud MN, Meyer DC, Wieser K, Gerber C. Transplant of Autologous Mesenchymal Stem Cells Halts Fatty Atrophy of Detached Rotator Cuff Muscle After Tendon Repair: Molecular, Microscopic, and Macroscopic Results From an Ovine Model. Am J Sports Med 2021; 49:3970-3980. [PMID: 34714701 PMCID: PMC8649427 DOI: 10.1177/03635465211052566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/13/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND The injection of mesenchymal stem cells (MSCs) mitigates fat accumulation in released rotator cuff muscle after tendon repair in rodents. PURPOSE To investigate whether the injection of autologous MSCs halts muscle-to-fat conversion after tendon repair in a large animal model for rotator cuff tendon release via regional effects on extracellular fat tissue and muscle fiber regeneration. STUDY DESIGN Controlled laboratory study. METHODS Infraspinatus (ISP) muscles of the right shoulder of Swiss Alpine sheep (n = 14) were released by osteotomy and reattached 16 weeks later without (group T; n = 6) or with (group T-MSC; n = 8) electropulse-assisted injection of 0.9 Mio fluorescently labeled MSCs as microtissues with media in demarcated regions; animals were allowed 6 weeks of recovery. ISP volume and composition were documented with computed tomography and magnetic resonance imaging. Area percentages of muscle fiber types, fat, extracellular ground substance, and fluorescence-positive tissue; mean cross-sectional area (MCSA) of muscle fibers; and expression of myogenic (myogenin), regeneration (tenascin-C), and adipogenic markers (peroxisome proliferator-activated receptor gamma [PPARG2]) were quantified in injected and noninjected regions after recovery. RESULTS At 16 weeks after tendon release, the ISP volume was reduced and the fat fraction of ISP muscle was increased in group T (137 vs 185 mL; 49% vs 7%) and group T-MSC (130 vs 166 mL; 53% vs 10%). In group T-MSC versus group T, changes during recovery after tendon reattachment were abrogated for fat-free mass (-5% vs -29%, respectively; P = .018) and fat fraction (+1% vs +24%, respectively; P = .009%). The area percentage of fat was lower (9% vs 20%; P = .018) and the percentage of the extracellular ground substance was higher (26% vs 20%; P = .007) in the noninjected ISP region for group T-MSC versus group T, respectively. Regionally, MCS injection increased tenascin-C levels (+59%) and the water fraction, maintaining the reduced PPARG2 levels but not the 29% increased fiber MCSA, with media injection. CONCLUSION In a sheep model, injection of autologous MSCs in degenerated rotator cuff muscle halted muscle-to-fat conversion during recovery from tendon repair by preserving fat-free mass in association with extracellular reactions and stopping adjuvant-induced muscle fiber hypertrophy. CLINICAL RELEVANCE A relatively small dose of MSCs is therapeutically effective to halt fatty atrophy in a large animal model.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
| | - Stephanie Kasper
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
| | - Mario C. Benn
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Flurina Clement Frey
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Marie-Noëlle Giraud
- Cardiology, Faculty of Sciences and
Medicine, University of Fribourg, Fribourg, Switzerland
| | - Dominik C. Meyer
- Author deceased
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| | - Karl Wieser
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| | - Christian Gerber
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| |
Collapse
|
14
|
Bogdanov J, Lan R, Chu TN, Bolia IK, Weber AE, Petrigliano FA. Fatty degeneration of the rotator cuff: pathogenesis, clinical implications, and future treatment. JSES REVIEWS, REPORTS, AND TECHNIQUES 2021; 1:301-308. [PMID: 37588720 PMCID: PMC10426606 DOI: 10.1016/j.xrrt.2021.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Chronic rotator cuff pathology is often complicated by fatty degeneration of the rotator cuff (FDRC) muscles, an insidious process associated with poor prognosis with or without surgical intervention. Currently there is no treatment for FDRC, and many studies have described a natural course for this disease almost always resulting in further degeneration and morbidity. Recapitulating FDRC using animal injury models, and using imaging-based studies of human FDRC, the pathophysiology of this disease continues to be further characterized. Researchers studying mesenchymal stem cell-derived progenitor cells and known fibrogenic and adipogenic signaling pathways implicated in FDRC seek to clarify the underlying processes driving these changes. While new cell- and molecular-based therapies are being developed, currently the strongest available avenue for improved management of FDRC is the use of novel imaging techniques which allow for more accurate and personalized staging of fatty degeneration. This narrative review summarizes the evidence on the molecular and pathophysiologic mechanisms of FDRC and provides a clinical update on the diagnosis and management of this condition based on the existing knowledge. We also sought to examine the role of newer biologic therapies in the management of RC fatty degeneration and to identify areas of future research.
Collapse
Affiliation(s)
- Jacob Bogdanov
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Rae Lan
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Timothy N. Chu
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Ioanna K. Bolia
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Alexander E. Weber
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Frank A. Petrigliano
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
15
|
Hung LW, Wu S, Lee A, Zhang AL, Feeley BT, Xiao W, Ma CB, Lansdown DA. Teres minor muscle hypertrophy is a negative predictor of outcomes after reverse total shoulder arthroplasty: an evaluation of preoperative magnetic resonance imaging and postoperative implant position. J Shoulder Elbow Surg 2021; 30:e636-e645. [PMID: 33567352 DOI: 10.1016/j.jse.2020.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Predictors of outcomes after reverse total shoulder arthroplasty (rTSA) remain unclear. The purpose of this study was to analyze the impact of preoperative muscle quality and postoperative implant positioning on patient-reported outcomes following rTSA. METHODS We evaluated 88 shoulders treated with rTSA in which preoperative magnetic resonance imaging was available. Preoperative muscle quality was evaluated, including fatty infiltration, rotator cuff muscle volume, and total tear size. Postoperative implant position was determined radiographically. The correlation between imaging parameters and the 2-year postoperative American Shoulder and Elbow Surgeons (ASES) score was examined. Multivariate analyses were performed to adjust for confounding factors including patient demographic characteristics and implant position. RESULTS Univariate analysis showed that the ASES score was significantly lower in patients with teres minor muscle hypertrophy relative to those with normal muscle (73.3 ± 22.8 vs. 84.2 ± 16.9, P = .02). The functional subscore was significantly lower in patients with grade 2 fatty infiltration of the deltoid muscle relative to those with grade 0 fatty infiltration (26.1 ± 14.6 vs. 34.8 ± 11.6, P = .03). Older age was associated with a higher pain subscore (ρ = 0.32, P = .002). Multivariate analysis demonstrated that teres minor muscle hypertrophy remained a significant independent predictor of the ASES score (β coefficient = 91.3, P = .03). CONCLUSION Teres minor muscle hypertrophy is an independent negative predictor of patient-reported outcomes after rTSA.
Collapse
Affiliation(s)
- Li-Wei Hung
- Department of Orthopedic Surgery, University California San Francisco, San Francisco, CA, USA; Department of Orthopedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shiqiang Wu
- Department of Orthopedic Surgery, University California San Francisco, San Francisco, CA, USA; Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Austin Lee
- Department of Orthopedic Surgery, University California San Francisco, San Francisco, CA, USA
| | - Alan L Zhang
- Department of Orthopedic Surgery, University California San Francisco, San Francisco, CA, USA
| | - Brian T Feeley
- Department of Orthopedic Surgery, University California San Francisco, San Francisco, CA, USA
| | - Weiyuan Xiao
- Department of Orthopedic Surgery, University California San Francisco, San Francisco, CA, USA; Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunbong Benjamin Ma
- Department of Orthopedic Surgery, University California San Francisco, San Francisco, CA, USA
| | - Drew A Lansdown
- Department of Orthopedic Surgery, University California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Ruder MC, Lawrence RL, Soliman SB, Bey MJ. Presurgical tear characteristics and estimated shear modulus as predictors of repair integrity and shoulder function one year after rotator cuff repair. JSES Int 2021; 6:62-69. [PMID: 35141678 PMCID: PMC8811389 DOI: 10.1016/j.jseint.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Rotator cuff repair provides pain relief for many patients; however, retears are relatively common and affect approximately 20%-70% of patients after repair. Although magnetic resonance imaging (MRI) offers the ability to assess tissue characteristics such as tear size, retraction, and fatty infiltration, it provides little insight into the quality of the musculotendinous tissues the surgeon will encounter during surgery. However, shear wave elastography (SWE) could provide an indirect assessment of quality (ie, stiffness) by measuring the speed of shear waves propagating through tissue. The objective of this study was to determine the extent to which estimated shear modulus predicts repair integrity and functional outcomes 1 year after rotator cuff repair. Methods Thirty-three individuals scheduled to undergo arthroscopic rotator cuff repair were enrolled in this study. Before surgery, shear modulus of the supraspinatus tendon and muscle was estimated using ultrasound SWE. MRIs were obtained before and 1 year after surgery to assess tear characteristics and repair integrity, respectively. Shoulder strength, range of motion, and patient-reported pain and function were assessed before and after surgery. Functional outcomes were compared between groups and across time using a two-factor mixed model analysis of variance. Stepwise regression with model comparison was used to investigate the extent to which MRI and shear modulus predicted repair integrity and function at 1 year after surgery. Results At 1 year after surgery, 56.5% of patients had an intact repair. No significant differences were found in any demographic variable, presurgical tear characteristic, or shear modulus between patients with an intact repair and those with a recurrent tear. Compared with presurgical measures, patients in both groups demonstrated significant improvements at 1 year after surgery in pain (P < .01), self-reported function (P < .01), range of motion (P < .01), and shoulder strength (P < .01). In addition, neither presurgical MRI variables (P > .16) nor shear modulus (P > .52) was significantly different between groups at 1 year after surgery. Finally, presurgical shear modulus generally did not improve the prediction of functional outcomes above and beyond that provided by MRI variables alone (P > .22). Conclusion Although SWE remains a promising modality for many clinical applications, this study found that SWE-estimated shear modulus did not predict repair integrity or functional outcomes at 1 year after surgery, nor did it add to the prediction of outcomes above and beyond that provided by traditional presurgical MRI measures of tear characteristics. Therefore, it appears that further research is needed to fully understand the clinical utility of SWE for musculoskeletal tissue and its potential use for predicting outcomes after surgical rotator cuff repair.
Collapse
Affiliation(s)
| | | | | | - Michael J. Bey
- Bone & Joint Center, Henry Ford Health System, Detroit, MI, USA
- Corresponding author: Michael J. Bey, PhD, 6135 Woodward Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
17
|
He J, Ping S, Yu F, Yuan X, Wang J, Qi J. Mesenchymal stem cell-derived exosomes: therapeutic implications for rotator cuff injury. Regen Med 2021; 16:803-815. [PMID: 34261369 DOI: 10.2217/rme-2020-0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rotator cuff injuries are a common clinical condition of the shoulder joint. Surgery that involves reattaching the torn tendon to its humeral head bony attachment has a somewhat lower success rate. The scar tissue formed during healing of the rotator cuff leads to poor tendon-related mechanical properties. To promote healing, a range of genetic interventions, as well as cell transplantation, and many other techniques have been explored. In recent years, the therapeutic promise of mesenchymal stem cells (MSCs) has been well documented in animal and clinical studies. Some data have suggested that MSCs can promote angiogenesis, reduce inflammation and cell proliferation and increase collagen deposition. These functions are likely paracrine effects of MSCs, particularly mediated through exosomes. Here, we review the use of MSCs-related exosomes in tissues and organs. We also discuss their potential utility for treating rotator cuff injuries, and explore the underlying mechanisms of their effects.
Collapse
Affiliation(s)
- Jinbing He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shuai Ping
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, PR China
| | - Fangyang Yu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, PR China
| | - Xi Yuan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jiang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jun Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
18
|
Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12:673404. [PMID: 33959042 PMCID: PMC8093402 DOI: 10.3389/fphys.2021.673404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
Collapse
Affiliation(s)
- Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Osvaldo Contreras
- Departamento de Biología Celular y Molecular, Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
19
|
Ki SY, Lee YS, Kim JY, Lho T, Chung SW. Relationship between fatty infiltration and gene expression in patients with medium rotator cuff tear. J Shoulder Elbow Surg 2021; 30:387-395. [PMID: 32603896 DOI: 10.1016/j.jse.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Fatty infiltration (FI) is a key prognostic factor that affects outcomes after rotator cuff repair and is radiologically evaluated using the Goutallier classification. The purpose of this study was to assess alterations in gene and protein expression according to the Goutallier classification in the supraspinatus muscle and any relationships among various gene expression profiles. METHODS Twenty-four samples of the supraspinatus muscle from 12 patients with a high FI grade (grade 3 or 4) and 12 patients with a low FI grade (grade 1 or 2) with medium-sized tears were acquired during arthroscopic surgery. Alterations in the expression of genes and proteins associated with adipogenesis, fibrosis, inflammation, and muscle atrophy were compared between the high- and low-FI groups using reverse-transcription quantitative polymerase chain reaction, Western blotting, and immunohistochemistry. RESULTS mRNA expression of not only the adipogenic genes (peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α; P < .001 and P = .020) but also the fibrosis-related gene (α-smooth muscle actin; P < .001), inflammation-related genes (interleukin [IL]-1β and tumor necrosis factor α; P = .041 and P = .039), and muscle atrophy-related genes (atrogin 1 and myostatin; P = .006 and P < .001) was higher in the high-FI group compared with that in the low-FI group. In addition, adipogenic gene expression was significantly correlated with the expression of other categories of genes (all P < .05, except atrogin 1). A correlation of gene and protein expression was observed for IL-1β (P = .027) and myostatin (P = .029). CONCLUSIONS The radiologic grading of FI was associated with the expression of various genes, including adipogenic, fibrotic, inflammatory, and atrophy-related genes, and these genes were closely correlated with each other in terms of expression. This information could be helpful in patient counseling.
Collapse
Affiliation(s)
- Se-Young Ki
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yong-Soo Lee
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea; Joint Center, Barunsesang Hospital, Seongnam, Republic of Korea
| | - Ja-Yeon Kim
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Taewoo Lho
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seok Won Chung
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Agha O, Diaz A, Davies M, Kim HT, Liu X, Feeley BT. Rotator cuff tear degeneration and the role of fibro-adipogenic progenitors. Ann N Y Acad Sci 2020; 1490:13-28. [PMID: 32725671 DOI: 10.1111/nyas.14437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
The high prevalence of rotator cuff tears poses challenges to individual patients and the healthcare system at large. This orthopedic injury is complicated further by high rates of retear after surgical repair. Outcomes following repair are highly dependent upon the quality of the injured rotator cuff muscles, and it is, therefore, crucial that the pathophysiology of rotator cuff degeneration continues to be explored. Fibro-adipogenic progenitors, a major population of resident muscle stem cells, have emerged as the main source of intramuscular fibrosis and fatty infiltration, both of which are key features of rotator cuff muscle degeneration. Improvements to rotator cuff repair outcomes will likely require addressing the muscle pathology produced by these cells. The aim of this review is to summarize the current rotator cuff degeneration assessment tools, the effects of poor muscle quality on patient outcomes, the role of fibro-adipogenic progenitors in mediating muscle pathology, and how these cells could be leveraged for potential therapeutics to augment current rotator cuff surgical and rehabilitative strategies.
Collapse
Affiliation(s)
- Obiajulu Agha
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California.,San Francisco Veteran Affairs Health Care System, San Francisco, California
| | - Agustin Diaz
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California.,San Francisco Veteran Affairs Health Care System, San Francisco, California
| | - Michael Davies
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California.,San Francisco Veteran Affairs Health Care System, San Francisco, California
| | - Hubert T Kim
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California.,San Francisco Veteran Affairs Health Care System, San Francisco, California
| | - Xuhui Liu
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California.,San Francisco Veteran Affairs Health Care System, San Francisco, California
| | - Brian T Feeley
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California.,San Francisco Veteran Affairs Health Care System, San Francisco, California
| |
Collapse
|
21
|
Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders. Comput Med Imaging Graph 2020; 83:101733. [PMID: 32505943 PMCID: PMC9926537 DOI: 10.1016/j.compmedimag.2020.101733] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 11/21/2022]
Abstract
Fully-automated segmentation of pathological shoulder muscles in patients with musculo-skeletal diseases is a challenging task due to the huge variability in muscle shape, size, location, texture and injury. A reliable automatic segmentation method from magnetic resonance images could greatly help clinicians to diagnose pathologies, plan therapeutic interventions and predict interventional outcomes while eliminating time consuming manual segmentation. The purpose of this work is three-fold. First, we investigate the feasibility of automatic pathological shoulder muscle segmentation using deep learning techniques, given a very limited amount of available annotated pediatric data. Second, we address the learning transferability from healthy to pathological data by comparing different learning schemes in terms of model generalizability. Third, extended versions of deep convolutional encoder-decoder architectures using encoders pre-trained on non-medical data are proposed to improve the segmentation accuracy. Methodological aspects are evaluated in a leave-one-out fashion on a dataset of 24 shoulder examinations from patients with unilateral obstetrical brachial plexus palsy and focus on 4 rotator cuff muscles (deltoid, infraspinatus, supraspinatus and subscapularis). The most accurate segmentation model is partially pre-trained on the large-scale ImageNet dataset and jointly exploits inter-patient healthy and pathological annotated data. Its performance reaches Dice scores of 82.4%, 82.0%, 71.0% and 82.8% for deltoid, infraspinatus, supraspinatus and subscapularis muscles. Absolute surface estimation errors are all below 83 mm2 except for supraspinatus with 134.6 mm2. The contributions of our work offer new avenues for inferring force from muscle volume in the context of musculo-skeletal disorder management.
Collapse
|
22
|
Ravn MK, Ostergaard TI, Schroeder HD, Nyengaard JR, Lambertsen KL, Frich LH. Supraspinatus and deltoid muscle fiber composition in rotator cuff tear conditions. JSES Int 2020; 4:431-437. [PMID: 32939464 PMCID: PMC7479021 DOI: 10.1016/j.jseint.2020.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Rotator cuff (RC) tears are associated with RC muscle atrophy and changes in composition that are crucial to the prognosis of RC repair. The aim of this study was to characterize muscle fiber composition in the supraspinatus (SS) muscle under tear conditions. Methods Muscle biopsies were obtained from 21 patients undergoing surgery for an RC tendon tear. Biopsies were obtained from the musculotendinous junction of the SS muscle, and control biopsies were harvested from the deltoid muscle (DT). Biopsies were immunohistochemically processed for detection of type 1 (slow type) and type 2 (fast type) fibers and analyzed using unbiased, stereological principles. We counted the total numbers of type 1 and 2 muscle fibers/mm2, and fiber diameter was used to estimate muscle fiber atrophy and hypertrophy. Results We found significantly more type 2 cells/mm2 in the SS compared with the DT (P < .01). In addition, we found a significantly higher fraction of type 1 fibers than type 2 fibers in the DT (P < .01), whereas both fiber types were equally present in the SS. The diameters of SS cells were generally smaller than those of DT cells. Atrophy of especially SS type 2 fibers was also demonstrated. Fiber atrophy was more pronounced in men than women. Conclusion The changes in the composition of SS muscle cell types suggest a shift from type 1 to type 2 muscle fibers and atrophy of both type 1 and 2 fibers. This composition indicates loss of endurance and rapid fatigue of the SS muscle under RC tear conditions.
Collapse
Affiliation(s)
- Morten Kjaer Ravn
- Department of Orthopaedics, Odense University Hospital, Odense, Denmark.,The Orthopaedic Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Trine Ivarsen Ostergaard
- Department of Orthopaedics, Odense University Hospital, Odense, Denmark.,The Orthopaedic Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Jens Randel Nyengaard
- Department of Clinical Medicine - Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Henrik Frich
- Department of Orthopaedics, Odense University Hospital, Odense, Denmark.,The Orthopaedic Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Kunz P, Mick P, Gross S, Schmidmaier G, Zeifang F, Weber MA, Fischer C. Contrast-Enhanced Ultrasound (CEUS) as Predictor for Early Retear and Functional Outcome After Supraspinatus Tendon Repair. J Orthop Res 2020; 38:1150-1158. [PMID: 31769543 DOI: 10.1002/jor.24535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/19/2019] [Indexed: 02/04/2023]
Abstract
Supraspinatus (SSP) tendon tears represent a common indication for shoulder surgery. Yet, prediction of postoperative function and tendon retear remains challenging and primarily relies on morphologic magnetic resonance imaging (MRI)-based parameters, supported by patients' demographic data like age, gender, and comorbidities. Considering continuously high retear rates, especially in patients with larger tears and negative prognostic factors, improved outcome prediction could be of high clinical value. Contrast-enhanced ultrasound (CEUS) enables an assessment of dynamic perfusion of the SSP muscle. As a potential surrogate for muscle vitality, CEUS might reflect functional properties of the SSP and support improved outcome prediction after tendon repair. Fifty patients with isolated SSP tendon tears were prospectively enrolled. Preoperatively, SSP muscle perfusion was quantified by CEUS and conventional morphologic parameters like tear size, fatty infiltration, and tendon retraction were assessed by MRI. At six months follow-up, shoulder function, tendon integrity, and muscle perfusion were reassessed. The predictive value of preoperative CEUS for postoperative shoulder function and tendon integrity was evaluated. 35 patients entered the statistical analysis. Preoperative CEUS-based assessment of SSP perfusion significantly correlated with early postoperative shoulder function (Constant, r = 0.48, p < 0.018) and tendon retear (r = 0.67, p < 0.001). CEUS-based subgroup analysis identified patients with exceptionally high, respectively low risk for tendon retear. CEUS-based assessment of the SSP seemed to predict early shoulder function and tendon retear after SSP repair and allowed to identify patient subgroups with exceptionally high or low risk for tendon retear. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 38:1150-1158, 2020.
Collapse
Affiliation(s)
- Pierre Kunz
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.,Clinic for Shoulder and Elbow Surgery, Catholic Hospital Mainz, An der Goldgrube 11, 55131, Mainz, Germany
| | - Paul Mick
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Sascha Gross
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| | - Felix Zeifang
- Ethianum Klinik Heidelberg, Voßstraße 6, 69115, Heidelberg, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, University Medical Center Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Christian Fischer
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany
| |
Collapse
|
24
|
Lin DJ, Burke CJ, Abiri B, Babb JS, Adler RS. Supraspinatus muscle shear wave elastography (SWE): detection of biomechanical differences with varying tendon quality prior to gray-scale morphologic changes. Skeletal Radiol 2020; 49:731-738. [PMID: 31811348 DOI: 10.1007/s00256-019-03334-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to determine whether SWE can detect biomechanical changes in the supraspinatus muscle that occur with increasing supraspinatus tendon abnormality prior to morphologic gray-scale changes. MATERIALS AND METHODS An IRB approved, HIPAA compliant retrospective study of shoulder ultrasounds from 2013-2018 was performed. The cohort consisted of 88 patients (mean age 55 ± 15 years old) with 110 ultrasounds. Images were acquired in longitudinal orientation to the supraspinatus muscle with shear wave velocity (SWV) point quantification. The tendon and muscle were graded in order of increasing tendinosis/tear (1-4 scale) and increasing fatty infiltration (0-3 scale). Mixed model analysis of variance, analysis of covariance, and Spearman rank correlation were used for statistical analysis. RESULTS There was no statistically significant age or sex dependence for supraspinatus muscle SWV (p = 0.314, 0.118, respectively). There was no significant correlation between muscle SWV and muscle or tendon grade (p = 0.317, 0.691, respectively). In patients with morphologically normal muscle on gray-scale ultrasound, there were significant differences in muscle SWV when comparing tendon grade 3 with grades 1, 2, and 4 (p = 0.018, 0.025, 0.014, respectively), even when adjusting for gender and age (p = 0.044, 0.028, 0.018, respectively). Pairwise comparison of tendon grades other than those mentioned did not achieve statistical significance (p > 0.05). CONCLUSION SWE can detect biomechanical differences within the supraspinatus muscle that are not morphologically evident on gray-scale ultrasound. Specifically, supraspinatus tendon partial tears with moderate to severe tendinosis may correspond to biomechanically distinct muscle properties compared to both lower grades of tendon abnormality and full-thickness tears.
Collapse
Affiliation(s)
- Dana J Lin
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 East 17th Street, 6th Floor, New York, NY, 10003, USA
| | - Christopher J Burke
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 East 17th Street, 6th Floor, New York, NY, 10003, USA
| | - Benjamin Abiri
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 East 17th Street, 6th Floor, New York, NY, 10003, USA
| | - James S Babb
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 East 17th Street, 6th Floor, New York, NY, 10003, USA
| | - Ronald S Adler
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 East 17th Street, 6th Floor, New York, NY, 10003, USA.
| |
Collapse
|
25
|
Flück M, Fitze D, Ruoss S, Valdivieso P, von Rechenberg B, Bratus-Neuenschwander A, Opitz L, Hu J, Laczko E, Wieser K, Gerber C. Down-Regulation of Mitochondrial Metabolism after Tendon Release Primes Lipid Accumulation in Rotator Cuff Muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1513-1529. [PMID: 32305353 DOI: 10.1016/j.ajpath.2020.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Atrophy and fat accumulation are debilitating aspects of muscle diseases and are rarely prevented. Using a vertical approach combining anatomic techniques with omics methodology in a tenotomy-induced sheep model of rotator cuff disease, we tested whether mitochondrial dysfunction is implicated in muscle wasting and perturbed lipid metabolism, speculating that both can be prevented by the stimulation of β-oxidation with l-carnitine. The infraspinatus muscle lost 22% of its volume over the first 6 weeks after tenotomy before the area-percentage of lipid increased from 8% to 18% at week 16. Atrophy was associated with the down-regulation of mitochondrial transcripts and protein and a slow-to-fast shift in muscle composition. Correspondingly, amino acid levels were increased 2 weeks after tendon release, when the levels of high-energy phosphates and glycerophospholipids were lowered. l-Carnitine administration (0.9 g/kg per day) prevented atrophy over the first 2 weeks, and mitigated alterations of glutamate, glycerophospholipids, and carnitine levels in released muscle, but did not prevent the level decrease in high-energy phosphates or protein constituents of mitochondrial respiration, promoting the accumulation of longer lipids with an increasing saturation. We conclude that the early phase of infraspinatus muscle degeneration after tendon release involves the elimination of oxidative characteristics associated with an aberrant accumulation of lipid species but is largely unrelated to the prevention of atrophy with oral l-carnitine administration.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Daniel Fitze
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Severin Ruoss
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Vetsuisse Faculty, Musculoskeletal Research Unit, Competence Center for Applied Biotechnology, University of Zurich, Zurich, Switzerland
| | | | - Lennart Opitz
- Functional Genomics Center Zurich, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Junmin Hu
- Functional Genomics Center Zurich, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Center Zurich, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Karl Wieser
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Christian Gerber
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
26
|
Abstract
Muscle atrophy in shoulders with rotator cuff tendon tears is a negative prognosticator, associated with decreased function, decreased reparability, increased retears after repair, and poorer outcomes after surgery. Muscle edema or atrophy within a neurologic distribution characterizes denervation. Because most nerve entrapments around the shoulder are not caused by mass lesions and show no nerve findings on routine MR imaging sequences, pattern of muscle denervation is often the best clue to predicting location of nerve dysfunction, which narrows the differential diagnosis and guides clinical management. The exception is suprascapular nerve compression in the spinoglenoid notch caused by a compressing cyst.
Collapse
Affiliation(s)
- David A Rubin
- All Pro Orthopedic Imaging Consultants, LLC, St Louis, MO, USA; Radsource, Brentwood, TN, USA; NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
27
|
Reifenrath J, Wellmann M, Kempfert M, Angrisani N, Welke B, Gniesmer S, Kampmann A, Menzel H, Willbold E. TGF-β3 Loaded Electrospun Polycaprolacton Fibre Scaffolds for Rotator Cuff Tear Repair: An in Vivo Study in Rats. Int J Mol Sci 2020; 21:E1046. [PMID: 32033294 PMCID: PMC7036781 DOI: 10.3390/ijms21031046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Biological factors such as TGF-β3 are possible supporters of the healing process in chronic rotator cuff tears. In the present study, electrospun chitosan coated polycaprolacton (CS-g-PCL) fibre scaffolds were loaded with TGF-β3 and their effect on tendon healing was compared biomechanically and histologically to unloaded fibre scaffolds in a chronic tendon defect rat model. The biomechanical analysis revealed that tendon-bone constructs with unloaded scaffolds had significantly lower values for maximum force compared to native tendons. Tendon-bone constructs with TGF-β3-loaded fibre scaffolds showed only slightly lower values. In histological evaluation minor differences could be observed. Both groups showed advanced fibre scaffold degradation driven partly by foreign body giant cell accumulation and high cellular numbers in the reconstructed area. Normal levels of neutrophils indicate that present mast cells mediated rather phagocytosis than inflammation. Fibrosis as sign of foreign body encapsulation and scar formation was only minorly present. In conclusion, TGF-β3-loading of electrospun PCL fibre scaffolds resulted in more robust constructs without causing significant advantages on a cellular level. A deeper investigation with special focus on macrophages and foreign body giant cells interactions is one of the major foci in further investigations.
Collapse
Affiliation(s)
- Janin Reifenrath
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Mathias Wellmann
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
| | - Merle Kempfert
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Nina Angrisani
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Haubergstraße 3, 30625 Hannover, Germany
| | - Sarah Gniesmer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Clinic for Cranio–Maxillo–Facial Surgery, Hannover Medical School, Carl–Neuberg–Straße 1, 30625 Hannover, Germany
| | - Andreas Kampmann
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Clinic for Cranio–Maxillo–Facial Surgery, Hannover Medical School, Carl–Neuberg–Straße 1, 30625 Hannover, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
| | - Elmar Willbold
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
28
|
Oehler N, Ruby JK, Strahl A, Maas R, Ruether W, Niemeier A. Hip abductor tendon pathology visualized by 1.5 versus 3. 0 Tesla MRIs. Arch Orthop Trauma Surg 2020; 140:145-153. [PMID: 31243547 DOI: 10.1007/s00402-019-03228-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Hip abductor tendinopathies are becoming increasingly recognized as clinically relevant disorders. However, knowledge about prevalence of abductor tendinopathies and associated disorders of adjacent hip articular and periarticular structures is limited. In this context, the relative diagnostic value of 1.5-T vs. 3.0-T MRI magnets has not been studied yet. MATERIALS AND METHODS Pelvic MRI scans of 1000 hips from 500 consecutive unselected patients (341 in 3.0-T/159 in 1.5-T magnets, with standardized scanning protocols over the entire study period) were analysed for the detection of abductor tendinosis, calcifying tendinitis, partial or full-thickness tears of the M. gluteus medius (GMed) and/or -minimus (GMin) and trochanteric bursitis (TB). The occurrence of these lesions was correlated to the presence of muscle atrophy (MA) of GMed/GMin, hip joint effusion (JE) and osteoarthritis (OA). RESULTS Peritrochanteric lesions were observed with a prevalence of 31.4% of all patients (22.3% of all hips). TB occurred almost exclusively in the presence of GMed/GMin tendinopathies. Compared to overall prevalence, patients with MA displayed lesions of GMed/GMin or TB in 70%, patients, with OA in 30% and with JE in 23%. These lesions occurred significantly more often ipsilateral to MA and OA than contralateral (MA: 76.8% vs. 23.2%, p < 0.001; OA: 64.4% vs. 35.6%, p = 0.03; JE: 62.7% vs. 37.3%, p = 0.08). Significantly more tendon lesions, in particular specific radiological diagnoses like partial/full-thickness tears, were detected by 3.0-T MRI than by 1.5 T (p = 0.019). CONCLUSIONS Peritrochanteric lesions are a prevalent pathology that should specifically be looked for, preferably by 3.0-T MRI, independent of concomitant hip joint pathology.
Collapse
Affiliation(s)
- Nicola Oehler
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Julia Kristin Ruby
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Department of Radiology and Nuclear Medicine, Schwarzwald-Baar Clinic, Klinikstrasse 11, 78052, Villingen-Schwenningen, Germany
| | - André Strahl
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rainer Maas
- Institute of Radiology and Neuroradiology, Raboisen 40, 20095, Hamburg, Germany
| | - Wolfgang Ruether
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Andreas Niemeier
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
29
|
Willbold E, Wellmann M, Welke B, Angrisani N, Gniesmer S, Kampmann A, Hoffmann A, Cassan D, Menzel H, Hoheisel AL, Glasmacher B, Reifenrath J. Possibilities and limitations of electrospun chitosan‐coated polycaprolactone grafts for rotator cuff tear repair. J Tissue Eng Regen Med 2019; 14:186-197. [DOI: 10.1002/term.2985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/27/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Elmar Willbold
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Mathias Wellmann
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
| | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
| | - Nina Angrisani
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Sarah Gniesmer
- Clinic for Cranio‐Maxillo‐Facial SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Andreas Kampmann
- Clinic for Cranio‐Maxillo‐Facial SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Andrea Hoffmann
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Dominik Cassan
- Institute for Technical ChemistryBraunschweig University of Technology Braunschweig Germany
| | - Henning Menzel
- Institute for Technical ChemistryBraunschweig University of Technology Braunschweig Germany
| | - Anna Lena Hoheisel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
- Institute for Multiphase ProcessesLeibniz University Hannover Hannover Germany
| | - Birgit Glasmacher
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
- Institute for Multiphase ProcessesLeibniz University Hannover Hannover Germany
| | - Janin Reifenrath
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| |
Collapse
|
30
|
Thankam FG, Boosani CS, Dilisio MF, Gross RM, Agrawal DK. Genes interconnecting AMPK and TREM-1 and associated microRNAs in rotator cuff tendon injury. Mol Cell Biochem 2019; 454:97-109. [PMID: 30306456 PMCID: PMC6438203 DOI: 10.1007/s11010-018-3456-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022]
Abstract
Fatty infiltration and inflammation delay the healing responses and raise major concerns in the therapeutic management of rotator cuff tendon injuries (RCTI). Our evaluations showed the upregulation of 'metabolic check point' AMPK and inflammatory molecule, TREM-1 from shoulder biceps tendons collected from RCTI subjects. However, the epigenetic regulation of these biomolecules by miRNAs is largely unknown and it is likely that a deeper understanding of the mechanism of action can have therapeutic potential for RCTI. Based on this background, we have evaluated the miRNAs from RCTI patients with fatty infiltration and inflammation (FI group) and compared with RCTI patients without fatty infiltration and inflammation (No-FI group). NetworkAnalyst was employed to evaluate the genes interconnecting AMPK and TREM-1 pathway, using PRKAA1 (AMPK), TREM-1, HIF1α, HMGB1, and AGER as input genes. The most relevant miRNAs were screened by considering the fold change below - 7.5 and the number of target genes 10 and more which showed 13 miRNAs and 216 target genes. The exact role of these miRNAs in the fatty infiltration and inflammation associated with RCTI is still unknown and the understanding of biological activity of these miRNAs can pave ways to develop miRNA-based therapeutics in the management of RCTI.
Collapse
Affiliation(s)
- Finosh G Thankam
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Chandra S Boosani
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Matthew F Dilisio
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - R Michael Gross
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA.
- Department of Clinical & Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
31
|
Michelin P, Legrand J, Lee KS, Leleup G, Etancelin M, Banse C, Dacher JN, Duparc F. Axillary Sonography of the Shoulder: An Adjunctive Approach. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:2707-2715. [PMID: 29575005 DOI: 10.1002/jum.14601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
Sonography of the shoulder is widely used to assess various disorders, including tendinous diseases of the rotator cuff and the long head of the biceps brachii muscle. The shoulder is commonly explored through anterior, superior, and posterior approaches, but the inferior axillary approach is rarely considered in the literature. However, this technique allows the direct visualization of relevant anatomic structures. The aim of this pictorial essay is, first, to technically describe this approach and the normal musculoskeletal sonographic anatomy of the region and, second, to present the sonographic findings of shoulder disorders that may be helpfully explored this technique.
Collapse
Affiliation(s)
- Paul Michelin
- Department of Radiology, Rouen University Hospital, Rouen, France
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy of Rouen, University of Normandie, Rouen, France
- CETAPS Laboratory, Faculty of Sports Science of Rouen, University of Normandie, Rouen, France
| | - Julie Legrand
- Department of Radiology, Rouen University Hospital, Rouen, France
| | - Kenneth S Lee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Grégoire Leleup
- Department of Radiology, Rouen University Hospital, Rouen, France
| | | | - Christopher Banse
- Department of Rheumatology, Rouen University Hospital, Rouen, France
| | | | - Fabrice Duparc
- Department of Orthopedic Surgery and Traumatology, Rouen University Hospital, Rouen, France
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy of Rouen, University of Normandie, Rouen, France
- CETAPS Laboratory, Faculty of Sports Science of Rouen, University of Normandie, Rouen, France
| |
Collapse
|
32
|
Wang Z, Liu X, Davies MR, Horne D, Kim H, Feeley BT. A Mouse Model of Delayed Rotator Cuff Repair Results in Persistent Muscle Atrophy and Fatty Infiltration. Am J Sports Med 2018; 46:2981-2989. [PMID: 30198747 PMCID: PMC6730552 DOI: 10.1177/0363546518793403] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuff (RC) tears are common tendon injuries seen in orthopaedic patients. Successful repair of large and massive RC tears remains a challenge due to our limited understanding of the pathophysiological features of this injury. Clinically relevant small animal models that can be used to study the pathophysiological response to repair are limited by the lack of chronic repair models. PURPOSE To develop a highly clinically relevant mouse model of delayed RC repair. STUDY DESIGN Controlled laboratory study. METHODS Three-month-old C57BL/6J mice underwent unilateral supraspinatus (SS) and infraspinatus (IS) tendon tear with immediate, 2-week delayed, or 6-week delayed tendon repair. Animals with no repair or sham surgery served as controls. Gait analysis was conducted to measure shoulder function at 2 weeks and 6 weeks after surgery. Animals were sacrificed 6 weeks after the last surgery. Shoulder joint, SS, and IS muscles were harvested and analyzed histologically. Ex vivo mechanical testing of intact and repaired SS and IS tendons was conducted. Reverse-transcriptase polymerase chain reaction was performed on SS and IS muscles to quantify atrophy, fibrosis, and fatty infiltration-related gene expression. RESULTS Histological and tendon mechanical testing showed that torn tendons could be successfully repaired as late as 6 weeks after transection. However, significant atrophy and fatty infiltration of muscle, with impaired shoulder function, were persistent in the 6-week delayed repair group. Shoulder function correlated with the severity of RC muscle weight loss and fatty infiltration. CONCLUSION We successfully developed a clinically relevant mouse model of delayed RC repair. Six-week delayed RC repair resulted in persistent muscle atrophy and fatty infiltration with inferior shoulder function compared with acute repair. CLINICAL RELEVANCE Our novel mouse model could serve as a powerful tool to understand the pathophysiological and cellular/molecular mechanisms of RC muscle and tendon degeneration, eventually improving our strategies for treating and repairing RC tears.
Collapse
Affiliation(s)
- Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Xuhui Liu
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Michael R. Davies
- Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Devante Horne
- Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Hubert Kim
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| | - Brian T. Feeley
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, CA. USA.,Department of Orthopedic Surgery, University of California at San Francisco, San Francisco, CA. USA
| |
Collapse
|
33
|
Kälin PS, Crawford RJ, Marcon M, Manoliu A, Bouaicha S, Fischer MA, Ulbrich EJ. Shoulder muscle volume and fat content in healthy adult volunteers: quantification with DIXON MRI to determine the influence of demographics and handedness. Skeletal Radiol 2018; 47:1393-1402. [PMID: 29687149 DOI: 10.1007/s00256-018-2945-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/05/2018] [Accepted: 04/02/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We aimed to provide mean values for fat-fraction and volume for full-length bilateral rotator cuff and deltoid muscles in asymptomatic adults selected on the basis of their good musculoskeletal and systemic health, and to understand the influence of gender, age, and arm dominance. MATERIALS AND METHODS Seventy-six volunteers aged 20 to 60 years who were screened for normal BMI and high general health were included in the study. MRI was performed at 3 Tesla using three-point DIXON sequences. Volume and fat-signal fraction of the rotator cuff muscles and the deltoid muscle were determined with semi-automated segmentation of entire muscle lengths. Differences according to age, gender, and handedness per muscle were evaluated. RESULTS Fat-signal fractions were comparable between genders (mean ± 2 SD, 95% CI, women 7.0 ± 3.0; 6.8-7.2%, men 6.8 ± 2.7; 6.7-7.0%) but did not show convincing changes with age. Higher shoulder muscle volume and lower fat-signal fraction in the dominant arm were shown for teres minor and deltoid (p < 0.01) with similar trends shown for the other rotator cuff muscles. CONCLUSIONS Bilateral fat-signal fractions and volumes based on entire length shoulder muscles in asymptomatic 20-60 year old adults may provide reference for clinicians. Differences shown according to arm dominance should be considered and may rationalize the need for bilateral imaging in determining appropriate management.
Collapse
Affiliation(s)
- Pascal S Kälin
- Department of Radiology, University Hospital and University of Zurich, Ramistrasse 100, 8091, Zurich, Switzerland.
| | - Rebecca J Crawford
- Centre for Health Sciences, Zurich University of Applied Sciences, Winterthur, Switzerland.,Faculty of Health Professions, Curtin University, Perth, Australia
| | - Magda Marcon
- Department of Radiology, University Hospital and University of Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Samy Bouaicha
- Department of Orthopedics, University Hospital Balgrist and University of Zurich, Zurich, Switzerland
| | | | - Erika J Ulbrich
- Department of Radiology, University Hospital and University of Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
34
|
Fischer C, Gross S, Zeifang F, Schmidmaier G, Weber MA, Kunz P. Contrast-Enhanced Ultrasound Determines Supraspinatus Muscle Atrophy After Cuff Repair and Correlates to Functional Shoulder Outcome. Am J Sports Med 2018; 46:2735-2742. [PMID: 30080421 DOI: 10.1177/0363546518787266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Muscle degeneration as a consequence of rotator cuff tears is mainly assessed by magnetic resonance imaging. Contrast-enhanced ultrasound (CEUS) is a new functional imaging method to assess microvascular perfusion as a fundamental parameter of muscle tissue vitality. In this cross-sectional study, the authors evaluated supraspinatus muscle perfusion after cuff repair and analyzed its association with functional shoulder outcome and the grade of echogenicity in B-mode ultrasound indicating fatty infiltration. HYPOTHESIS The authors expected reduced microperfusion of the operated versus the contralateral supraspinatus muscle and a correlation of the muscular microperfusion with functional shoulder outcome. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Patients who received unilateral repair of the supraspinatus tendon between 2009 and 2014 were invited for a single follow-up examination. Functional scores were assessed, including the Constant-Murley score and American Shoulder and Elbow Surgeons score. CEUS examination was performed bilaterally in an oblique sagittal plane of the supraspinatus fossa. Perfusion was quantified by the parameters wash-in perfusion index (WiPI) and peak enhancement via VueBox quantification software. The results of the Constant-Murley score, American Shoulder and Elbow Surgeons score, and perfusion parameters were referenced to the contralateral shoulder. Echogenicity of the supraspinatus muscle was classified with a 3-point scale as compared with the trapezius muscle. RESULTS Sixty-seven patients were available, with a mean follow-up of 38.0 ± 18.5 months. Functional assessment showed impaired shoulder function on the operated shoulder as compared with the contralateral side (relative Constant Score [CS], 80% ± 19%). CEUS revealed diminished perfusion on the operated shoulder (WiPI, 55.1% ± 40.2%, P < .001). A strong correlation could be demonstrated between the perfusion deficit and functional impairment (relative WiPI and CS: rs = .644, P < .001). Higher grade of echogenicity in B-mode ultrasound was associated with reduced perfusion. CONCLUSION CEUS could visualize impaired supraspinatus muscle perfusion after rotator cuff repair as compared with the contralateral, healthy shoulder. With its ability to quantify microvascular perfusion as a surrogate parameter for muscle vitality and function, CEUS may serve as a quantitative method to evaluate rotator cuff muscles.
Collapse
Affiliation(s)
- Christian Fischer
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany
| | - Sascha Gross
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Zeifang
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, University Medical Center Rostock, Rostock, Germany
| | - Pierre Kunz
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany.,Shoulder and Elbow Surgery, Catholic Hospital Mainz, Mainz, Germany
| |
Collapse
|
35
|
Flück M, Valdivieso P, Ruoss S, von Rechenberg B, Benn MC, Meyer DC, Wieser K, Gerber C. Neurectomy preserves fast fibers when combined with tenotomy of infraspinatus muscle via upregulation of myogenesis. Muscle Nerve 2018; 59:100-107. [PMID: 30073680 DOI: 10.1002/mus.26316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 11/10/2022]
Abstract
INTRODUCTION We evaluated the contribution of denervation-related molecular processes to rotator cuff muscle degeneration after tendon release. METHODS We assessed the levels of myogenic (myogenin and myogenic differentiation factor [myoD]) and proadipogenic (peroxisome proliferator-activated receptor γ) transcription factors; the denervation-associated proteins tenascin-C, laminin-2, and calcium/calmodulin-dependent kinase II (CaMKII); and cellular alterations in sheep after infraspinatus tenotomy (TEN), suprascapular neurectomy (NEU), or both (TEN-NEU). RESULTS Extracellular ground substance increased at the expense of contractile tissue 16 weeks after surgery, correlating with CaMKII isoform levels. Sheep undergoing NEU and TEN-NEU had exaggerated infraspinatus atrophy and increased fast fibers compared with TEN sheep. The βMCaMKII isoform levels increased with TEN, and myoD levels tripled after denervation and were associated with slow fibers. DISCUSSION In sheep, denervation did not affect muscle-to-fat conversion after TEN of the infraspinatus. Furthermore, concurrent NEU mitigated the loss of fast fibers after TEN by inducing a fast-contractile phenotype. Muscle Nerve 59:100-107, 2019.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Lengghalde 5, Balgrist Campus, 8008, Zurich, Switzerland.,Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Lengghalde 5, Balgrist Campus, 8008, Zurich, Switzerland
| | - Severin Ruoss
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Lengghalde 5, Balgrist Campus, 8008, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Department of Molecular Mechanisms, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Mario C Benn
- Musculoskeletal Research Unit, Department of Molecular Mechanisms, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Dominik C Meyer
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Karl Wieser
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Christian Gerber
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Pagano AF, Brioche T, Arc-Chagnaud C, Demangel R, Chopard A, Py G. Short-term disuse promotes fatty acid infiltration into skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:335-347. [PMID: 29248005 PMCID: PMC5879967 DOI: 10.1002/jcsm.12259] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/10/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Many physiological and/or pathological conditions lead to muscle deconditioning, a well-described phenomenon characterized by a loss of strength and muscle power mainly due to the loss of muscle mass. Fatty infiltrations, or intermuscular adipose tissue (IMAT), are currently well-recognized components of muscle deconditioning. Despite the fact that IMAT is present in healthy human skeletal muscle, its increase and accumulation are linked to muscle dysfunction. Although IMAT development has been largely attributable to inactivity, the precise mechanisms of its establishment are still poorly understood. Because the sedentary lifestyle that accompanies age-related sarcopenia may favour IMAT development, deciphering the early processes of muscle disuse is of great importance before implementing strategies to limit IMAT deposition. METHODS In our study, we took advantage of the dry immersion (DI) model of severe muscle inactivity to induce rapid muscle deconditioning during a short period. During the DI, healthy adult men (n = 12; age: 32 ± 5) remained strictly immersed, in a supine position, in a controlled thermo-neutral water bath. Skeletal muscle biopsies were obtained from the vastus lateralis before and after 3 days of DI. RESULTS We showed that DI for only 3 days was able to decrease myofiber cross-sectional areas (-10.6%). Moreover, protein expression levels of two key markers commonly used to assess IMAT, perilipin, and fatty acid binding protein 4, were upregulated. We also observed an increase in the C/EBPα and PPARγ protein expression levels, indicating an increase in late adipogenic processes leading to IMAT development. While many stem cells in the muscle environment can adopt the capacity to differentiate into adipocytes, fibro-adipogenic progenitors (FAPs) represent the population that appears to play a major role in IMAT development. In our study, we showed an increase in the protein expression of PDGFRα, the specific cell surface marker of FAPs, in response to 3 days of DI. It is well recognized that an unfavourable muscle environment drives FAPs to ectopic adiposity and/or fibrosis. CONCLUSIONS This study is the first to emphasize that during a short period of severe inactivity, muscle deconditioning is associated with IMAT development. Our study also reveals that FAPs could be the main resident muscle stem cell population implicated in ectopic adiposity development in human skeletal muscle.
Collapse
Affiliation(s)
- Allan F Pagano
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Thomas Brioche
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Coralie Arc-Chagnaud
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France.,Freshage Research Group - Dept. Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Rémi Demangel
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Angèle Chopard
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Guillaume Py
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| |
Collapse
|
37
|
Baumer TG, Dischler J, Davis L, Labyed Y, Siegal DS, van Holsbeeck M, Moutzouros V, Bey MJ. Effects of age and pathology on shear wave speed of the human rotator cuff. J Orthop Res 2018; 36:282-288. [PMID: 28657192 PMCID: PMC7050544 DOI: 10.1002/jor.23641] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/25/2017] [Indexed: 02/04/2023]
Abstract
Rotator cuff tears are common and often repaired surgically, but post-operative repair tissue healing, and shoulder function can be unpredictable. Tear chronicity is believed to influence clinical outcomes, but conventional clinical approaches for assessing tear chronicity are subjective. Shear wave elastography (SWE) is a promising technique for assessing soft tissue via estimates of shear wave speed (SWS), but this technique has not been used extensively on the rotator cuff. Specifically, the effects of age and pathology on rotator cuff SWS are not well known. The objectives of this study were to assess the association between SWS and age in healthy, asymptomatic subjects, and to compare measures of SWS between patients with a rotator cuff tear and healthy, asymptomatic subjects. SWE images of the supraspinatus muscle and intramuscular tendon were acquired from 19 asymptomatic subjects and 11 patients with a rotator cuff tear. Images were acquired with the supraspinatus under passive and active (i.e., minimal activation) conditions. Mean SWS was positively associated with age in the supraspinatus muscle and tendon under passive and active conditions (p ≤ 0.049). Compared to asymptomatic subjects, patients had a lower mean SWS in their muscle and tendon under active conditions (p ≤ 0.024), but no differences were detected under passive conditions (p ≥ 0.783). These findings identify the influences of age and pathology on SWS in the rotator cuff. These preliminary findings are an important step toward evaluating the clinical utility of SWE for assessing rotator cuff pathology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:282-288, 2018.
Collapse
Affiliation(s)
- Timothy G. Baumer
- Department of Orthopaedic Surgery, Bone and Joint Center, Henry Ford Health System, 6135 Woodward Ave, Detroit, Michigan
| | - Jack Dischler
- Department of Orthopaedic Surgery, Bone and Joint Center, Henry Ford Health System, 6135 Woodward Ave, Detroit, Michigan
| | - Leah Davis
- Department of Radiology, Henry Ford Health System, Detroit, Michigan
| | - Yassin Labyed
- Ultrasound Division, Siemens Medical Solutions USA Inc., Detroit, Michigan
| | - Daniel S. Siegal
- Department of Radiology, Henry Ford Health System, Detroit, Michigan
| | | | - Vasilios Moutzouros
- Department of Orthopaedic Surgery, Sports Medicine Division, Henry Ford Health System, Detroit, Michigan
| | - Michael J. Bey
- Department of Orthopaedic Surgery, Bone and Joint Center, Henry Ford Health System, 6135 Woodward Ave, Detroit, Michigan
| |
Collapse
|
38
|
Valencia AP, Iyer SR, Spangenburg EE, Gilotra MN, Lovering RM. Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear. BMC Musculoskelet Disord 2017; 18:436. [PMID: 29121906 PMCID: PMC5679320 DOI: 10.1186/s12891-017-1789-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/26/2017] [Indexed: 01/16/2023] Open
Abstract
Background Rotator cuff (RTC) tears are a common clinical problem resulting in adverse changes to the muscle, but there is limited information comparing histopathology to contractile function. This study assessed supraspinatus force and susceptibility to injury in the rat model of RTC tear, and compared these functional changes to histopathology of the muscle. Methods Unilateral RTC tears were induced in male rats via tenotomy of the supraspinatus and infraspinatus. Maximal tetanic force and susceptibility to injury of the supraspinatus muscle were measured in vivo at day 2 and day 15 after tenotomy. Supraspinatus muscles were weighed and harvested for histologic analysis of the neuromuscular junction (NMJ), intramuscular lipid, and collagen. Results Tenotomy resulted in eventual atrophy and weakness. Despite no loss in muscle mass at day 2 there was a 30% reduction in contractile force, and a decrease in NMJ continuity and size. Reduced force persisted at day 15, a time point when muscle atrophy was evident but NMJ morphology was restored. At day 15, torn muscles had decreased collagen-packing density and were also more susceptible to contraction-induced injury. Conclusion Muscle size and histopathology are not direct indicators of overall RTC contractile health. Changes in NMJ morphology and collagen organization were associated with changes in contractile function and thus may play a role in response to injury. Although our findings are limited to the acute phase after a RTC tear, the most salient finding is that RTC tenotomy results in increased susceptibility to injury of the supraspinatus.
Collapse
Affiliation(s)
- Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA.,Department of Kinesiology, University of Maryland School of Public Health, College Park, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Mohit N Gilotra
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA.
| |
Collapse
|
39
|
Deprés-Tremblay G, Chevrier A, Hurtig MB, Snow M, Rodeo S, Buschmann MD. Freeze-Dried Chitosan-Platelet-Rich Plasma Implants for Rotator Cuff Tear Repair: Pilot Ovine Studies. ACS Biomater Sci Eng 2017; 4:3737-3746. [DOI: 10.1021/acsbiomaterials.7b00354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Mark B Hurtig
- Department of Clinical Studies, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Martyn Snow
- The Royal Orthopaedic Hospital, Birmingham B31 2Ap, United Kingdom
| | - Scott Rodeo
- Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, New York 10021, United States
| | | |
Collapse
|
40
|
Lee YS, Kim JY, Oh KS, Chung SW. Fatty acid-binding protein 4 regulates fatty infiltration after rotator cuff tear by hypoxia-inducible factor 1 in mice. J Cachexia Sarcopenia Muscle 2017; 8:839-850. [PMID: 28382782 PMCID: PMC5659062 DOI: 10.1002/jcsm.12203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Fatty infiltration in skeletal muscle is directly linked to loss of muscle strength and is associated with various adverse physical outcomes such as muscle atrophy, inflammation, insulin resistance, mobility impairments, and even mortality in the elderly. Aging, mechanical unloading, muscle injury, and hormonal imbalance are main causes of muscle fat accumulation, and the fat cells are derived from muscle stem cells via adipogenic differentiation. However, the pathogenesis and molecular mechanisms of fatty infiltration in muscles are still not fully defined. Fatty acid-binding protein 4 (FABP4) is a carrier protein for fatty acids and is involved in fatty acid uptake, transport, and lipid metabolism. Rotator cuff tear (RCT) usually occurs in the elderly and is closely related with fatty infiltration in injured muscle. To investigate potential mechanisms for fatty infiltration other than adipogenic differentiation of muscle stem cells, we examined the role of FABP4 in muscle fatty infiltration in an RCT mouse model. METHODS In the RCT model, we evaluated the expression of FABP4 by qRT-PCR, western blotting, and immunohistochemical analyses. Histological changes such as inflammation and fat accumulation in the injured muscles were examined immunohistochemically. To evaluate whether hypoxia induces FABP4 expression, the levels of FABP4 mRNA and protein in C3H10T1/2 cells after hypoxia were examined. Using a transient transfection assay in 293T cells, we assessed the promoter activity of FABP4 by hypoxia-inducible factors (HIFs). Additionally, we evaluated the reduction in FABP4 expression and fat accumulation using specific inhibitors for HIF1 and FABP4, respectively. RESULTS FABP4 expression was significantly increased after RCT in mice, and its expression was localized in the intramuscular fatty region. Rotator cuff tear-induced FABP4 expression was up-regulated by hypoxia. HIF1α, which is activated by hypoxia, augmented the promoter activity of FABP4, together with HIF1β. Hypoxia-induced FABP4 expression was significantly decreased by HIF1 inhibitor treatment. Furthermore, in RCT model mice, fat accumulation was remarkably reduced by FABP4 inhibitor treatment. CONCLUSIONS This study shows that RCT induces FABP4 expression, leading to fat accumulation in injured muscle. FABP4 transcription is regulated by the direct binding of HIF1 to the FABP4 promoter in the hypoxic condition induced by RCT. Fat accumulation in injured muscle was reduced by the inhibition of FABP4. Ultimately, in the RCT model, we identified a novel mechanism for fatty infiltration by FABP4, which differs from adipogenic differentiation of muscle stem cells, and we found that fatty infiltration might be regulated by inhibition of HIF1 or FABP4.
Collapse
Affiliation(s)
- Yong-Soo Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Gwangjin-gu, Seoul, Korea
| | - Ja-Yeon Kim
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Gwangjin-gu, Seoul, Korea
| | - Kyung-Soo Oh
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Gwangjin-gu, Seoul, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
41
|
Shen H, Lim C, Schwartz AG, Andreev-Andrievskiy A, Deymier AC, Thomopoulos S. Effects of spaceflight on the muscles of the murine shoulder. FASEB J 2017; 31:5466-5477. [PMID: 28821629 DOI: 10.1096/fj.201700320r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
Mechanical loading is necessary for the development and maintenance of the musculoskeletal system. Removal of loading via microgravity, paralysis, or bed rest leads to rapid loss of muscle mass and function; however, the molecular mechanisms that lead to these changes are largely unknown, particularly for the spaceflight (SF) microgravity environment. Furthermore, few studies have explored these effects on the shoulder, a dynamically stabilized joint with a large range of motion; therefore, we examined the effects of microgravity on mouse shoulder muscles for the 15-d Space Transportation System (STS)-131, 13-d STS-135, and 30-d Bion-M1 missions. Mice from STS missions were euthanized within 4 h after landing, whereas mice from the Bion-M1 mission were euthanized within 14 h after landing. The motion-generating deltoid muscle was more sensitive to microgravity than the joint-stabilizing rotator cuff muscles. Mice from the STS-131 mission exhibited reduced myogenic (Myf5 and -6) and adipogenic (Pparg, Cebpa, and Lep) gene expression, whereas either no change or an increased expression of these genes was observed in mice from the Bion-M1 mission. In summary, muscle responses to microgravity were muscle-type specific, short-duration SF caused dramatic molecular changes to shoulder muscles and responses to reloading upon landing were rapid.-Shen, H., Lim, C., Schwartz, A. G., Andreev-Andrievskiy, A., Deymier, A. C., Thomopoulos, S. Effects of spaceflight on the muscles of the murine shoulder.
Collapse
Affiliation(s)
- Hua Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| | - Chanteak Lim
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| | - Andrea G Schwartz
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA
| | - Alexander Andreev-Andrievskiy
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.,Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alix C Deymier
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA; .,Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
42
|
Hamano N, Yamamoto A, Shitara H, Ichinose T, Shimoyama D, Sasaki T, Kobayashi T, Kakuta Y, Osawa T, Takagishi K. Does successful rotator cuff repair improve muscle atrophy and fatty infiltration of the rotator cuff? A retrospective magnetic resonance imaging study performed shortly after surgery as a reference. J Shoulder Elbow Surg 2017; 26:967-974. [PMID: 28214172 DOI: 10.1016/j.jse.2016.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 10/02/2016] [Accepted: 10/26/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Muscle atrophy and fatty infiltration in the rotator cuff muscles are often observed in patients with chronic rotator cuff tears. The recovery from these conditions has not been clarified. METHODS Ninety-four patients were included in this study. The improvement in muscle atrophy and fatty infiltration in successfully repaired rotator cuff tears was evaluated by magnetic resonance imaging at 1 year and 2 years after surgery and was compared with muscle atrophy and fatty infiltration observed on magnetic resonance imaging at 2 weeks after surgery to discount any changes due to the medial retraction of the torn tendon. The patients' muscle strength was evaluated in abduction and external rotation. RESULTS Muscle atrophy and fatty infiltration of the supraspinatus were significantly improved at 2 years after surgery in comparison to 2 weeks after surgery. The subjects' abduction and external rotation strength was also significantly improved at 2 years after surgery in comparison to the preoperative values. Patients whose occupation ratio was improved had a better abduction range of motion, stronger abduction strength, and higher Constant score. Patients whose fatty infiltration was improved had a better range of motion in flexion and abduction, whereas the improvements of muscle strength and the Constant score were similar in the group that showed an improvement of fatty infiltration and the group that did not. CONCLUSION Muscle atrophy and fatty infiltration can improve after rotator cuff repair. The strengths of abduction and external rotation were also improved at 2 years after surgery.
Collapse
Affiliation(s)
- Noritaka Hamano
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Atsushi Yamamoto
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hitoshi Shitara
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tsuyoshi Ichinose
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Daisuke Shimoyama
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tsuyoshi Sasaki
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tsutomu Kobayashi
- Department of Physical Therapy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yohei Kakuta
- Department of Orthopaedic Surgery, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Toshihisa Osawa
- Department of Orthopaedic Surgery, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Kenji Takagishi
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
43
|
Naimark M, Berliner J, Zhang AL, Davies M, Ma CB, Feeley BT. Prevalence of Rotator Cuff Atrophy and Fatty Infiltration in Patients Undergoing Total Shoulder Arthroplasty. J Shoulder Elb Arthroplast 2017. [DOI: 10.1177/2471549217708323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Micah Naimark
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| | - Jonathan Berliner
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| | - Alan L Zhang
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| | - Michael Davies
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| | - Brian T Feeley
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
44
|
Kuenzler MB, Nuss K, Karol A, Schär MO, Hottiger M, Raniga S, Kenkel D, von Rechenberg B, Zumstein MA. Neer Award 2016: reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a poly(ADP-ribose) polymerase 1 (PARP-1) knock-out mouse model. J Shoulder Elbow Surg 2017; 26:733-744. [PMID: 28131694 DOI: 10.1016/j.jse.2016.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/02/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Disturbed muscular architecture, atrophy, and fatty infiltration remain irreversible in chronic rotator cuff tears even after repair. Poly (adenosine 5'-diphosphate-ribose) polymerase 1 (PARP-1) is a key regulator of inflammation, apoptosis, muscle atrophy, muscle regeneration, and adipocyte development. We hypothesized that the absence of PARP-1 would lead to a reduction in damage to the muscle subsequent to combined tenotomy and neurectomy in a PARP-1 knockout (KO) mouse model. METHODS PARP-1 KO and wild-type C57BL/6 (WT group) mice were analyzed at 1, 6, and 12 weeks (total n = 84). In all mice, the supraspinatus and infraspinatus muscles of the left shoulder were detached and denervated. Macroscopic analysis, magnetic resonance imaging, gene expression analysis, immunohistochemistry, and histology were used to assess the differences in PARP-1 KO and WT mice. RESULTS The muscles in the PARP-1 KO group had significantly less retraction, atrophy, and fatty infiltration after 12 weeks than in the WT group. Gene expression of inflammatory, apoptotic, adipogenic, and muscular atrophy genes was significantly decreased in PARP-1 KO mice in the first 6 weeks. DISCUSSION Absence of PARP-1 leads to a reduction in muscular architectural damage, early inflammation, apoptosis, atrophy, and fatty infiltration after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic reaction to injury is similar in the first 6 weeks, the ability of the muscles to regenerate was much greater in the PARP-1 KO group, leading to a near-normalization of the muscle after 12 weeks.
Collapse
Affiliation(s)
- Michael B Kuenzler
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Katja Nuss
- Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Agnieszka Karol
- Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Michael O Schär
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Zürich, Switzerland; Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Sumit Raniga
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Kenkel
- Department of Diagnostic and Interventional Radiology, University Hospital of Zürich, Zürich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland; Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Equine Department, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Matthias A Zumstein
- Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Shoulder & Elbow Unit, SportsClinic #1 AG, Bern, Switzerland.
| |
Collapse
|
45
|
Rothrauff BB, Pauyo T, Debski RE, Rodosky MW, Tuan RS, Musahl V. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:318-335. [PMID: 28084902 DOI: 10.1089/ten.teb.2016.0446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Thierry Pauyo
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Richard E Debski
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark W Rodosky
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Volker Musahl
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Koh IH, Kang HJ, Oh WT, Hong JJ, Choi YR. Correlation between change in muscle excursion and collagen content after tendon rupture and delayed repair. J Orthop Surg Res 2017; 12:15. [PMID: 28115019 PMCID: PMC5260042 DOI: 10.1186/s13018-017-0518-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The objectives of the present study were to compare changes in muscle excursion, total collagen, and collagen subtypes after tenotomy over time and after delayed tendon repair. METHODS Tenotomy on the extensor digitorum tendon of the right second toes of 48 New Zealand White rabbits was performed; toes on the left leg were used as controls. Passive muscle excursion, total collagen content, and type I, III, and IV collagen contents were measured at 1, 2, 4, and 6 weeks after tenotomy. Next, passive muscle excursion and total collagen content were measured at 8 weeks after delayed tendon repair at 1, 2, 4, and 6 weeks after a tenotomy. RESULTS Passive muscle excursion decreased sequentially over time after tenotomy. Meanwhile, total collagen increased over time. These changes were significant after 4 weeks of injury. Type I collagen significantly increased, type III collagen significantly decreased, and type IV collagen had no significant change over time. Passive muscle excursion was negatively correlated with total collagen and type I collagen after tenotomy at each time point after tenotomy (p < 0.05). After tendon repair, increases in total collagen content after tenotomy were not reversed, despite early repairs at 1 and 2 weeks after tenotomy. CONCLUSIONS Increases in type I collagen were found to be associated with decreased excursion after tendon rupture. The increase in collagen that was observed after tenotomy was not reversed by repair within 8 weeks.
Collapse
Affiliation(s)
- Il-Hyun Koh
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Ho-Jung Kang
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Won-Taek Oh
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Jung-Jun Hong
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
47
|
Gigliotti D, Xu MC, Davidson MJ, Macdonald PB, Leiter JRS, Anderson JE. Fibrosis, low vascularity, and fewer slow fibers after rotator-cuff injury. Muscle Nerve 2017; 55:715-726. [PMID: 27571286 DOI: 10.1002/mus.25388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Rotator-cuff injury (RCI) represents 50% of shoulder injuries, and prevalence increases with age. Even with successful tendon repair, muscle and joint function may not return. METHODS To explore the dysfunction, supraspinatus and ipsilateral deltoid (control) muscles were biopsied during arthroscopic RCI repair for pair-wise histological and protein-expression studies. RESULTS Supraspinatus showed fiber atrophy (P < 0.0001), fibrosis (by Sirius Red, P = 0.05), reduced vascular density (P < 0.001), and a lower proportion of slow fibers (P < 0.0001) compared with the ipsilateral control muscle. There were also higher levels of atrogin-1 (P = 0.05), vascular endothelial growth factor (VEGF, P < 0.01), and dystrophin (P < 0.008, relative to fiber diameter) versus control. CONCLUSIONS Adaptive changes in vascular endothelial growth factor and dystrophin were likely associated with reduced vascular supply, fatigue resistance, and fibrosis, accompanied by disuse atrophy from mechanical unloading of supraspinatus after tendon tear. Treatment to promote growth and vascularity in atrophic supraspinatus muscle may help improve functional outcome after surgical repair. Muscle Nerve 55: 715-726, 2017.
Collapse
Affiliation(s)
- Deanna Gigliotti
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 212 Biological Sciences Building, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Mark C Xu
- Faculty of Health Sciences College of Medicine Departments of Surgery (Orthopedics) at the University of Manitoba, Winnipeg, Canada
| | - Michael J Davidson
- Faculty of Health Sciences College of Medicine Department of Radiology at the University of Manitoba, Winnipeg, Canada
| | - Peter B Macdonald
- Faculty of Health Sciences College of Medicine Departments of Surgery (Orthopedics) at the University of Manitoba, Winnipeg, Canada.,Pan Am Clinic, Winnipeg, Canada
| | - Jeff R S Leiter
- Faculty of Health Sciences College of Medicine Departments of Surgery (Orthopedics) at the University of Manitoba, Winnipeg, Canada.,Pan Am Clinic, Winnipeg, Canada
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 212 Biological Sciences Building, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
48
|
Molecular signatures of age-associated chronic degeneration of shoulder muscles. Oncotarget 2017; 7:8513-23. [PMID: 26885755 PMCID: PMC4890983 DOI: 10.18632/oncotarget.7382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/30/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic muscle diseases are highly prevalent in the elderly causing severe mobility limitations, pain and frailty. The intrinsic molecular mechanisms are poorly understood due to multifactorial causes, slow progression with age and variations between individuals. Understanding the underlying molecular mechanisms could lead to new treatment options which are currently limited. Shoulder complaints are highly common in the elderly, and therefore, muscles of the shoulder's rotator cuff could be considered as a model for chronic age-associated muscle degeneration. Diseased shoulder muscles were characterized by muscle atrophy and fatty infiltration compared with unaffected shoulder muscles. We confirmed fatty infiltration using histochemical analysis. Additionally, fibrosis and loss of contractile myosin expression were found in diseased muscles. Most cellular features, including proliferation rate, apoptosis and cell senescence, remained unchanged and genome-wide molecular signatures were predominantly similar between diseased and intact muscles. However, we found down-regulation of a small subset of muscle function genes, and up-regulation of extracellular region genes. Myogenesis was defected in muscle cell culture from diseased muscles but was restored by elevating MyoD levels. We suggest that impaired muscle functionality in a specific environment of thickened extra-cellular matrix is crucial for the development of chronic age-associated muscle degeneration.
Collapse
|
49
|
Deprés-Tremblay G, Chevrier A, Snow M, Hurtig MB, Rodeo S, Buschmann MD. Rotator cuff repair: a review of surgical techniques, animal models, and new technologies under development. J Shoulder Elbow Surg 2016; 25:2078-2085. [PMID: 27554609 DOI: 10.1016/j.jse.2016.06.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
Abstract
Rotator cuff tears are the most common musculoskeletal injury occurring in the shoulder. Current surgical repair fails to heal in 20% to 95% of patients, depending on age, size of the tear, smoking, time of repair, tendon quality, muscle quality, healing response, and surgical treatments. These problems are worsened by the limited healing potential of injured tendons attributed to the presence of degenerative changes and relatively poor vascularity of the cuff tendons. Development of new techniques to treat rotator cuff tears requires testing in animal models to assess safety and efficacy before clinical testing. Hence, it is important to evaluate appropriate animal models for rotator cuff research with degeneration of tendons, muscular atrophy, and fatty infiltration similar to humans. This report reviews current clinical treatments and preclinical approaches for rotator cuff tear repair. The review will focus on current clinical surgical treatments, new repair strategies under clinical and preclinical development, and will also describe different animal models available for rotator cuff research. These findings and future directions for rotator cuff tear repair will be discussed.
Collapse
Affiliation(s)
| | - Anik Chevrier
- Chemical Engineering Department, Polytechnique Montréal, Montreal, QC, Canada
| | - Martyn Snow
- Department of Arthroscopy, The Royal Orthopaedic Hospital, Birmingham, UK
| | - Mark B Hurtig
- Department of Clinical Studies, University of Guelph, Guelph, ON, Canada
| | - Scott Rodeo
- Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, NY, USA
| | - Michael D Buschmann
- Biomedical Engineering Institute, Polytechnique Montréal, Montreal, QC, Canada; Chemical Engineering Department, Polytechnique Montréal, Montreal, QC, Canada.
| |
Collapse
|
50
|
Wilde JM, Gumucio JP, Grekin JA, Sarver DC, Noah AC, Ruehlmann DG, Davis ME, Bedi A, Mendias CL. Inhibition of p38 mitogen-activated protein kinase signaling reduces fibrosis and lipid accumulation after rotator cuff repair. J Shoulder Elbow Surg 2016; 25:1501-8. [PMID: 27068389 PMCID: PMC4992438 DOI: 10.1016/j.jse.2016.01.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND The repair of rotator cuff tears is often complicated by fatty degeneration, which is the combination of lipid accumulation, fibrosis, inflammation, and muscle weakness. A signaling molecule that plays a central role in these processes is p38 mitogen-activated protein kinase (MAPK). The purpose of this study was to evaluate the ability of a small molecule inhibitor of p38 MAPK, SB203580, to reduce fatty degeneration in a preclinical model of rotator cuff injury and repair. MATERIALS AND METHODS Adult rats underwent a bilateral supraspinatus tenotomy that was repaired 30 days later. Rats were treated with SB203580 or vehicle every 2 days, with injections beginning 3 days before surgery and continuing until 7 days after surgery. Two weeks after surgical repair, muscles were analyzed using histology, lipid profiling, gene expression, and permeabilized muscle fiber contractility. RESULTS Inhibition of p38 MAPK resulted in a nearly 49% reduction in fat accumulation and a 29% reduction in collagen content, along with changes in corresponding genes regulating adipogenesis and matrix accumulation. There was also a marked 40% to 80% decrease in the expression of several proinflammatory genes, including IL1B, IL6, and COX2, and a 360% increase in the anti-inflammatory gene IL10. No differences were observed for muscle fiber force production. CONCLUSION Inhibition of p38 MAPK was found to result in a significant decrease in intramuscular lipid accumulation and fibrosis that is usually seen in the degenerative cascade of rotator cuff tears, without having negative effects on the contractile properties of the rotator cuff muscle tissue.
Collapse
Affiliation(s)
- Jeffrey M Wilde
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan P Gumucio
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy A Grekin
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew C Noah
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David G Ruehlmann
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max E Davis
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Corresponding Author: Christopher L. Mendias, PhD, ATC, Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200, USA,
| |
Collapse
|