1
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. Tissue Eng Part A 2024. [PMID: 39556321 DOI: 10.1089/ten.tea.2024.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated [Hep] and fully desulfated [Hep-]) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of tumor necrosis factor-stimulated gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo, thus facilitating comparisons between delivery from heparin derivatives on the level of tissue repair in two different areas of muscle (near the myotendious junction [MTJ] and in the muscle belly [MB]) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization and that release from Hep would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells were analyzed by flow cytometry 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (day 7 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by day 7, particularly in the MTJ region of the muscle. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear.
Collapse
Affiliation(s)
- Joseph J Pearson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Jiahui Mao
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Newton JB, Weiss SN, Nuss CA, Darrieutort-Laffite C, Eekhoff JD, Birk DE, Soslowsky LJ. Decorin and/or biglycan knockdown in aged mouse patellar tendon impacts fibril morphology, scar area, and mechanical properties. J Orthop Res 2024; 42:2400-2413. [PMID: 38967120 PMCID: PMC11479833 DOI: 10.1002/jor.25931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Small leucine-rich proteoglycans, such as decorin and biglycan, play pivotal roles in collagen fibrillogenesis during development, healing, and aging in tendon. Previous work has shown that the absence of decorin and biglycan affects fibril shape and mechanical properties during tendon healing. However, the roles of decorin and biglycan in the healing process of aged tendons are unclear. Therefore the objective of this study was to evaluate the differential roles of decorin and biglycan during healing of patellar tendon injury in aged mice. Aged (300 days old) female Dcn+/+/Bgn+/+ control (WT, n = 52), Dcnflox/flox (I-Dcn-/-, n = 36), Bgnflox/flox (I-Bgn-/-, n = 36), and compound Dcnflox/flox/Bgnflox/flox (I-Dcn-/-/Bgn-/-, n = 36) mice with a tamoxifen-inducible Cre were utilized. Targeted gene expression, collagen fibril diameter distributions, mechanical properties, and histological assays were employed to assess the effects of knockdown of decorin and/or biglycan at the time of injury. Knockdown resulted in alterations in fibril diameter distribution and scar area, but surprisingly did not lead to many differences in mechanical properties. Biglycan played a larger role in early healing stages, while decorin is more significant in later stages, particularly in scar remodeling. This study highlights some of the differential roles of biglycan and decorin in the regulation of fibril structure and scar area, as well as influencing gene expression during healing in aged mice.
Collapse
Affiliation(s)
- Joseph B Newton
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie N Weiss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Courtney A Nuss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christelle Darrieutort-Laffite
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy D Eekhoff
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Flordia, USA
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Seo SJ, Lee SS, Hwang JT, Han SH, Lee JR, Kim S. Effect of polydeoxyribonucleotide and polynucleotide on rotator cuff healing and fatty infiltration in a diabetic rat model. Sci Rep 2024; 14:20623. [PMID: 39232106 PMCID: PMC11375112 DOI: 10.1038/s41598-024-71206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Failure rate after chronic rotator cuff repair is considerably high. Moreover, diabetes mellitus is known as a compromising factor of rotator cuff tear. The effect of Polydeoxyribonucleotide (PDRN) and polynucleotide (PN) on tendon healing and fatty infiltration is unclear as tissue regeneration activator in diabetic state. Therefore, a diabetic rat model with chronic rotator cuff tear was made for mechanical, histologic and blood tests. In the animal study using a diabetic rat cuff repair model, the administration of PDRN and PN increased the load to failure of repaired cuffs and improved tendon healing and decreased fatty infiltration. Also, the plasma levels of vascular endothelial growth factor and fibroblast growth factor were elevated in PDRN and PN administrated groups. We concluded that PDRN and PN appear to boost tendon recovery and reduce the presence of fatty infiltration following cuff repair in diabetic state. Also, PN showed a later onset and a longer duration than PDRN associated with the mean plasma growth factors.
Collapse
Affiliation(s)
- Su-Jung Seo
- Department of Orthopedic Surgery, Hallym University Medical College, Chuncheon-Si, Gangwon-Do, Republic of Korea
| | - Sang-Soo Lee
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-Ro, Chuncheon-Si, Gangwon-Do, 24253, Republic of Korea
| | - Jung-Taek Hwang
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-Ro, Chuncheon-Si, Gangwon-Do, 24253, Republic of Korea.
| | - Sang Hak Han
- Department of Pathology, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-Ro, Chuncheon-Si, Gangwon-Do, 24253, Republic of Korea.
| | - Jae-Ryeong Lee
- Department of Pharmacology, Institute of Natural Medicine, Hallym University Medical College, Chuncheon-Si, Gangwon-Do, Republic of Korea
| | - Sungsu Kim
- Department of Pharmacology, Institute of Natural Medicine, Hallym University Medical College, Chuncheon-Si, Gangwon-Do, Republic of Korea
| |
Collapse
|
4
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608812. [PMID: 39229126 PMCID: PMC11370378 DOI: 10.1101/2024.08.20.608812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated (Hep) and fully desulfated (Hep-)) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of Tumor Necrosis Factor Stimulated Gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo , thus facilitating comparisons between delivery from heparin derivatives on level of tissue repair in two different areas of muscle (near the myotendious junction (MTJ) and in the muscle belly (MB)) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization, and that release from a fully sulfated heparin derivative (Hep) would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells, were analyzed by flow cytometery 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to Day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (Day 14 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by Day 7, particularly in the MTJ region of the muscle, compared to release from desulfated heparin hydrogels. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear. IMPACT STATEMENT Rotator cuff tear is a significant problem that can cause muscle degeneration. In this study, a hydrogel particle system was developed for sustained release of an anti-inflammatory protein, Tumor Necrosis Factor Stimulated Gene 6 (TSG-6), to injured muscle. Release of the protein from a fully sulfated heparin hydrogel-based carrier demonstrated greater changes in amount inflammatory cells and more early regenerative effects than a less-sulfated carrier. Thus, this work provides a novel strategy for localized, controlled delivery of an anti-inflammatory protein to enhance muscle healing after rotator cuff tear.
Collapse
|
5
|
Xue X, Song Q, Yang X, Kuati A, Fu H, Cui G. Effect of extracorporeal shock wave therapy for rotator cuff injury: Protocol for a systematic review and meta-analysis. PLoS One 2024; 19:e0301820. [PMID: 38718071 PMCID: PMC11078342 DOI: 10.1371/journal.pone.0301820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Rotator cuff injury (RCI) is a common musculoskeletal ailment and a major cause of shoulder pain and limited functionality. The ensuing pain and restricted movement significantly impact overall quality of life. This study aims to systematically review the effects of extracorporeal shock wave therapy (ESWT) on RCI. METHODS This protocol follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols. A literature search, spanning inception to November 1, 2023, will include databases such as PubMed, Web of Science, the Cochrane Library, Scopus, MEDLINE, EMBASE, EBSCO, and China National Knowledge Infrastructure (CNKI) to identify ESWT studies for RCI treatment. Excluding retrospectives, bias risk will be assessed with the Cochrane tool. Two researchers will independently screen, extract data, and evaluate bias risk. Revman 5.3 software will be used for data analysis. RESULTS This study aims to objectively and comprehensively evaluate the effectiveness and safety of randomized controlled trials of ESWT in the treatment of RCI, and analyze in detail the effect of ESWT in the treatment of RCI. Results will be analyzed using the Pain Visual Analogue Scale (VAS), Constant-Murley score, University of California Los Angeles score (UCLA), and American Shoulder and Elbow Surgeons form (ASES). If applicable, subgroup analysis will also be performed to divide patients into groups according to the energy level of ESWT, the time of intervention, and the degree of tearing of RCI. Finally, the results are submitted for publication in a peer-reviewed journal. DISCUSSION AND CONCLUSION There is existing evidence suggesting that ESWT may contribute to the amelioration of pain and functional limitations associated with Rotator Cuff Injury (RCI). This systematic review aims to update, consolidate, and critically evaluate relevant evidence on the effects of ESWT for RCI. The anticipated outcomes may serve as a valuable reference for clinical ESWT practices, covering treatment methods, timing, and intensity. Moreover, this review aspires to provide high-quality evidence addressing the impact of ESWT on RCI-related pain. Simultaneously, the findings of this systematic review are poised to offer guidance to clinicians and rehabilitation therapists. This guidance is intended to enhance the management of pain and functional impairments experienced by individuals with RCI, ultimately leading to improvements in their physical well-being. TRIAL REGISTRATION Protocol registration number CRD42023441407. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023441407.
Collapse
Affiliation(s)
- Xiali Xue
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province, China
| | - Qingfa Song
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Xinwei Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Amila Kuati
- Department of Rehabilitation, Peking University Third Hospital, Beijing, China
| | - Hao Fu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Guoqing Cui
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province, China
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Department of Rehabilitation, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Xue X, Song Q, Yang X, Kuati A, Fu H, Liu Y, Cui G. Effect of extracorporeal shockwave therapy for rotator cuff tendinopathy: a systematic review and meta-analysis. BMC Musculoskelet Disord 2024; 25:357. [PMID: 38704572 PMCID: PMC11069249 DOI: 10.1186/s12891-024-07445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Rotator cuff tendinopathy (RCT) is a widespread musculoskeletal disorder and a primary cause of shoulder pain and limited function. The resulting pain and limited functionality have a detrimental impact on the overall quality of life. The purpose of this study was to perform a systematic review of the effects of extracorporeal shock wave therapy (ESWT) for RCT. METHODS The literature search was conducted on the following databases from inception to February 20, 2024: PubMed, Web of Science, the Cochrane Library, Scopus, MEDLINE, EMBASE, EBSCO, and China National Knowledge Infrastructure (CNKI) were checked to identify the potential studies exploring the effect of ESWT for the treatment of Rotator cuff tendinopathy (Calcification or non-calcification), control group for sham, other treatments (including placebo), without restriction of date, language. Two researchers independently screened literature, extracted data, evaluated the risk of bias in the included studies, and performed meta-analysis using RevMan 5.3 software. RESULTS A total of 16 RCTs with 1093 patients were included. The results showed that compared with the control group, ESWT for pain score Visual Analogue Scale/Score (VAS) (SMD = -1.95, 95% CI -2.47, -1.41, P < 0.00001), function score Constant-Murley score (CMS) (SMD = 1.30, 95% CI 0.67, 1.92, P < 0.00001), University of California Los Angeles score (UCLA) (SMD = 2.69, 95% CI 1.64, 3.74, P < 0.00001), American Shoulder and Elbow Surgeons form (ASES) (SMD = 1.29, 95% CI 0.93, 1.65, P < 0.00001), Range of motion (ROM) External rotation (SMD = 1.00, 95% CI 0.29, 1.72, P = 0.02), Total effective rate (TER) (OR = 3.64, 95% CI 1.85, 7.14, P = 0.0002), the differences in the above results were statistically significant. But ROM-Abduction (SMD = 0.72, 95% CI -0.22, 1.66, P = 0.13), the difference was not statistically significant. CONCLUSION Currently limited evidence suggests that, compared with the control group, ESWT can provide better pain relief, functional recovery, and maintenance of function in patients with RCT.
Collapse
Affiliation(s)
- Xiali Xue
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Qingfa Song
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
| | - Xinwei Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Amila Kuati
- Department of Rehabilitation, Peking University Third Hospital, Beijing, 100191, China
| | - Hao Fu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
| | - Yulei Liu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China.
| | - Guoqing Cui
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China.
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China.
- Department of Rehabilitation, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
7
|
Wang N, Wang H, Shen L, Liu X, Ma Y, Wang C. Aging-Related Rotator Cuff Tears: Molecular Mechanisms and Implications for Clinical Management. Adv Biol (Weinh) 2024; 8:e2300331. [PMID: 38295015 DOI: 10.1002/adbi.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Indexed: 02/02/2024]
Abstract
Shoulder pain and disabilities are prevalent issues among the elderly population, with rotator cuff tear (RCT) being one of the leading causes. Although surgical treatment has shown some success, high postoperative retear rates remain a great challenge, particularly in elderly patients. Aging-related degeneration of muscle, tendon, tendon-to-bone enthesis, and bone plays a critical role in the development and prognosis of RCT. Studies have demonstrated that aging worsens muscle atrophy and fatty infiltration, alters tendon structure and biomechanical properties, exacerbates enthesis degeneration, and reduces bone density. Although recent researches have contributed to understanding the pathophysiological mechanisms of aging-related RCT, a comprehensive systematic review of this topic is still lacking. Therefore, this article aims to present a review of the pathophysiological changes and their clinical significance, as well as the molecular mechanisms underlying aging-related RCT, with the goal of shedding light on new therapeutic approaches to reduce the occurrence of aging-related RCT and improve postoperative prognosis in elderly patients.
Collapse
Affiliation(s)
- Ni Wang
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haoyuan Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Longxiang Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xudong Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yanhong Ma
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chongyang Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
8
|
Peeters NHC, van der Kraats AM, van der Krieken TE, van Iersel D, Janssen ERC, Heerspink FOL. The validity of ultrasound and shear wave elastography to assess the quality of the rotator cuff. Eur Radiol 2024; 34:1971-1978. [PMID: 37646806 PMCID: PMC10873448 DOI: 10.1007/s00330-023-10037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/12/2023] [Accepted: 06/17/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVES US with shear wave elastography (SWE) could reduce the burden and costs of the diagnostic process for patients with rotator cuff disorders. The aim of this study is to investigate the validity of US and SWE in preoperative assessment of fatty infiltration (FI) and muscle atrophy of the supraspinatus (SSP) and infraspinatus (ISP) muscles. METHODS Patients with a rotator cuff disorder and a recent shoulder CT or MRI scan were eligible to participate. Goutallier and Warner stages of the SSP and ISP muscle were measured on the scan, for assessment of FI and muscle atrophy, respectively. These findings were compared with shear wave velocities (SWVs) assessed on US. Visual assessment of FI on US was compared with the Goutallier stage. To quantify the amount of muscle atrophy, the occupation ratio between SSP fossa and muscle was measured on MRI and US. RESULTS Seventy-eight shoulders were included in the analysis. The correlation found between the occupation ratio on US and Warner and Goutallier stage and ratio on MRI ranged between r = - 0.550 to 0.589. The Goutallier stage of ISP and SSP muscle assessed on US showed a fair correlation with the Goutallier stage on a scan of r = 0.574 and r = 0.582, respectively. There was a poor correlation between the SWVs and scan results (r = - 0.116 to 0.07). CONCLUSION SWE is not a valid method to measure the amount of FI or muscle atrophy in the SSP muscle. Therefore, SWE is not a suitable alternative for MRI in standard preoperative diagnostics in rotator cuff pathologies. CLINICAL RELEVANCE STATEMENT Shear wave elastography should not be used in the diagnostics of rotator cuff pathologies. KEY POINTS • There is a fair correlation between the Goutallier stage of the supraspinatus and infraspinatus muscle assessed on MRI and CT and visual assessment of fatty infiltration achieved on US. • Shear wave elastography is not a valid tool for the determination of the amount of fatty infiltration or muscle atrophy. • Shear wave elastography should not be used as a cheaper and less burdensome alternative for diagnostics in rotator cuff pathologies.
Collapse
Affiliation(s)
- Nina H C Peeters
- Department of Radiology, VieCuri Medical Center, Venlo, The Netherlands
| | - Annick M van der Kraats
- Department of Orthopaedic Surgery, VieCuri Medical Center, Tegelseweg 210, 5912 BL, Venlo, The Netherlands
| | | | - Dave van Iersel
- Department of Radiology, VieCuri Medical Center, Venlo, The Netherlands
| | - Esther R C Janssen
- Department of Orthopaedic Surgery, VieCuri Medical Center, Tegelseweg 210, 5912 BL, Venlo, The Netherlands.
- Department of Orthopaedic Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | | |
Collapse
|
9
|
Liu M, Ng M, Phu T, Bouchareychas L, Feeley BT, Kim HT, Raffai RL, Liu X. Polarized macrophages regulate fibro/adipogenic progenitor (FAP) adipogenesis through exosomes. Stem Cell Res Ther 2023; 14:321. [PMID: 37936229 PMCID: PMC10631219 DOI: 10.1186/s13287-023-03555-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Macrophage polarization has been observed in the process of muscle injuries including rotator cuff (RC) muscle atrophy and fatty infiltration after large tendon tears. In our previous study, we showed that fibrogenesis and white adipogenesis of muscle residential fibro/adipogenic progenitors (FAPs) cause fibrosis and fatty infiltration and that brown/beige adipogenesis of FAPs promotes rotator cuff muscle regeneration. However, how polarized macrophages and their exosomes regulate FAP differentiation remains unknown. METHODS We cultured FAPs with M0, M1, and M2 macrophages or 2 × 109 exosomes derived from M0, M1 and M2 with and without GW4869, an exosome inhibitor. In vivo, M0, M1, and M2 macrophages were transplanted or purified macrophage exosomes (M0, M1, M2) were injected into supraspinatus muscle (SS) after massive tendon tears in mice (n = 6). SS were harvested at six weeks after surgery to evaluate the level of muscle atrophy and fatty infiltration. RESULTS Our results showed that M2 rather than M0 or M1 macrophages stimulates brown/beige fat differentiation of FAPs. However, the effect of GW4869, the exosome inhibitor, diminished this effect. M2 exosomes also promoted FAP Beige differentiation in vitro. The transplantation of M2 macrophages reduced supraspinatus muscle atrophy and fatty infiltration. In vivo injections of M2 exosomes significantly reduced muscle atrophy and fatty infiltration in supraspinatus muscle. CONCLUSION Results from our study demonstrated that polarized macrophages directly regulated FAP differentiation through their exosomes and M2 macrophage-derived exosomes may serve as a novel treatment option for RC muscle atrophy and fatty infiltration.
Collapse
Affiliation(s)
- Mengyao Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94158, USA
- Department of Orthopedic Surgery, University of California, San Francisco, 1700 Owens Street, San Francisco, CA, 94158, USA
- College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | - Martin Ng
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94158, USA
- Department of Surgery, Division of Endovascular and Vascular Surgery, University of California, San Francisco, 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Tuan Phu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94158, USA
- Department of Surgery, Division of Endovascular and Vascular Surgery, University of California, San Francisco, 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Laura Bouchareychas
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94158, USA
- Department of Surgery, Division of Endovascular and Vascular Surgery, University of California, San Francisco, 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Brian T Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94158, USA
- Department of Orthopedic Surgery, University of California, San Francisco, 1700 Owens Street, San Francisco, CA, 94158, USA
| | - Hubert T Kim
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94158, USA
- Department of Orthopedic Surgery, University of California, San Francisco, 1700 Owens Street, San Francisco, CA, 94158, USA
| | - Robert L Raffai
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94158, USA.
- Department of Surgery, Division of Endovascular and Vascular Surgery, University of California, San Francisco, 4150 Clement Street, San Francisco, CA, 94121, USA.
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94158, USA.
- Department of Orthopedic Surgery, University of California, San Francisco, 1700 Owens Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
10
|
Papalia GF, Franceschetti E, Giurazza G, Parisi FR, Gregori P, Zampogna B, Longo UG, Papalia R. MicroRNA expression changes in the development of rotator cuff tendon injuries. JSES REVIEWS, REPORTS, AND TECHNIQUES 2023; 3:343-349. [PMID: 37588508 PMCID: PMC10426526 DOI: 10.1016/j.xrrt.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Traumatic or degenerative rotator cuff (RC) tendon injuries are a leading cause of persistent shoulder pain and reduction of mobility with associated disability and dysfunction, which require each year more than 250,000 surgical repairs in the United States. MicroRNAs (miRNAs) are small noncoding RNAs, that in the posttranscriptional phase lead to the development and function of tissues. The aim of this review was to identify miRNA expression changes in patients with RC pathologies and to determine their relevance as a potential novel diagnostic and potentially therapeutic tool for RC disorders. Various miRNAs seemed to be key regulators in the muscle architecture, determining several modifications in muscle atrophy, skeletal muscle mechanical adaptation, lipid accumulation, and fibrosis in the presence of RC tears. The search was executed using PubMed, Medline, Scopus, and Cochrane Central. We included studies written in English that evaluated the role of miRNA in diagnosis, physiopathology, and potential therapeutic application of RC tendon injuries. We included 11 studies in this review. Many miRNAs emerged as key regulators in the pathogenesis of RC tears, inflammation, and muscle fatty degeneration. In fact, they are involved in the regulation of myogenesis, inflammatory cytokines, metalloproteases expression, muscle adaptation, adipogenesis, fibrogenic factors, and extracellular matrix synthesis. The gene expression may be altered in the pathological processes of tendon lesions. Therefore, the knowledge of all the gene mechanisms underlying RC tendinopathy should be achieved with future diagnostic and clinical studies.
Collapse
Affiliation(s)
- Giuseppe Francesco Papalia
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Edoardo Franceschetti
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Giancarlo Giurazza
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Francesco Rosario Parisi
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Pietro Gregori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Biagio Zampogna
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Umile Giuseppe Longo
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Rocco Papalia
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| |
Collapse
|
11
|
Chen C, Zhou H, Yin Y, Hu H, Jiang B, Zhang K, Wu S, Shen M, Wang Z. Rotator cuff muscle degeneration in a mouse model of glenohumeral osteoarthritis induced by monoiodoacetic acid. J Shoulder Elbow Surg 2023; 32:500-511. [PMID: 36442828 DOI: 10.1016/j.jse.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a disease of joint degeneration and impaired function. Muscle atrophy, fatty infiltration, and fibrosis are degenerative features of muscle injury and predict poor outcomes in some degenerative and exercise-related injuries. Patients with glenohumeral joint OA usually have rotator cuff muscle degeneration, even though the rotator cuff is intact. However, the mechanism and correlation between OA and degeneration of muscles around joints are still unknown. METHODS Forty-five 12-month-old C57BL/6J mice received a single injection of monoiodoacetic acid into the right glenohumeral joint. The sham group was injected with saline on the same day in the right glenohumeral joint. Three and 6 weeks after the operation, gait analysis was conducted to evaluate the function of the forelimb. Then, the shoulder joint and supraspinatus muscle were collected for histologic staining, reverse transcription quantitative polymerase chain reaction, and biomechanics test. Correlations between fat area fraction in muscle, percentage wet muscle weight change or Osteoarthritis Research Society International score, and gait analysis/muscle mechanics tests were assessed using Pearson's correlation coefficient or Spearman's correlation coefficient. RESULTS Compared with the sham group, the monoiodoacetic acid group developed significant glenohumeral joint OA and the supraspinatus muscle developed significant fatty infiltration and muscle atrophy. Shoulder function correlated with glenohumeral joint OA/rotator cuff muscle severity, weight loss, and fatty infiltration. CONCLUSION In mice, glenohumeral joint OA can lead to rotator cuff degeneration and inferior limb function. The small animal model could be a powerful tool to further study the potential mechanisms between glenohumeral OA and rotator cuff muscle degeneration.
Collapse
Affiliation(s)
- Chuanshun Chen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Hecheng Zhou
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Yuesong Yin
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Hai Hu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Binbin Jiang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kexiang Zhang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Song Wu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Minren Shen
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Zhao W, Yang J, Kang Y, Hu K, Jiao M, Zhao B, Jiang Y, Liu C, Ding F, Yuan B, Ma B, Zhang K, Mikos AG, Zhang X. Animal Models of Rotator Cuff Injury and Repair: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1258-1273. [PMID: 35972750 DOI: 10.1089/ten.teb.2022.0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There are a large number of animal studies on rotator cuff injury and repair, but a lack of detailed research and evaluation on the animal models. This systematic review aims to provide a framework for animal studies and repair patches for rotator cuff injury. Four hundred nine animal studies were included, of which the most common animal model of rotator cuff injury is rat (53.56%), the most common site of rotator cuff injury is the supraspinatus tendon (62.10%), and the most common injury type (degree) is acute tear (full thickness) (48.41%). The most common research purpose is to evaluate the repair effect of the patch (24.94%), followed by the observation of pathophysiological changes after rotator cuff injury (20.87%). Among the five types of repair patch materials including nondegradable and degradable synthetic materials, autologous and allogeneic tissues, and naturally derived biomaterial, the last one is the mostly used (52.74%). For different animal models, the rodent models (rat and mouse) are the most commonly used and probably the most suitable species for preliminary studies of rotator cuff injury; the rabbit, canine, sheep, and goat models are more suitable for biomechanical performance testing, rehabilitation training, and validation of surgical methods; and the nonhuman primate models (monkey and baboon) are the closest to human, but it is more difficult to carry out the animal studies on them because of ethical issues, high feeding cost, and management difficulties.
Collapse
Affiliation(s)
- Wanlu Zhao
- College of Biomedical Engineering and Sichuan University, Chengdu, People's Republic of China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| | - Jinwei Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China.,Reproductive Medicine Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, People's Republic of China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Kaiyan Hu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China.,The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Chen Liu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Fengxing Ding
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Bo Yuan
- College of Biomedical Engineering and Sichuan University, Chengdu, People's Republic of China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, People's Republic of China
| | - Kai Zhang
- College of Biomedical Engineering and Sichuan University, Chengdu, People's Republic of China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China.,Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, People's Republic of China
| | - Antonios G Mikos
- Department of Bioengineering, Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Xingdong Zhang
- College of Biomedical Engineering and Sichuan University, Chengdu, People's Republic of China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China.,Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
13
|
Takada Y, Matsumura N, Shirasawa H, Yoda M, Matsumoto M, Nakamura M, Horiuchi K. Aging Aggravates the Progression of Muscle Degeneration After Rotator Cuff Tears in Mice. Arthroscopy 2022; 38:752-760. [PMID: 34571183 DOI: 10.1016/j.arthro.2021.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the impact of aging on muscle degeneration after rotator cuff tear (RCT) in mice. METHODS Young (12-week-old) and aged (50-to-60-week-old) female C57BL/6 mice were used (n = 29 for each group). The rotator cuff was transected, and the proximal humerus was removed to induce degeneration of the rotator cuff muscles. The mice were euthanized 4 and 12 weeks after the procedure (referred to as RCT-4wk mice and RCT-12wk mice, respectively) and compared with the sham-treated mice. The supraspinatus muscles were collected for histology, Western blot analysis, and gene expression analyses. RESULTS There was a significant increase in fat tissue in aged RCT-4wk mice (P = .001) and aged RCT-12wk mice (P < .001) compared with sham-treated aged mice, and aged RCT-12wk mice had a significantly increased fat area ratio compared with aged RCT-4wk mice (P < .001). The fat area was significantly larger in both the aged RCT-4wk (P = .002) and RCT-12wk mice (P < .001) than in the corresponding young mice. Muscular fibrosis was significantly increased in aged RCT-12wk mice compared with aged sham-treated mice (P = .005) and young RCT-12wk mice (P = .016). There were also significant increases in the expression of perilipin and transcripts of adipogenic and fibrogenic differentiation markers in aged RCT mice compared with young RCT mice. CONCLUSION The present results show that aging is critically involved in the pathology of muscular fatty infiltration and fibrosis after RCT, and muscular degeneration progresses over time in aged mice. CLINICAL RELEVANCE Aging promotes the progression of muscle degeneration in a mouse RCT model. Furthermore, this study shows that muscle degeneration occurs in aged mice even without denervation and that the model described in the present study is a useful tool for studying the pathology of muscle degeneration.
Collapse
Affiliation(s)
- Yuhei Takada
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Noboru Matsumura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Hideyuki Shirasawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Yoda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| |
Collapse
|
14
|
Wang S, Ying JH, Xu H. Identification of Diagnostic Biomarkers Associated with Stromal and Immune Cell Infiltration in Fatty Infiltration After Rotator Cuff Tear by Integrating Bioinformatic Analysis and Machine-Learning. Int J Gen Med 2022; 15:1805-1819. [PMID: 35221715 PMCID: PMC8865865 DOI: 10.2147/ijgm.s354741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose The present study aimed to explore potential diagnostic biomarkers for fatty infiltration (FI) of the rotator cuff muscles after rotator cuff tear (RCT) and investigate the influence of stromal and immune cell infiltration on this pathology. Methods The GSE130447 and GSE103266 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified, and gene set enrichment analyses were performed by R software. Two machine learning algorithms, random forest and multiple support vector machine recursive feature elimination (mSVM-RFE), were used to screen candidate biomarkers. The diagnostic value of the screened biomarkers was further validated by the area under the ROC curve (AUC) in the GSE103266 dataset. Murine microenvironment cell population counter (mMCP-counter) method was employed to estimate stromal and immune cell infiltration of FI. The correlation between biomarkers and infiltrated immune and stromal cell subsets was further analyzed. Results A total of 2123 DEGs were identified. The identified DEGs were predominantly linked to immune system process, extracellular matrix organization and PPAR signalling pathway. FABP5 (AUC = 0.958) and MGP (AUC = 1) were screened as diagnostic biomarkers of FI. Stromal and immune cell infiltration analysis showed that monocytes, mast cells, vessels, endothelial cells and fibroblasts may be related to the process of FI. FABP5 and MGP were positively correlated with vessels whereas negatively correlated with monocytes and mast cells. Conclusion FABP5 and MGP can serve as diagnostic biomarkers of FI after RCT, and stromal and immune cell infiltration may play a crucial role in this pathology.
Collapse
Affiliation(s)
- Si Wang
- Department of Information Centre, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, People’s Republic of China
| | - Jin-He Ying
- Department of Joint Surgery, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, People’s Republic of China
| | - Huan Xu
- Department of Joint Surgery, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, People’s Republic of China
- Correspondence: Huan Xu, Tel +86 578 2285310, Fax +865782133457, Email
| |
Collapse
|
15
|
Seo SJ, Park JY, Park HJ, Hwang JT. Protocatechuic acid impacts rotator cuff healing and reduces fatty degeneration in a chronic rotator cuff tear model in rats. Clin Shoulder Elb 2022; 25:5-14. [PMID: 35045600 PMCID: PMC8907501 DOI: 10.5397/cise.2021.00395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background The purpose of this study was to verify the effect of protocatechuic acid (PCA) on tendon healing and fatty degeneration in a chronic rotator cuff model. Methods Twenty-eight Sprague-Dawley male rats were randomly allocated into two groups: Saline+repair (SR) and PCA+repair (PR). The right shoulder was used for experimental interventions, and the left served as a control. PCA (30 mg/kg/day) was administered intraperitoneally at the site of infraspinatus tendon detachment in rats in the PR group, and the same volume of saline was administered to the same site in the SR group. The torn tendon was repaired 4 weeks after infraspinatus detachment. Four weeks after repair, hematoxylin and eosin (H&E), S100, and CD68 stains were performed to evaluate the degree of fatty degeneration and H&E and Masson trichrome stains were performed to assess tendon healing. Superoxide dismutase (SOD) was measured to test the efficacy of PCA as an antioxidant. Results Results from histological evaluation indicated that SOD and CD68 levels at the musculotendinous region and collagen fiber parallel to the orientation at the tendon-to-bone junction were not significantly different between the SR and PR groups. The mean load-to-failure of the PR group (20.32±9.37 N) was higher than that of the SR group (16.44±6.90 N), although this difference was not statistically significant (p=0.395). The SOD activity in the operative side infraspinatus muscle of the PR group was higher than that of the SR group, but the difference was not statistically significant (p=0.053). Conclusions The use of PCA could improve tendon healing and decrease fatty degeneration after rotator cuff repair.
Collapse
Affiliation(s)
- Su-Jung Seo
- Department of Orthopedic Surgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Jae-Young Park
- Department of Pathology, Bucheon Sejong Hospital, Bucheon, Korea
| | - Hyoung-Jin Park
- Department of Physiology, Hallym University College of Medicine, Chuncheon, Korea
| | - Jung-Taek Hwang
- Department of Orthopedic Surgery, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
16
|
Nelson GB, McMellen CJ, Kolaczko JG, Millett PJ, Gillespie RJ, Su CA. Immunologic Contributions Following Rotator Cuff Injury and Development of Cuff Tear Arthropathy. JBJS Rev 2021; 9:01874474-202111000-00006. [PMID: 34757960 DOI: 10.2106/jbjs.rvw.21.00126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
» Rotator cuff tear arthropathy (RCTA) describes a pattern of glenohumeral degenerative changes following chronic rotator cuff tears that is characterized by superior humeral head migration, erosion of the greater tuberosity of the humeral head, contouring of the coracoacromial arch to create a socket for the humeral head, and eventual glenohumeral arthritis. » Acute and chronic inflammatory changes following rotator cuff tears are thought to contribute to cartilage damage, muscle fibrosis, and fatty infiltration in the glenohumeral joint. » In vitro animal studies targeting various inflammatory modulators, including macrophages, insulin-like growth factor-I, and transforming growth factor-beta pathways, provide promising therapeutic targets to improve healing after rotator cuff tears. » The role of platelet-rich plasma in the treatment and prevention of RCTA has been investigated, with conflicting results.
Collapse
Affiliation(s)
- Grant B Nelson
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Christopher J McMellen
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jensen G Kolaczko
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Robert J Gillespie
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Charles A Su
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
17
|
Bogdanov J, Lan R, Chu TN, Bolia IK, Weber AE, Petrigliano FA. Fatty degeneration of the rotator cuff: pathogenesis, clinical implications, and future treatment. JSES REVIEWS, REPORTS, AND TECHNIQUES 2021; 1:301-308. [PMID: 37588720 PMCID: PMC10426606 DOI: 10.1016/j.xrrt.2021.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Chronic rotator cuff pathology is often complicated by fatty degeneration of the rotator cuff (FDRC) muscles, an insidious process associated with poor prognosis with or without surgical intervention. Currently there is no treatment for FDRC, and many studies have described a natural course for this disease almost always resulting in further degeneration and morbidity. Recapitulating FDRC using animal injury models, and using imaging-based studies of human FDRC, the pathophysiology of this disease continues to be further characterized. Researchers studying mesenchymal stem cell-derived progenitor cells and known fibrogenic and adipogenic signaling pathways implicated in FDRC seek to clarify the underlying processes driving these changes. While new cell- and molecular-based therapies are being developed, currently the strongest available avenue for improved management of FDRC is the use of novel imaging techniques which allow for more accurate and personalized staging of fatty degeneration. This narrative review summarizes the evidence on the molecular and pathophysiologic mechanisms of FDRC and provides a clinical update on the diagnosis and management of this condition based on the existing knowledge. We also sought to examine the role of newer biologic therapies in the management of RC fatty degeneration and to identify areas of future research.
Collapse
Affiliation(s)
- Jacob Bogdanov
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Rae Lan
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Timothy N. Chu
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Ioanna K. Bolia
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Alexander E. Weber
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Frank A. Petrigliano
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
18
|
Ruder MC, Lawrence RL, Soliman SB, Bey MJ. Presurgical tear characteristics and estimated shear modulus as predictors of repair integrity and shoulder function one year after rotator cuff repair. JSES Int 2021; 6:62-69. [PMID: 35141678 PMCID: PMC8811389 DOI: 10.1016/j.jseint.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Rotator cuff repair provides pain relief for many patients; however, retears are relatively common and affect approximately 20%-70% of patients after repair. Although magnetic resonance imaging (MRI) offers the ability to assess tissue characteristics such as tear size, retraction, and fatty infiltration, it provides little insight into the quality of the musculotendinous tissues the surgeon will encounter during surgery. However, shear wave elastography (SWE) could provide an indirect assessment of quality (ie, stiffness) by measuring the speed of shear waves propagating through tissue. The objective of this study was to determine the extent to which estimated shear modulus predicts repair integrity and functional outcomes 1 year after rotator cuff repair. Methods Thirty-three individuals scheduled to undergo arthroscopic rotator cuff repair were enrolled in this study. Before surgery, shear modulus of the supraspinatus tendon and muscle was estimated using ultrasound SWE. MRIs were obtained before and 1 year after surgery to assess tear characteristics and repair integrity, respectively. Shoulder strength, range of motion, and patient-reported pain and function were assessed before and after surgery. Functional outcomes were compared between groups and across time using a two-factor mixed model analysis of variance. Stepwise regression with model comparison was used to investigate the extent to which MRI and shear modulus predicted repair integrity and function at 1 year after surgery. Results At 1 year after surgery, 56.5% of patients had an intact repair. No significant differences were found in any demographic variable, presurgical tear characteristic, or shear modulus between patients with an intact repair and those with a recurrent tear. Compared with presurgical measures, patients in both groups demonstrated significant improvements at 1 year after surgery in pain (P < .01), self-reported function (P < .01), range of motion (P < .01), and shoulder strength (P < .01). In addition, neither presurgical MRI variables (P > .16) nor shear modulus (P > .52) was significantly different between groups at 1 year after surgery. Finally, presurgical shear modulus generally did not improve the prediction of functional outcomes above and beyond that provided by MRI variables alone (P > .22). Conclusion Although SWE remains a promising modality for many clinical applications, this study found that SWE-estimated shear modulus did not predict repair integrity or functional outcomes at 1 year after surgery, nor did it add to the prediction of outcomes above and beyond that provided by traditional presurgical MRI measures of tear characteristics. Therefore, it appears that further research is needed to fully understand the clinical utility of SWE for musculoskeletal tissue and its potential use for predicting outcomes after surgical rotator cuff repair.
Collapse
Affiliation(s)
| | | | | | - Michael J. Bey
- Bone & Joint Center, Henry Ford Health System, Detroit, MI, USA
- Corresponding author: Michael J. Bey, PhD, 6135 Woodward Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
19
|
Polydeoxyribonucleotide and Polynucleotide Improve Tendon Healing and Decrease Fatty Degeneration in a Rat Cuff Repair Model. Tissue Eng Regen Med 2021; 18:1009-1020. [PMID: 34387852 DOI: 10.1007/s13770-021-00378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND After surgical repair of chronic rotator cuff tears, healing of the repaired tendons often fails and is accompanied by high-level fatty degeneration. Our purpose was to explore the effects of polydeoxyribonucleotide (PDRN) and polynucleotide (PN) on tendon healing and the reversal of fatty degeneration in a chronic rotator cuff tear model using a rat infraspinatus. METHODS Sixty rats were randomly assigned to the following three groups (20 rats per group: 12 for histological evaluation and 8 for mechanical testing): saline + repair (SR), PDRN + repair (PR), and PN + repair (PNR). The right shoulder was used for experimental intervention, and the left served as a control. Four weeks after detaching the infraspinatus, the torn tendon was repaired. Saline, PDRN, and PN were applied to the repair sites. Histological evaluation was performed 3 and 6 weeks after repair and biomechanical analysis was performed at 6 weeks. RESULTS Three weeks after repair, the PR and PNR groups had more CD168-stained cells than the SR group. The PR group showed a larger cross-sectional area (CSA) of muscle fibers than the SR and PNR groups. Six weeks after repair, the PR and PNR groups showed more adipose cells, less CD68-stained cells, and more parallel tendon collagen fibers than the SR group. The PR group had more CD 68-stained cells than the PNR group. The PR group showed a larger CSA than the SR group. The mean load-to-failure values of the PR and PNR groups were higher than that of the SR group, although these differences were not significant. CONCLUSION PDRN and PN may improve tendon healing and decrease fatty degeneration after cuff repair.
Collapse
|
20
|
Bayer ML, Hoegberget-Kalisz M, Svensson RB, Hjortshoej MH, Olesen JL, Nybing JD, Boesen M, Magnusson SP, Kjaer M. Chronic Sequelae After Muscle Strain Injuries: Influence of Heavy Resistance Training on Functional and Structural Characteristics in a Randomized Controlled Trial. Am J Sports Med 2021; 49:2783-2794. [PMID: 34264782 DOI: 10.1177/03635465211026623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Muscle strain injury leads to a high risk of recurrent injury in sports and can cause long-term symptoms such as weakness and pain. Scar tissue formation after strain injuries has been described, yet what ultrastructural changes might occur in the chronic phase of this injury have not. It is also unknown if persistent symptoms and morphological abnormalities of the tissue can be mitigated by strength training. PURPOSE To investigate if heavy resistance training improves symptoms and structural abnormalities after strain injuries. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS A total of 30 participants with long-term weakness and/or pain after a strain injury of the thigh or calf muscles were randomized to eccentric heavy resistance training of the injured region or control exercises of the back and abdominal muscle. Isokinetic (hamstring) or isometric (calf) muscle strength was determined, muscle cross-sectional area measured, and pain and function evaluated. Scar tissue ultrastructure was determined from biopsy specimens taken from the injured area before and after the training intervention. RESULTS Heavy resistance training over 3 months improved pain and function, normalized muscle strength deficits, and increased muscle cross-sectional area in the previously injured region. No systematic effect of training was found upon pathologic infiltration of fat and blood vessels into the previously injured area. Control exercises had no effect on strength, cross-sectional area, or scar tissue but a positive effect on patient-related outcome measures, such as pain and functional scores. CONCLUSION Short-term strength training can improve sequelae symptoms and optimize muscle function even many years after a strain injury, but it does not seem to influence the overall structural abnormalities of the area with scar tissue. REGISTRATION NCT02152098 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Monika L Bayer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maren Hoegberget-Kalisz
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel H Hjortshoej
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Physical and Occupational Therapy, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jens L Olesen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Research Unit for General Practice in Aalborg, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Janus D Nybing
- Department of Radiology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mikael Boesen
- Department of Radiology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Physical and Occupational Therapy, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Frich LH, Fernandes LR, Schrøder HD, Hejbøl EK, Nielsen PV, Jørgensen PH, Stensballe A, Lambertsen KL. The inflammatory response of the supraspinatus muscle in rotator cuff tear conditions. J Shoulder Elbow Surg 2021; 30:e261-e275. [PMID: 32919047 DOI: 10.1016/j.jse.2020.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rotator cuff (RC) disorders involve a spectrum of shoulder conditions from early tendinopathy to full-thickness tears leading to impaired shoulder function and pain. The pathology of RC disorder is, nonetheless, still largely unknown. Our hypothesis is that a supraspinatus (SS) tendon tear leads to sustained inflammatory changes of the SS muscle along with fatty infiltration and muscle degeneration, which are threshold markers for poor RC muscle function. The aim of this study was to determine the extent of this muscle inflammation in conjunction with lipid accumulation and fibrosis in RC tear conditions. METHODS We used proteomics, histology, electrochemiluminescence immunoassay, and quantitative polymerase chain reaction analyses to evaluate inflammatory and degenerative markers and fatty infiltration in biopsies from 22 patients undergoing surgery with repair of a full-thickness SS tendon tear. RESULTS Bioinformatic analysis showed that proteins involved in innate immunity, extracellular matrix organization, and lipid metabolism were among the most upregulated, whereas mitochondrial electronic transport chain along with muscle fiber function was among the most downregulated. Histologic analysis confirmed changes in muscle fiber organization and the presence of inflammation and fatty infiltration. Inflammation appeared to be driven by a high number of infiltrating macrophages, accompanied by elevated matrix metalloprotease levels and changes in transforming growth factor-β and cytokine levels in the SS compared with the deltoid muscle. CONCLUSIONS We demonstrated massive SS muscle inflammation after the tendon tear combined with fatty infiltration and degeneration. The regulation of tissue repair is thus extremely complex, and it may have opposite effects at different time points of healing. Inhibition or stimulation of muscle inflammation may be a potential target to enhance the outcome of the repaired torn RC.
Collapse
Affiliation(s)
- Lars Henrik Frich
- Department of Orthopaedics, Odense University Hospital, Odense, Denmark; The Orthopaedic Research Unit, University of Southern Denmark, Odense, Denmark; Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Livia Rosa Fernandes
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; BRIDGE (Brain Research - Inter-Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
22
|
Koga A, Itoigawa Y, Suga M, Morikawa D, Uehara H, Maruyama Y, Kaneko K. Stiffness change of the supraspinatus muscle can be detected by magnetic resonance elastography. Magn Reson Imaging 2021; 80:9-13. [PMID: 33819499 DOI: 10.1016/j.mri.2021.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/27/2023]
Abstract
Magnetic resonance elastography (MRE) and ultrasound shear wave elastography (SWE) are imaging techniques to measure stiffness of the soft tissue using magnetic resonance imaging (MRI) and ultrasound images, respectively. The purpose of this study was to explore the feasibility of the MRE measurement to evaluate the change in supraspinatus (SSP) muscle stiffness before and after rotator cuff tear, and to compare the result with those of SWE. Six swine shoulders were used. The skin and subcutaneous fat were removed, and the stiffness value of the SSP muscle was measured by MRE and SWE. The MRE measurement was performed with 0.3 T open MRI and the vibration from a pneumatic driver system with active driver to a passive driver to create the shear wave in the tissue. The passive driver was placed on the center of the SSP muscle. The stiffness was estimated from the wave images using local frequency estimation methods. In the SWE measurement, the probe of the ultrasound was placed on the center of the SSP muscle. The shear wave propagation speed was measured at a depth of 1 cm from the surface, and the stiffness was calculated. After those measurements, the rotator cuff tendon was detached from the greater tuberosity, and MRE and SWE measurements were then performed in the same manner again. The differences in the stiffness values were compared between before and after the rotator cuff tendon tear on both the MRE and SWE measurements. The results indicated that stiffness values on MRE and SWE were 9.3 ± 1.8 and 10.0 ± 1.2 kPa respectively before the rotator cuff tear, and 7.3 ± 1.3 and 8.0 ± 0.8 kPa respectively after the tendon detachment. Stiffness values were significantly lower after the tendon detachment on both the MRE and SWE measurements (p < 0.05). Our results demonstrated that stiffness values of the SSP muscle on MRE and SWE were lower after rotator cuff detachment. From this result, MRE may be a feasible method for quantification of the change in rotator cuff muscle stiffness.
Collapse
Affiliation(s)
- Akihisa Koga
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yoshiaki Itoigawa
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan.
| | - Mikio Suga
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Daichi Morikawa
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Hirohisa Uehara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yuichiro Maruyama
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Kazuo Kaneko
- Department of Orthopaedic Surgery, Juntendo University, Tokyo, Japan
| |
Collapse
|
23
|
Huang Z, Yin Z, Xu J, Fei Y, Heng BC, Jiang X, Chen W, Shen W. Tendon Stem/Progenitor Cell Subpopulations and Their Implications in Tendon Biology. Front Cell Dev Biol 2021; 9:631272. [PMID: 33681210 PMCID: PMC7930382 DOI: 10.3389/fcell.2021.631272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Tendon harbors a cell population that possesses stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity, commonly referred to as tendon stem/progenitor cells (TSPCs). Various techniques have been employed to study how TSPCs are implicated in tendon development, homeostasis and healing. Recent advances in single-cell analysis have enabled much progress in identifying and characterizing distinct subpopulations of TSPCs, which provides a more comprehensive view of TSPCs function in tendon biology. Understanding the mechanisms of physiological and pathological processes regulated by TSPCs, especially a particular subpopulation, would greatly benefit treatment of diseased tendons. Here, we summarize the current scientific literature on the various subpopulations of TSPCs, and discuss how TSPCs can contribute to tissue homeostasis and pathogenesis, as well as examine the key modulatory signaling pathways that determine stem/progenitor cell state. A better understanding of the roles that TSPCs play in tendon biology may facilitate the development of novel treatment strategies for tendon diseases.
Collapse
Affiliation(s)
- Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China.,Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,China Orthopedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Jialu Xu
- Department of Infectious Diseases, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China.,Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, China
| | - Xuesheng Jiang
- Department of Orthopedic Surgery, Huzhou Hospital, Zhejiang University, Huzhou, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China.,Institute of Sports Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,China Orthopedic Regenerative Medicine (CORMed), Hangzhou, China
| |
Collapse
|
24
|
Mechanical properties of the different rotator cuff tendons in the rat are similarly and adversely affected by age. J Biomech 2021; 117:110249. [PMID: 33486263 DOI: 10.1016/j.jbiomech.2021.110249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
Rotator cuff tendon tears and tendinopathies are common injuries affecting a large portion of the population and can result in pain and joint dysfunction. Incidence of rotator cuff tears significantly increases with advancing age, and up to 90% of these tears involve the supraspinatus. Previous literature has shown that aging can lead to inferior mechanics, altered composition, and changes in structural properties of the supraspinatus. However, there is little known about changes in supraspinatus mechanical properties in context of other rotator cuff tendons. Alterations in tendon mechanical properties may indicate damage and an increased risk of rupture, and thus, the purpose of this study was to use a rat model to define age-related alterations in rotator cuff tendon mechanics to determine why the supraspinatus is more susceptible to tears due to aging than the infraspinatus, subscapularis, and teres minor. Fatigue, viscoelastic, and quasi-static properties were evaluated in juvenile, adult, aged, and geriatric rats. Aging ubiquitously and adversely affected all rotator cuff tendons tested, particularly leading to increased stiffness, decreased stress relaxation, and decreased fatigue secant and tangent moduli in geriatric animals, suggesting a common intrinsic mechanism due to aging in all rotator cuff tendons. This study demonstrates that aging has a significant effect on rotator cuff tendon mechanical properties, though the supraspinatus was not preferentially affected. Thus, we are unable to attribute the aging-associated increase in supraspinatus tears to its mechanical response alone.
Collapse
|
25
|
Feeley BT, Liu M, Ma CB, Agha O, Aung M, Lee C, Liu X. Human Rotator Cuff Tears Have an Endogenous, Inducible Stem Cell Source Capable of Improving Muscle Quality and Function After Rotator Cuff Repair. Am J Sports Med 2020; 48:2660-2668. [PMID: 32730704 PMCID: PMC9262007 DOI: 10.1177/0363546520935855] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The muscle quality of the rotator cuff (RC), measured by atrophy and fatty infiltration (FI), is a key determinant of outcomes in RC injury and repair. The ability to regenerate muscle after repair has been shown to be limited. PURPOSE To determine if there is a source of resident endogenous stem cells, fibroadipogenic progenitor cells (FAPs), within RC injury patients, and if these cells are capable of adipogenic, fibrogenic, and pro-myogenic differentiation. STUDY DESIGN Controlled laboratory study. METHODS A total of 20 patients between the ages of 40 and 75 years with partial- or full-thickness RC tears of the supraspinatus and evidence of atrophy and FI Goutallier grade 1, 2, or 3 were selected from 2 surgeons at an orthopaedic center. During the surgical repair procedure, supraspinatus muscle biopsy specimens were obtained for analysis as were deltoid muscle biopsy specimens to serve as the control. FAPs and satellite cells were quantified using fluorescence-activated cell sorting. Muscle FI and fibrosis was quantified using Oil Red O and Masson trichrome staining. FAP differentiation and gene expression profiles were compared across tear sizes after culture in adipogenic, fibrogenic, and beta-3 agonist (amibegron) conditions. Analysis of variance was used for statistical comparisons between groups, with P < .05 as statistically significant. RESULTS Histologic analysis confirmed the presence of fat in biopsy specimens from patients with full-thickness tears. There were more FAPs in the full-thickness tear group compared with the partial-thickness tear group (9.43% ± 4.25% vs 3.84% ± 2.54%; P < .01). Full-thickness tears were divided by tear size, with patients with larger tears having significantly more FAPs than those with smaller tears. FAPs from muscles with full-thickness tendon tears had more adipogenic and fibrogenic potential than those with partial tears. Induction of a beige adipose tissue (BAT) phenotype in FAPs was possible, as demonstrated by increased expression of BAT markers and pro-myogenic genes including insulin-like growth factor 1 and follistatin. CONCLUSION Endogenous FAPs are present within the RC and likely are the source of FI. These FAPs were increased in muscles with in larger tears but are capable of adopting a pro-myogenic BAT phenotype that could be utilized to improve muscle quality and patient function after RC repair.
Collapse
Affiliation(s)
- Brian T. Feeley
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Address correspondence to Brian T. Feeley, MD, Department of Orthopedic Surgery, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA ()
| | - Mengyao Liu
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - C. Benjamin Ma
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Obiajulu Agha
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Mya Aung
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA
| | - Carlin Lee
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Xuhui Liu
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Lee YS, Kim JY, Chung SW. Rotator cuff muscle stem cells: the double-edged sword in the skeletal muscle. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:717. [PMID: 32617337 PMCID: PMC7327348 DOI: 10.21037/atm.2020.02.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong-Soo Lee
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea.,Joint Center, Barunsesang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ja-Yeon Kim
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seok Won Chung
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Yanai K, Kaneko S, Ishii H, Aomatsu A, Ito K, Hirai K, Ookawara S, Ishibashi K, Morishita Y. MicroRNAs in Sarcopenia: A Systematic Review. Front Med (Lausanne) 2020; 7:180. [PMID: 32549041 PMCID: PMC7270169 DOI: 10.3389/fmed.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, which is characterized by the loss of skeletal muscle, has been reported to contribute to development of physical disabilities, various illnesses, and increasing mortality. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit translation of target messenger RNAs. Previous studies have shown that miRNAs play pivotal roles in the development of sarcopenia. Therefore, this systematic review focuses on miRNAs that regulate sarcopenia.
Collapse
Affiliation(s)
- Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hiroki Ishii
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Akinori Aomatsu
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Division of Intensive Care Unit, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
28
|
Yan Z, Yin H, Brochhausen C, Pfeifer CG, Alt V, Docheva D. Aged Tendon Stem/Progenitor Cells Are Less Competent to Form 3D Tendon Organoids Due to Cell Autonomous and Matrix Production Deficits. Front Bioeng Biotechnol 2020; 8:406. [PMID: 32432103 PMCID: PMC7214752 DOI: 10.3389/fbioe.2020.00406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Tendons are dense connective tissues, which are critical for the integrity and function of our musculoskeletal system. During tendon aging and degeneration, tendon stem/progenitor cells (TSPCs) experience profound phenotypic changes with declined cellular functions that can be linked to the known increase in complications during tendon healing process in elderly patients. Tissue engineering is a promising approach for achieving a complete recovery of injured tendons. However, use of autologous cells from aged individuals would require restoring the cellular fitness prior to implantation. In this study, we applied an established cell sheet model for in vitro tenogenesis and compared the sheet formation of TSPC derived from young/healthy (Y-TSPCs) versus aged/degenerative (A-TSPCs) human Achilles tendon biopsies with the purpose to unravel differences in their potential to form self-assembled three-dimensional (3D) tendon organoids. Using our three-step protocol, 4 donors of Y-TSPCs and 9 donors of A-TSPCs were subjected to cell sheet formation and maturation in a period of 5 weeks. The sheets were then cross evaluated by weight and diameter measurements; quantification of cell density, proliferation, senescence and apoptosis; histomorphometry; gene expression of 48 target genes; and collagen type I protein production. The results revealed very obvious and significant phenotype in A-TSPC sheets characterized by being fragile and thin with poor tissue morphology, and significantly lower cell density and proliferation, but significantly higher levels of the senescence-related gene markers and apoptotic cells. Quantitative gene expression analyses at the mRNA and protein levels, also demonstrated abnormal molecular circuits in the A-TSPC sheets. Taken together, we report for the first time that A-TSPCs exhibit profound deficits in forming 3D tendon tissue organoids, thus making the cell sheet model suitable to investigate the molecular mechanisms involved in tendon aging and degeneration, as well as examining novel pharmacologic strategies for rejuvenation of aged cells.
Collapse
Affiliation(s)
- Zexing Yan
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Heyong Yin
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | | | - Christian G Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Volker Alt
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
29
|
Talarek JR, Piacentini AN, Konja AC, Wada S, Swanson JB, Nussenzweig SC, Dines JS, Rodeo SA, Mendias CL. The MRL/MpJ Mouse Strain Is Not Protected From Muscle Atrophy and Weakness After Rotator Cuff Tear. J Orthop Res 2020; 38:811-822. [PMID: 31696955 PMCID: PMC7071998 DOI: 10.1002/jor.24516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023]
Abstract
Chronic rotator cuff tears are a common source of shoulder pain and disability. Patients with rotator cuff tears often have substantial weakness, fibrosis, and fat accumulation, which limit successful surgical repair and postoperative rehabilitation. The Murphy Roths Large (MRL) strain of mice have demonstrated superior healing and protection against pathological changes in several disease and injury conditions. We tested the hypothesis that, compared with the commonly used C57Bl/6 (B6) strain, MRL mice would have less muscle fiber atrophy and fat accumulation, and be protected against the loss in force production that occurs after cuff tear. Adult male B6 and MRL mice were subjected to a rotator cuff tear, and changes in muscle fiber contractility and histology were measured. RNA sequencing and shotgun metabolomics and lipidomics were also performed. The muscles were harvested one month after tear. B6 and MRL mice had a 40% reduction in relative muscle force production after rotator cuff tear. RNA sequencing identified an increase in fibrosis-associated genes and a reduction in mitochondrial metabolism genes. The markers of glycolytic metabolism increased in B6 mice, while MRL mice appeared to increase amino acid metabolism after tear. There was an accumulation of lipid after injury, although there was a divergent response between B6 and MRL mice in the types of lipid species that accrued. There were strain-specific differences between the transcriptome, metabolome, and lipidome of B6 and MRL mice, but these differences did not protect MRL mice from weakness and pathological changes after rotator cuff tear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:811-822, 2020.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joshua S Dines
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
| | - Christopher L Mendias
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
- Corresponding Author: Christopher Mendias, PhD, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, USA, +1 212-606-1785 office, +1 212-249-2373 fax,
| |
Collapse
|
30
|
Edwards GAD, McCann PA, Whitehouse MR, Wakeley CJ, Sarangi PP. The influence of fatty infiltration and muscle atrophy of the rotator cuff muscles on midterm functional outcomes in total shoulder resurfacing at six years' follow-up. Shoulder Elbow 2020; 12:91-98. [PMID: 32313558 PMCID: PMC7153209 DOI: 10.1177/1758573218811655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND We report functional outcomes at six years in patients with varying degrees of fatty infiltration and atrophy of the rotator cuff muscles who have undergone anatomic total shoulder replacement. METHODS A retrospective analysis of case notes and magnetic resonance imaging scans of patients undergoing total shoulder replacement for primary glenohumeral arthritis was performed. Patients were grouped based upon their pre-operative magnetic resonance imaging findings for fatty infiltration, muscle area and tendinopathy. Post-operative functional outcomes were assessed using the Oxford Shoulder Score and Quick Disabilities of the Arm, Shoulder and Hand score. Post-operative measurements were made for active shoulder movements. RESULTS Thirty-two patients were reviewed at a mean of 67 months following surgery. All patients demonstrated fatty infiltration on their pre-operative magnetic resonance imaging scan. Muscle atrophy was shown in 22 patients and 12 had tendinopathy. Multiple regression analysis showed no correlation between the Oxford Shoulder Score (p = 0.443), the Quick Disabilities of the Arm, Shoulder and Hand score (p = 0.419), forward flexion (p = 0.170), external rotation (p = 0.755) and any of the pre-operative independent variables. DISCUSSION The degree of fatty infiltration, muscle atrophy and tendinopathy of the rotator cuff muscle on pre-operative magnetic resonance imaging scanning is not associated with functional outcome score or functional movement at medium-term follow-up following total shoulder replacement. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Gray AD Edwards
- Bristol Royal Infirmary, Bristol, UK,Southmead Hospital, Bristol, UK,Gray AD Edwards, Department of Trauma and Orthopaedics, Southmead Hospital, Southmead Road, Bristol BS10 5NB, UK.
| | - Philip A McCann
- Bristol Royal Infirmary, Bristol, UK,Southmead Hospital, Bristol, UK
| | - Michael R Whitehouse
- Southmead Hospital, Bristol, UK,Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, 1st Floor Learning & Research Building, Southmead Hospital, Bristol, UK,National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, UK
| | | | - Partha P Sarangi
- Bristol Royal Infirmary, Bristol, UK,Southmead Hospital, Bristol, UK
| |
Collapse
|
31
|
Sharma AK, Levian B, Shah P, Mosich GM, Husman R, Ariniello A, Gatto JD, Hu VJ, McClintick DJ, Jensen AR, McAllister DR, Péault B, Dar A, Petrigliano FA. Aged Mice Demonstrate Greater Muscle Degeneration of Chronically Injured Rotator Cuff. J Orthop Res 2020; 38:320-328. [PMID: 31517395 DOI: 10.1002/jor.24468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
Massive tears of the rotator cuff (RC) are often associated with progressive and irreversible muscle degeneration due to fibrosis, fatty infiltration, and muscle atrophy. RC tears are common in individuals older than 60 years and the repair of these tears is amongst the most prevalent of orthopedic procedures. However, most current models of this injury are established in young animals, which may not accurately recapitulate the clinical condition. In this study, we used a murine model of massive RC tears to evaluate age-related muscle degeneration following chronic injury. The expression of the fibro-adipogenic genes encoding collagen type III and leptin was higher in aged RC compared with matched injured young tissue at 2 weeks post-injury, and development of fibrosis was accelerated in aged mice within 5 days post-injury. Furthermore, the synthesis of collagens type I and III and fat tissue accumulation were significantly higher in injured RCs of aged mice. Similar frequency of fibro-adipogenic PDGFRβ+ PDGFRα+ progenitor cells was measured in non-injured RC of aged and young mice, but PDGFRβ+ PDGFRα+ cells contributed to significantly larger fibrotic lesions in aged RCs within 2 weeks post-injury, implying a more robust fibrotic environment in the aged injured muscle. Altogether, these findings demonstrate age-dependent differences in RC response to chronic injury with a more profound fibro-adipogenic change in aged muscles. Clinically, cell therapies for muscular pathologies should not only consider the cell type being transplanted but also the recipient milieu into which these cells are seeded. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:320-328, 2020.
Collapse
Affiliation(s)
- Abhinav K Sharma
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Brandon Levian
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Paras Shah
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Gina M Mosich
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Regina Husman
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Allison Ariniello
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Jonathan D Gatto
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Vivian J Hu
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Daniel J McClintick
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Andrew R Jensen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - David R McAllister
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Bruno Péault
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245.,Center for Cardiovascular Science and MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Ayelet Dar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| | - Frank A Petrigliano
- Department of Orthopaedic Surgery, David Geffen School of Medicine, Orthopaedic Hospital Research Center, University of California, Toyota Sports Performance Center 555 N. Nash St., Suite BEl Segundo, Los Angeles, California, 90245
| |
Collapse
|
32
|
Lee YS, Kim JY, Kim KI, Ki SY, Chung SW. Effect of Fatty Acid-Binding Protein 4 Inhibition on Rotator Cuff Muscle Quality: Histological, Biomechanical, and Biomolecular Analysis. Am J Sports Med 2019; 47:3089-3099. [PMID: 31518157 DOI: 10.1177/0363546519873856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND A rotator cuff tear (RCT) induces fatty acid-binding protein 4 (FABP4) expression, resulting in ectopic fat accumulation in the rotator cuff muscle. PURPOSE To evaluate whether FABP4 inhibition reduces fatty infiltration and improves muscle physiology after RCT in a rat model. STUDY DESIGN Controlled laboratory study. METHODS Human supraspinatus muscle and deltoid muscle tissues were acquired from patients with RCTs during arthroscopic surgery, and FABP4 expression in the supraspinatus muscle was evaluated as compared with the intact deltoid muscle. A rat RCT model was established by detaching the supraspinatus tendon, after which a specific FABP4 inhibitor was locally injected into the supraspinatus muscle 4 times at 3-day intervals starting 2 weeks after the surgery. Body weight and blood glucose levels were measured at 2 and 4 weeks after the RCT, and the mRNA and protein expressions of various target molecules (including FABP4), histological changes, and biomechanical tensile strength were assessed in the supraspinatus muscles at 4 weeks after the RCT. RESULTS The expression of human FABP4 was significantly increased in the torn rotator cuff muscle as compared with the intact deltoid muscle. In the rat model, the mRNA and protein expressions of FABP4 and HIF1α were significantly increased by the RCT as compared with the control. The FABP4 inhibitor treatment significantly decreased FABP4 expression when compared with the vehicle treatment; however, HIF1α expression was not significantly decreased versus the vehicle treatment. Histologically, RCT induced noticeable muscle fatty infiltration, which was remarkably reduced by the local injection of the FABP4 inhibitor. Biomechanically, the tensile strength of the rotator cuff muscle after the RCT was significantly improved by the FABP4 inhibitor in terms of load to failure and total energy to failure. CONCLUSION RCT induces FABP4 expression in human and rat rotator cuff muscles. The FABP4 inhibitor drastically decreased the histological fatty infiltration caused by RCT and improved the tensile strength of the rotator cuff muscle. CLINICAL RELEVANCE FABP4 inhibitor may have a beneficial effect on the muscle quality after RCT.
Collapse
Affiliation(s)
- Yong-Soo Lee
- Department of Orthopedic Surgery, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ja-Yeon Kim
- Department of Orthopedic Surgery, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kwang Il Kim
- Department of Orthopedic Surgery, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Se-Young Ki
- Department of Orthopedic Surgery, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seok Won Chung
- Department of Orthopedic Surgery, School of Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Muscle fat content in the intact infraspinatus muscle correlates with age and BMI, but not critical shoulder angle. Eur J Trauma Emerg Surg 2019; 47:607-616. [DOI: 10.1007/s00068-019-01246-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022]
|
34
|
Hu P, Jiang L, Wu L. Identify differential gene expressions in fatty infiltration process in rotator cuff. J Orthop Surg Res 2019; 14:158. [PMID: 31138249 PMCID: PMC6537194 DOI: 10.1186/s13018-019-1182-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/30/2019] [Indexed: 11/23/2022] Open
Abstract
Background Rotator cuff tears are one of the most frequent upper extremity injuries and lead to pain and disability. Recent studies have implicated fatty infiltration in rotator cuff is a key failure element with the higher re-tear rates and poorer functional prognosis. Therefore, we investigated the differential expression of key genes in each stage of rotator cuff tear. Methods A published expression profile was downloaded from the Gene Expression Omnibus database and analyzed using the Linear Models for Microarray Data (LIMMA) package in R language to identify differentially expressed genes (DEGs) in different stages of injured rotator cuff muscles. Gene ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to annotate the function of the DEGs. Finally, PPI network and module analysis were used to identify hub genes. Results A total of 1089 fatty infiltration-related DEGs were identified, including 733 upregulated and 356 downregulated genes, and GO analyses confirmed that fatty infiltration was strongly associated with inflammatory response, aging, response to lipopolysaccharide, and immune response. Significantly enriched KEGG pathways associated with these DEGs included the phagosome, cell adhesion molecules, tuberculosis, and osteoclast differentiation. Further analyses via a PPI network and module analysis identified a total of 259 hub genes. Among these, Tmprss11d, Ptprc, Itgam, Mmp9, Tlr2, Il1b, Il18, Ccl5, Cxcl10, and Ccr7 were the top ten hub genes. Conclusions Our findings indicated the potential key genes and pathways involved in fatty degeneration in the development of fatty infiltration and supplied underlying therapeutic targets in the future. Electronic supplementary material The online version of this article (10.1186/s13018-019-1182-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengfei Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Lifeng Jiang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Lidong Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China.
| |
Collapse
|
35
|
Lee AH, Elliott DM. Comparative multi-scale hierarchical structure of the tail, plantaris, and Achilles tendons in the rat. J Anat 2019; 234:252-262. [PMID: 30484871 PMCID: PMC6326909 DOI: 10.1111/joa.12913] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 12/19/2022] Open
Abstract
Rodent tendons are widely used to study human pathologies such as tendinopathy and repair, and to address fundamental physiological questions about development, growth, and remodeling. However, how the gross morphology and multi-scale hierarchical structure of rat tendons, such as the tail, plantaris, and Achilles tendons, compare with that of human tendons are unknown. In addition, there remains disagreement about terminology and definitions. Specifically, the definitions of fascicle and fiber are often dependent on diameter sizes, not their characteristic features, and these definitions impair the ability to compare hierarchical structure across species, where the sizes of the fiber and fascicle may change with animal size and tendon function. Thus, the objective of the study was to select a single species that is commonly used for tendon research (rat) and tendons with varying mechanical functions (tail, plantaris, Achilles) to evaluate the hierarchical structure at multiple length scales using histology, SEM, and confocal imaging. With the exception of the specialized rat tail tendon, we confirmed that in rat tendons there are no fascicles and the fiber is the largest subunit. In addition, we provided a structurally based definition of a fiber as a bundle of collagen fibrils that is surrounded by elongated cells, and this definition was supported by both histologically processed and unprocessed samples. In all rat tendons studied, the fiber diameters were consistently between 10 and 50 μm, and this diameter range appears to be conserved across larger species. Specific recommendations were made highlighting the strengths and limitations of each rat tendon as a research model. Understanding the hierarchical structure of tendon can advance the design and interpretation of experiments and development of tissue-engineered constructs.
Collapse
Affiliation(s)
- Andrea H. Lee
- Department of Biomedical EngineeringUniversity of DelawareNewarkUSA
| | - Dawn M. Elliott
- Department of Biomedical EngineeringUniversity of DelawareNewarkUSA
| |
Collapse
|
36
|
Giambini H, Hatta T, Rezaei A, An KN. Extensibility of the supraspinatus muscle can be predicted by combining shear wave elastography and magnetic resonance imaging-measured quantitative metrics of stiffness and volumetric fat infiltration: A cadaveric study. Clin Biomech (Bristol, Avon) 2018; 57:144-149. [PMID: 29986277 PMCID: PMC6052767 DOI: 10.1016/j.clinbiomech.2018.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/05/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND A torn rotator cuff tendon will retract over time causing changes in muscle properties and decreasing its extensibility, or deformation. During surgery, large tensile loads are applied to bring the torn tendon to the footprint. Poor muscle extensibility and large tensile stresses at the repair might lead to gap formation or re-tear of the repair. A quantitative evaluation of muscle properties could be used to predict the extensibility of the supraspinatus (SSP) muscle. METHOD Magnetic resonance imaging (MRI)-measured volumetric fat fraction and shear wave elastography (SWE)-measured elastic modulus of the SSP muscle were obtained on seventeen cadaveric shoulders. Experimental extensibility and stiffness were then measured by axially pulling the tendon up-to 60 N. Univariate and multivariate analyses were used to determine the correlation and contribution of fat fraction and elastic modulus to experimental outcomes. FINDINGS SWE moduli negatively correlated with SSP muscle extensibility (r = 0.54-0.58, P ≤ 0.0259); fat fraction resulted in a positive correlation (r = 0.69, P = 0.0021). SWE measurements, solely, explained up to 34% and 33% of the variability in measured extensibility and stiffness, respectively. Fat Fraction, solely, explained 48% of the variability in extensibility and 36% of the variability in stiffness. These methods combined predicted up to 62% of the musculotendinous extensibility. INTERPRETATION This study showed a comprehensive quantitative assessment of SSP muscle properties using SWE to estimate stiffness and MRI to measure fatty infiltration. The extensibility of the detached muscle/tendon unit was highly correlated to material properties of the muscle when these methods were used in combination.
Collapse
Affiliation(s)
- Hugo Giambini
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Taku Hatta
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN, USA
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kai-Nan An
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
James G, Sluka KA, Blomster L, Hall L, Schmid AB, Shu CC, Little CB, Melrose J, Hodges PW. Macrophage polarization contributes to local inflammation and structural change in the multifidus muscle after intervertebral disc injury. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:1744-1756. [PMID: 29948327 DOI: 10.1007/s00586-018-5652-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 05/13/2018] [Accepted: 06/01/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Intervertebral disk (IVD) lesion and its subsequent degeneration have a profound effect on the multifidus muscle. The subacute/early chronic phase of multifidus remodeling after IVD lesion has been proposed to be regulated by inflammatory processes. The balance between pro-inflammatory (M1) and anti-inflammatory (M2) macrophages plays an important role in maintaining tissue integrity after injury. The localization, polarization of macrophage subtypes and their mediation of the pro-inflammatory cytokine tumor necrosis factor (TNF) are unknown in paraspinal muscles during IVD degeneration. A sheep model of IVD degeneration was used to investigate the role of macrophages and TNF in the structural alterations that occur within the multifidus muscle. METHODS Anterolateral lesions were induced at L3-4 IVD in sheep. Multifidus muscle tissue at L4 was harvested 3 and 6 months after lesion and used for immunofluorescence assays to examine total macrophage number, macrophage polarization between M1 and M2, and to assess the localization of TNF expression in muscle, adipose and connective tissues from injured and naïve control animals. RESULTS A greater proportion of M1 macrophages is present in muscle at both 3 and 6 months after IVD lesion, and adipose tissue at 6 months. Total number of macrophages is unchanged. At 6 months, expression of TNF is increased in adipose and connective tissue and the proportion of TNF expressed by M1 macrophages is increased. CONCLUSIONS These data support the proposal that macrophages and TNF (pro-inflammatory cytokine) play an active role in the subacute/early chronic phase of remodeling in muscle, adipose and connective tissues of the multifidus during IVD degeneration. This presents a novel target for treatment. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Gregory James
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Linda Blomster
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Leanne Hall
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Annina B Schmid
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.,Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Cindy C Shu
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, The Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, The Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, The Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Paul W Hodges
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
38
|
Noda M, Saegusa Y, Takahashi M, Takada Y, Fujita M, Shinohara I. Decreased postoperative gluteus medius muscle cross-sectional area measured by computed tomography scan in patients with intertrochanteric fractures nailing. J Orthop Surg (Hong Kong) 2018; 25:2309499017727943. [PMID: 28920547 DOI: 10.1177/2309499017727943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In patients with femoral intertrochanteric fractures treated by cephalomedullary (CM) nailing, abduction force reportedly decreased by 25-30% during the postoperative follow-up period. The purpose of the current study is to evaluate the cross-sectional area (CSA) and adipose tissue ratio (ATR) of the gluteus medius muscle on the postoperative computed tomography (CT) view, expecting this graphic study will support clinical results. MATERIALS AND METHODS A total of 27 patients with femoral intertrochanteric fractures treated by CM femoral nail implants completed the study. The mean age at osteosynthesis was 83 years (range: 72-94 years). The mean postoperative follow-up period was 23 months. The three CT axial slice views were defined as slices A, B, and C corresponding to proximal, midway, and distal part of gluteus medius, respectively. The CSA and ATR were assessed bilaterally. RESULTS The mean and standard deviation of CSA values (mm2) between the nonoperated/ operated side were as follows: slice A: 2225.8 ± 621.2/1984.5 ± 425.8; slice B: 2145.1 ± 538.3/1854.9 ± 383.9; and slice C: 1711.0 ± 459.0/1434.5 ± 396.9 ( p < 0.01 in slices A, B, and C). The mean and standard deviation of ATR values (%) from the nonoperative/ operative side were as follows: slice A: 2.8 ± 1.7/5.2 ± 3.5; slice B: 2.7 ± 1.9/4.6 ± 3.2; and slice C: 3.6 ± 3.0/4.8 ± 3.2 ( p < 0.01 in slices A and B and p < 0.05 in slice C). CONCLUSION Our image findings documented that gluteus medius is significantly changed in CSA and ATR. The damage possibly triggers decrease in muscular strength of hip abduction in the postoperative follow-up period. This measurement is objective, and needed no patient's endurance and cooperation.
Collapse
Affiliation(s)
- Mitsuaki Noda
- Department of Orthopedics, Konan Hospital, Kobe City, Japan
| | | | | | - Yuma Takada
- Department of Orthopedics, Konan Hospital, Kobe City, Japan
| | | | | |
Collapse
|
39
|
Baumer TG, Dischler J, Davis L, Labyed Y, Siegal DS, van Holsbeeck M, Moutzouros V, Bey MJ. Effects of age and pathology on shear wave speed of the human rotator cuff. J Orthop Res 2018; 36:282-288. [PMID: 28657192 PMCID: PMC7050544 DOI: 10.1002/jor.23641] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/25/2017] [Indexed: 02/04/2023]
Abstract
Rotator cuff tears are common and often repaired surgically, but post-operative repair tissue healing, and shoulder function can be unpredictable. Tear chronicity is believed to influence clinical outcomes, but conventional clinical approaches for assessing tear chronicity are subjective. Shear wave elastography (SWE) is a promising technique for assessing soft tissue via estimates of shear wave speed (SWS), but this technique has not been used extensively on the rotator cuff. Specifically, the effects of age and pathology on rotator cuff SWS are not well known. The objectives of this study were to assess the association between SWS and age in healthy, asymptomatic subjects, and to compare measures of SWS between patients with a rotator cuff tear and healthy, asymptomatic subjects. SWE images of the supraspinatus muscle and intramuscular tendon were acquired from 19 asymptomatic subjects and 11 patients with a rotator cuff tear. Images were acquired with the supraspinatus under passive and active (i.e., minimal activation) conditions. Mean SWS was positively associated with age in the supraspinatus muscle and tendon under passive and active conditions (p ≤ 0.049). Compared to asymptomatic subjects, patients had a lower mean SWS in their muscle and tendon under active conditions (p ≤ 0.024), but no differences were detected under passive conditions (p ≥ 0.783). These findings identify the influences of age and pathology on SWS in the rotator cuff. These preliminary findings are an important step toward evaluating the clinical utility of SWE for assessing rotator cuff pathology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:282-288, 2018.
Collapse
Affiliation(s)
- Timothy G. Baumer
- Department of Orthopaedic Surgery, Bone and Joint Center, Henry Ford Health System, 6135 Woodward Ave, Detroit, Michigan
| | - Jack Dischler
- Department of Orthopaedic Surgery, Bone and Joint Center, Henry Ford Health System, 6135 Woodward Ave, Detroit, Michigan
| | - Leah Davis
- Department of Radiology, Henry Ford Health System, Detroit, Michigan
| | - Yassin Labyed
- Ultrasound Division, Siemens Medical Solutions USA Inc., Detroit, Michigan
| | - Daniel S. Siegal
- Department of Radiology, Henry Ford Health System, Detroit, Michigan
| | | | - Vasilios Moutzouros
- Department of Orthopaedic Surgery, Sports Medicine Division, Henry Ford Health System, Detroit, Michigan
| | - Michael J. Bey
- Department of Orthopaedic Surgery, Bone and Joint Center, Henry Ford Health System, 6135 Woodward Ave, Detroit, Michigan
| |
Collapse
|
40
|
Valencia AP, Iyer SR, Spangenburg EE, Gilotra MN, Lovering RM. Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear. BMC Musculoskelet Disord 2017; 18:436. [PMID: 29121906 PMCID: PMC5679320 DOI: 10.1186/s12891-017-1789-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/26/2017] [Indexed: 01/16/2023] Open
Abstract
Background Rotator cuff (RTC) tears are a common clinical problem resulting in adverse changes to the muscle, but there is limited information comparing histopathology to contractile function. This study assessed supraspinatus force and susceptibility to injury in the rat model of RTC tear, and compared these functional changes to histopathology of the muscle. Methods Unilateral RTC tears were induced in male rats via tenotomy of the supraspinatus and infraspinatus. Maximal tetanic force and susceptibility to injury of the supraspinatus muscle were measured in vivo at day 2 and day 15 after tenotomy. Supraspinatus muscles were weighed and harvested for histologic analysis of the neuromuscular junction (NMJ), intramuscular lipid, and collagen. Results Tenotomy resulted in eventual atrophy and weakness. Despite no loss in muscle mass at day 2 there was a 30% reduction in contractile force, and a decrease in NMJ continuity and size. Reduced force persisted at day 15, a time point when muscle atrophy was evident but NMJ morphology was restored. At day 15, torn muscles had decreased collagen-packing density and were also more susceptible to contraction-induced injury. Conclusion Muscle size and histopathology are not direct indicators of overall RTC contractile health. Changes in NMJ morphology and collagen organization were associated with changes in contractile function and thus may play a role in response to injury. Although our findings are limited to the acute phase after a RTC tear, the most salient finding is that RTC tenotomy results in increased susceptibility to injury of the supraspinatus.
Collapse
Affiliation(s)
- Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA.,Department of Kinesiology, University of Maryland School of Public Health, College Park, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Mohit N Gilotra
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA.
| |
Collapse
|
41
|
Lee YS, Kim JY, Oh KS, Chung SW. Fatty acid-binding protein 4 regulates fatty infiltration after rotator cuff tear by hypoxia-inducible factor 1 in mice. J Cachexia Sarcopenia Muscle 2017; 8:839-850. [PMID: 28382782 PMCID: PMC5659062 DOI: 10.1002/jcsm.12203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Fatty infiltration in skeletal muscle is directly linked to loss of muscle strength and is associated with various adverse physical outcomes such as muscle atrophy, inflammation, insulin resistance, mobility impairments, and even mortality in the elderly. Aging, mechanical unloading, muscle injury, and hormonal imbalance are main causes of muscle fat accumulation, and the fat cells are derived from muscle stem cells via adipogenic differentiation. However, the pathogenesis and molecular mechanisms of fatty infiltration in muscles are still not fully defined. Fatty acid-binding protein 4 (FABP4) is a carrier protein for fatty acids and is involved in fatty acid uptake, transport, and lipid metabolism. Rotator cuff tear (RCT) usually occurs in the elderly and is closely related with fatty infiltration in injured muscle. To investigate potential mechanisms for fatty infiltration other than adipogenic differentiation of muscle stem cells, we examined the role of FABP4 in muscle fatty infiltration in an RCT mouse model. METHODS In the RCT model, we evaluated the expression of FABP4 by qRT-PCR, western blotting, and immunohistochemical analyses. Histological changes such as inflammation and fat accumulation in the injured muscles were examined immunohistochemically. To evaluate whether hypoxia induces FABP4 expression, the levels of FABP4 mRNA and protein in C3H10T1/2 cells after hypoxia were examined. Using a transient transfection assay in 293T cells, we assessed the promoter activity of FABP4 by hypoxia-inducible factors (HIFs). Additionally, we evaluated the reduction in FABP4 expression and fat accumulation using specific inhibitors for HIF1 and FABP4, respectively. RESULTS FABP4 expression was significantly increased after RCT in mice, and its expression was localized in the intramuscular fatty region. Rotator cuff tear-induced FABP4 expression was up-regulated by hypoxia. HIF1α, which is activated by hypoxia, augmented the promoter activity of FABP4, together with HIF1β. Hypoxia-induced FABP4 expression was significantly decreased by HIF1 inhibitor treatment. Furthermore, in RCT model mice, fat accumulation was remarkably reduced by FABP4 inhibitor treatment. CONCLUSIONS This study shows that RCT induces FABP4 expression, leading to fat accumulation in injured muscle. FABP4 transcription is regulated by the direct binding of HIF1 to the FABP4 promoter in the hypoxic condition induced by RCT. Fat accumulation in injured muscle was reduced by the inhibition of FABP4. Ultimately, in the RCT model, we identified a novel mechanism for fatty infiltration by FABP4, which differs from adipogenic differentiation of muscle stem cells, and we found that fatty infiltration might be regulated by inhibition of HIF1 or FABP4.
Collapse
Affiliation(s)
- Yong-Soo Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Gwangjin-gu, Seoul, Korea
| | - Ja-Yeon Kim
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Gwangjin-gu, Seoul, Korea
| | - Kyung-Soo Oh
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Gwangjin-gu, Seoul, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
42
|
What is the role of systemic conditions and options for manipulation of bone formation and bone resorption in rotator cuff tendon healing and repair? TECHNIQUES IN SHOULDER AND ELBOW SURGERY 2017; 18:113-120. [PMID: 28966557 DOI: 10.1097/bte.0000000000000121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rotator cuff pathology is a significant cause of shoulder pain. Operative repair of rotator cuff is an established standard of care for these patient, however, failure of the procedure is common. Systemic conditions such as diabetes mellitus, hypocholesteremia, thyroid disease, and smoking significantly affect the outcomes of rotator cuff repair and have significant implications for the management of these patients. Diabetes mellitus has been proposed to damage tendons through non-enzymatic glycosylation of collagen with advanced glycation end product formation and impaired microcirculation. Hypocholesteremia may lead to fatty infiltration and subsequent pro-inflammatory degenerative enzymatic degeneration. Thyroid disease may disrupt tendon homeostasis through the alteration of collagen production and the accumulation of glycosaminoglycans. Lastly, smoking inhibits tendon healing through the induction of hypovascularity and hypoperfusion. Understanding of the implications these systemic conditions have on the outcomes is important in the management of rotator cuff disease.
Collapse
|
43
|
MacDonald AE, Ekhtiari S, Khan M, Moro JK, Bedi A, Miller BS. Dyslipidaemia is associated with an increased risk of rotator cuff disease: a systematic review. J ISAKOS 2017. [DOI: 10.1136/jisakos-2017-000142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
44
|
Davies MR, Lee L, Feeley BT, Kim HT, Liu X. Lysophosphatidic acid-induced RhoA signaling and prolonged macrophage infiltration worsens fibrosis and fatty infiltration following rotator cuff tears. J Orthop Res 2017; 35:1539-1547. [PMID: 27505847 PMCID: PMC5502767 DOI: 10.1002/jor.23384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023]
Abstract
Previous studies have suggested that macrophage-mediated chronic inflammation is involved in the development of rotator cuff muscle atrophy and degeneration following massive tendon tears. Increased RhoA signaling has been reported in chronic muscle degeneration, such as muscular dystrophy. However, the role of RhoA signaling in macrophage infiltration and rotator muscle degeneration remains unknown. Using a previously established rat model of massive rotator cuff tears, we found RhoA signaling is upregulated in rotator cuff muscle following a massive tendon-nerve injury. This increase in RhoA expression is greatly potentiated by the administration of a potent RhoA activator, lysophosphatidic acid (LPA), and is accompanied by increased TNFα and TGF-β1 expression in rotator cuff muscle. Boosting RhoA signaling with LPA significantly worsened rotator cuff muscle atrophy, fibrosis, and fatty infiltration, accompanied with massive monocytic infiltration of rotator cuff muscles. Co-staining of RhoA and the tissue macrophage marker CD68 showed that CD68+ tissue macrophages are the dominant cell source of increased RhoA signaling in rotator cuff muscles after tendon tears. Taken together, our findings suggest that LPA-mediated RhoA signaling in injured muscle worsens the outcomes of atrophy, fibrosis, and fatty infiltration by increasing macrophage infiltraion in rotator cuff muscle. Clinically, inhibiting RhoA signaling may represent a future direction for developing new treatments to improve muscle quality following massive rotator cuff tears. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1539-1547, 2017.
Collapse
Affiliation(s)
- Michael R. Davies
- San Francisco Veterans Affairs Health Care System, Department of Veterans Affairs, 1700 Owens Street, Room 364 San Francisco, California 94153
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | - Lawrence Lee
- San Francisco Veterans Affairs Health Care System, Department of Veterans Affairs, 1700 Owens Street, Room 364 San Francisco, California 94153
| | - Brian T. Feeley
- San Francisco Veterans Affairs Health Care System, Department of Veterans Affairs, 1700 Owens Street, Room 364 San Francisco, California 94153
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | - Hubert T. Kim
- San Francisco Veterans Affairs Health Care System, Department of Veterans Affairs, 1700 Owens Street, Room 364 San Francisco, California 94153
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | - Xuhui Liu
- San Francisco Veterans Affairs Health Care System, Department of Veterans Affairs, 1700 Owens Street, Room 364 San Francisco, California 94153
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| |
Collapse
|
45
|
Smietana MJ, Moncada-Larrotiz P, Arruda EM, Bedi A, Larkin LM. Tissue-Engineered Tendon for Enthesis Regeneration in a Rat Rotator Cuff Model. Biores Open Access 2017; 6:47-57. [PMID: 28736687 PMCID: PMC5515124 DOI: 10.1089/biores.2016.0042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Healing of rotator cuff (RC) injuries with current suture or augmented scaffold techniques fails to regenerate the enthesis and instead forms a weaker fibrovascular scar that is prone to subsequent failure. Regeneration of the enthesis is the key to improving clinical outcomes for RC injuries. We hypothesized that the utilization of our tissue-engineered tendon to repair either an acute or a chronic full-thickness supraspinatus tear would regenerate a functional enthesis and return the biomechanics of the tendon back to that found in native tissue. Engineered tendons were fabricated from bone marrow-derived mesenchymal stem cells utilizing our well-described fabrication technology. Forty-three rats underwent unilateral detachment of the supraspinatus tendon followed by acute (immediate) or chronic (4 weeks retracted) repair by using either our engineered tendon or a trans-osseous suture technique. Animals were sacrificed at 8 weeks. Biomechanical and histological analyses of the regenerated enthesis and tendon were performed. Statistical analysis was performed by using a one-way analysis of variance with significance set at p < 0.05. Acute repairs using engineered tendon had improved enthesis structure and lower biomechanical failures compared with suture repairs. Chronic repairs with engineered tendon had a more native-like enthesis with increased fibrocartilage formation, reduced scar formation, and lower biomechanical failure compared with suture repair. Thus, the utilization of our tissue-engineered tendon showed improve enthesis regeneration and improved function in chronic RC repairs compared with suture repair. Clinical Significance: Our engineered tendon construct shows promise as a clinically relevant method for repair of RC injuries.
Collapse
Affiliation(s)
- Michael J Smietana
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Pablo Moncada-Larrotiz
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ellen M Arruda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan
| | - Asheesh Bedi
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Larkin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
46
|
Giambini H, Hatta T, Gorny KR, Widholm P, Karlsson A, Leinhard OD, Adkins MC, Zhao C, An KN. Intramuscular fat infiltration evaluated by magnetic resonance imaging predicts the extensibility of the supraspinatus muscle. Muscle Nerve 2017; 57:129-135. [PMID: 28439938 DOI: 10.1002/mus.25673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Rotator cuff (RC) tears result in muscle atrophy and fat infiltration within the RC muscles. An estimation of muscle quality and deformation, or extensibility, is useful in selecting the most appropriate surgical procedure. We determined if noninvasive quantitative assessment of intramuscular fat using MRI could be used to predict extensibility of the supraspinatus muscle. METHODS Seventeen cadaveric shoulders were imaged to assess intramuscular fat infiltration. Extensibility and histological evaluations were then performed. RESULTS Quantitative fat infiltration positively correlated with histological findings and presented a positive correlation with muscle extensibility (r = 0.69; P = 0.002). Extensibility was not significantly different between shoulders graded with a higher fat content versus those with low fat when implementing qualitative methods. DISCUSSION A noninvasive prediction of whole-muscle extensibility may directly guide pre-operative planning to determine if the torn edge could efficiently cover the original footprint while aiding in postoperative evaluation of RC repair. Muscle Nerve 57: 129-135, 2018.
Collapse
Affiliation(s)
- Hugo Giambini
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, USA
| | - Taku Hatta
- Biomechanics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Per Widholm
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Radiology, Linköping University, Linköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Anette Karlsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Olof D Leinhard
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Mark C Adkins
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, USA.,Biomechanics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Kai-Nan An
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, USA.,Biomechanics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
47
|
Naimark M, Berliner J, Zhang AL, Davies M, Ma CB, Feeley BT. Prevalence of Rotator Cuff Atrophy and Fatty Infiltration in Patients Undergoing Total Shoulder Arthroplasty. J Shoulder Elb Arthroplast 2017. [DOI: 10.1177/2471549217708323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Micah Naimark
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| | - Jonathan Berliner
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| | - Alan L Zhang
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| | - Michael Davies
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| | - Brian T Feeley
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
48
|
Rothrauff BB, Pauyo T, Debski RE, Rodosky MW, Tuan RS, Musahl V. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:318-335. [PMID: 28084902 DOI: 10.1089/ten.teb.2016.0446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Thierry Pauyo
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Richard E Debski
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark W Rodosky
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Volker Musahl
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
49
|
Molecular signatures of age-associated chronic degeneration of shoulder muscles. Oncotarget 2017; 7:8513-23. [PMID: 26885755 PMCID: PMC4890983 DOI: 10.18632/oncotarget.7382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/30/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic muscle diseases are highly prevalent in the elderly causing severe mobility limitations, pain and frailty. The intrinsic molecular mechanisms are poorly understood due to multifactorial causes, slow progression with age and variations between individuals. Understanding the underlying molecular mechanisms could lead to new treatment options which are currently limited. Shoulder complaints are highly common in the elderly, and therefore, muscles of the shoulder's rotator cuff could be considered as a model for chronic age-associated muscle degeneration. Diseased shoulder muscles were characterized by muscle atrophy and fatty infiltration compared with unaffected shoulder muscles. We confirmed fatty infiltration using histochemical analysis. Additionally, fibrosis and loss of contractile myosin expression were found in diseased muscles. Most cellular features, including proliferation rate, apoptosis and cell senescence, remained unchanged and genome-wide molecular signatures were predominantly similar between diseased and intact muscles. However, we found down-regulation of a small subset of muscle function genes, and up-regulation of extracellular region genes. Myogenesis was defected in muscle cell culture from diseased muscles but was restored by elevating MyoD levels. We suggest that impaired muscle functionality in a specific environment of thickened extra-cellular matrix is crucial for the development of chronic age-associated muscle degeneration.
Collapse
|
50
|
Flück M, Ruoss S, Möhl CB, Valdivieso P, Benn MC, von Rechenberg B, Laczko E, Hu J, Wieser K, Meyer DC, Gerber C. Genomic and lipidomic actions of nandrolone on detached rotator cuff muscle in sheep. J Steroid Biochem Mol Biol 2017; 165:382-395. [PMID: 27523963 DOI: 10.1016/j.jsbmb.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/06/2023]
Abstract
Reversal of fatty infiltration of pennate rotator cuff muscle after tendon release is hitherto impossible. The administration of nandrolone starting at the time of tendon release prevents the increase in fat content, but does not revert established fatty infiltration. We hypothesised that tendon release and myotendinous retraction cause alterations in lipid related gene expression leading to fatty muscle infiltration, which can be suppressed by nandrolone through its genomic actions if applied immediately after tendon release. The effects of infraspinatus tendon release and subsequent tendon repair at 16 weeks were studied in six Swiss Alpine sheep. In the interventional groups, 150mg nandrolone was administered weekly after tendon release until sacrifice (N22W, n=6) or starting at the time of repair (N6W, n=6). Infraspinatus volume, composition, expressed transcripts, lipids, and selected proteins were analyzed at baseline, 16 and 22 weeks. Tendon release reduced infraspinatus volume by 22% and increased fat content from 11% to 38%. These changes were not affected by repair. Fatty infiltration was associated with up-regulation of 227 lipid species, and increased levels of the adipocyte differentiation marker PPARG2 (peroxisome proliferator-activated receptor gamma 2). Nandrolone abrogated lipid accumulation, halved the loss in fiber area percentage, and up-regulated androgen receptor levels and transcript expression in the N22W but not the N6W group. The results document that nandrolone mitigates muscle-to-fat transformation after tendon release via a general down-regulation of lipid accumulation concomitantly with up-regulated expression of its nuclear receptor and downstream transcripts in skeletal muscle. Reduced responsiveness of retracted muscle to nandrolone as observed in the N6W group is reflected by a down-regulated transcript response.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland.
| | - Severin Ruoss
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Christoph B Möhl
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Mario C Benn
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Center Zurich (FGCZ), ETH and University of Zurich, Switzerland
| | - Junmin Hu
- Functional Genomics Center Zurich (FGCZ), ETH and University of Zurich, Switzerland
| | - Karl Wieser
- Balgrist University Hospital, Department of Orthopedics, Zurich, Switzerland
| | - Dominik C Meyer
- Balgrist University Hospital, Department of Orthopedics, Zurich, Switzerland
| | - Christian Gerber
- Balgrist University Hospital, Department of Orthopedics, Zurich, Switzerland
| |
Collapse
|