1
|
Morya VK, Shahid H, Lang J, Kwak MK, Park SH, Noh KC. Advancements in Therapeutic Approaches for Degenerative Tendinopathy: Evaluating Efficacy and Challenges. Int J Mol Sci 2024; 25:11846. [PMID: 39519397 PMCID: PMC11545934 DOI: 10.3390/ijms252111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Degenerative tendinopathy results from the accumulation of minor injuries following unsuccessful tendon repair during acute tendon injuries. The process of tendon repair is prolonged and varies between individuals, making it susceptible to reinjury. Moreover, treating chronic tendinopathy often requires expensive and extensive rehabilitation, along with a variety of combined therapies to facilitate recovery. This condition significantly affects the quality of life of affected individuals, underscoring the urgent need for more efficient and cost-effective treatment options. Although traditional treatments have improved significantly and are being used as substitutes for surgical interventions, the findings have been inconsistent and conflicting. This review aims to clarify these issues by exploring the strengths and limitations of current treatments as well as recent innovations in managing various forms of degenerative tendinopathy.
Collapse
Affiliation(s)
- Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hamzah Shahid
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun Lang
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sin-Hye Park
- Department of Food Science & Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu-Cheol Noh
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Hallym University Sacred Heart Hospital, Anyang-si 14068, Republic of Korea
| |
Collapse
|
2
|
Willacy O, Juul N, Taouzlak L, Chamorro CI, Ajallouiean F, Fossum M. A perioperative layered autologous tissue expansion graft for hollow organ repair. Heliyon 2024; 10:e25275. [PMID: 38322882 PMCID: PMC10845913 DOI: 10.1016/j.heliyon.2024.e25275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Tissue engineering has not been widely adopted in clinical settings for several reasons, including technical challenges, high costs, and regulatory complexity. Here, we introduce the Perioperative Layered Autologous Tissue Expansion graft (PLATE graft), a composite biomaterial and collagen-reinforced construct with autologous epithelium on one side and smooth muscle tissue on the other. Designed to mimic the structure and function of natural hollow organs, the PLATE graft is unique in that it can be produced in a standard operating theatre and is cost-effective. In this proof-of-principle study, we test its regenerative performance in eight different organs, present biomechanical and permeability tests, and finally explore its in vivo performance in live rabbits.
Collapse
Affiliation(s)
- Oliver Willacy
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nikolai Juul
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Loai Taouzlak
- Department of Health Technology, Technical University of Denmark, 2800: Kgs, Lyngby, Denmark
| | - Clara I. Chamorro
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Fatemeh Ajallouiean
- Department of Health Technology, Technical University of Denmark, 2800: Kgs, Lyngby, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800: Kgs, Lyngby, Denmark
| | - Magdalena Fossum
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
4
|
Halm-Pozniak A, Lohmann CH, Awiszus F, Rudolf M, Bertrand J, Berth A. Injection of autologous conditioned plasma combined with a collagen scaffold may improve the clinical outcome in shoulder impingement syndrome: a prospective study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:3623-3630. [PMID: 37253875 PMCID: PMC10651528 DOI: 10.1007/s00590-023-03595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Shoulder impingement syndrome (SIS) is one of the most common diseases of the shoulder and can be addressed with various therapeutic concepts. Orthobiological agents such as platelet rich plasma with a low side effect rate gain importance in the conservative treatment of SIS. Currently, the knowledge about success rate influencing factors, such as the growth factors (GF) concentration or acromion type, is limited. The aim of this study was to analyze the clinical outcome in the therapy of external SIS using autologous conditioned plasma combined with recombinant human collagen scaffold (ACP/STR) injection in comparison with a corticosteroid-local anesthetic (CSA) injection. Additionally, the influence of potential limiting factors such as GF concentration, age and acromial morphology was proved. MATERIALS AND METHODS This prospective pseudo-randomized trial recruited 58 patients with external SIS who received an ultrasound-guided subacromial injection either an ACP/STR or a CSA followed by physical therapy. Follow-up (FU) was performed at 6 weeks, 3 and 6 months. The outcome was assessed with Constant-Murley score, disability of arm, shoulder and hand score and simple shoulder test. The concentration of GF was measured using ELISA. RESULTS During the FU, the improvement of outcome measures was observed with no differences between both groups. Shoulder force was significantly increased in the ACP/STR group (p < 0.01). We found no correlation between the amount of GF and age or gender in the ACP/STR patients. An acromion Bigliani type III predisposes for therapy failure (p < 0.001, OR = 56) in both treatment groups. CONCLUSIONS Patients with SIS benefit regarding to PROMs after both ACP/STR and CSA injection and physical therapy. Patients who received ACP/STR obtained superior improvement in force. The quantity of GF did not vary depending on the age, so that ACP/STR can be a treatment option for SIS in elderly patients with multimorbidity. The presence of an acromion type III seems to be a predictive factor for limited effectivity of injections in the clinical management of SIS.
Collapse
Affiliation(s)
- Agnieszka Halm-Pozniak
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany.
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany
| | - Margit Rudolf
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany
| | - Alexander Berth
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany
| |
Collapse
|
5
|
Konarski W, Poboży T. A Clinical Overview of the Natural Course and Management of Lateral Epicondylitis. Orthopedics 2023; 46:e210-e218. [PMID: 37018622 DOI: 10.3928/01477447-20230329-05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Lateral epicondylitis (LE), also often called tennis elbow, is a frequent cause of elbow pain. The most characteristic symptom of LE is pain and burning around the lateral epicondyle of the humerus that may radiate to the forearm or to the upper arm. Ultrasonography is a quick and noninvasive tool used to confirm (or exclude) the diagnosis of LE. Management of LE symptoms should be directed to the management of pain, protection of movement, and improvement of arm performance. Treatment of LE includes nonoperative techniques and surgery. [Orthopedics. 2023;46(4):e210-e218.].
Collapse
|
6
|
Meganathan I, Pachaiyappan M, Aarthy M, Radhakrishnan J, Mukherjee S, Shanmugam G, You J, Ayyadurai N. Recombinant and genetic code expanded collagen-like protein as a tailorable biomaterial. MATERIALS HORIZONS 2022; 9:2698-2721. [PMID: 36189465 DOI: 10.1039/d2mh00652a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.
Collapse
Affiliation(s)
- Ilamaran Meganathan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mohandass Pachaiyappan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Janani Radhakrishnan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smriti Mukherjee
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
| | - Ganesh Shanmugam
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Australia
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Seror J, Stern M, Zarka R, Orr N. The Potential Use of Novel Plant-Derived Recombinant Human Collagen in Aesthetic Medicine. Plast Reconstr Surg 2021; 148:32S-38S. [PMID: 34847096 DOI: 10.1097/prs.0000000000008784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
SUMMARY Recombinant human type I collagen, identical in structure and functionality to human type I collagen, was successfully expressed and extracted from genetically modified tobacco plants. Contrarily to tissue extracted protein, rhCollagen is not immunogenic and not allergenic and has an intact triple helix structure showing superior biological functionality. A photocurable rhCollagen was developed by chemically modifying the protein to allow cross-linking under illumination at various wavelengths, maintaining the protein structural and biological functions. The use of the photocurable rhCollagen in aesthetic medicine, especially as a dermal filler and as a bioink for 3D-printed breast implant is discussed in this article.
Collapse
|
8
|
Lakhani A, Sharma E, Kapila A, Khatri K. Known data on applied regenerative medicine in tendon healing. Bioinformation 2021; 17:514-527. [PMID: 34602779 PMCID: PMC8450149 DOI: 10.6026/97320630017514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/03/2022] Open
Abstract
Tendons and ligaments are important structures in the musculoskeletal system. Ligaments connect various bones and provide stability in complex movements of joints in the knee. Tendon is made of dense connective tissue and transmits the force of contraction from muscle to bone. They are injured due to direct trauma in sports or roadside accidents. Tendon healing after repair is often poor due to the formation of fibro vascular scar tissues with low mechanical property. Regenerative techniques such as PRP (platelet-rich plasma), stem cells, scaffolds, gene therapy, cell sheets, and scaffolds help augment repair and regenerate tissue in this context. Therefore, it is of interest to document known data (repair process, tissue regeneration, mechanical strength, and clinical outcome) on applied regenerative medicine in tendon healing.
Collapse
Affiliation(s)
- Amit Lakhani
- Dr Br Ambedkar State Institute of Medical Sciences, Mohali Punjab, India
| | - Ena Sharma
- Maharishi Markandeshwar College of Dental Sciences and Hospital Mullana, Ambala, Haryana, India
| | | | - Kavin Khatri
- All India Institute of Medical Sciences, Bathinda, Punjab, India
| |
Collapse
|
9
|
Wang S, Yang J, Zhao G, Liu R, Du Y, Cai Z, Luan J, Shen Y, Chen B. Current applications of platelet gels in wound healing-A review. Wound Repair Regen 2021; 29:370-379. [PMID: 33749992 DOI: 10.1111/wrr.12896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/27/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Human platelets play important roles in several physiologic and pathologic processes. Platelet concentrates are activated with thrombin or calcium, resulting in a viscous coagulum (platelet gel [PG]), composed of 95% platelets at least. PG is increasingly used for the treatment of a variety of soft and hard tissue defects, most notably in the management of chronic non-healing wounds. During wound healing, platelets not only play a critical role in primary hemostasis and thrombosis, but also release growth factors and cytokines to promote tissue regeneration, enhance collagen synthesis, and trigger an immune response. This review addresses a variety of aspects relevant to the functions of well-known platelet growth factors, animal and clinical studies of PG in the last decade, and different sources of platelets for PG. PG is used for non-healing chronic wounds, such as oral ulcerations related to epidermolysis bullosa and chronic graft-versus-host disease, for those, the traditional treatment effect is poor. PG maybe provide a new therapeutic direction for these diseases. Nevertheless, some uncertainty is present, the number of clinical studies is not enough. Hence, randomized controlled trials are still required to study the potential of the use of PG in the near future.
Collapse
Affiliation(s)
- Shujun Wang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Jinling Hospital Department Blood Transfusion, Nanjing University, School Medicine, Nanjing, China
| | - Jie Yang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Guangchao Zhao
- Jinling Hospital Department Blood Transfusion, Nanjing University, School Medicine, Nanjing, China
| | - Ran Liu
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying Du
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Zhimei Cai
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Jianfeng Luan
- Jinling Hospital Department Blood Transfusion, Nanjing University, School Medicine, Nanjing, China
| | - Yanfei Shen
- School of Medicine, Southeast University, Nanjing, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Sarrigiannidis S, Rey J, Dobre O, González-García C, Dalby M, Salmeron-Sanchez M. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater Today Bio 2021; 10:100098. [PMID: 33763641 PMCID: PMC7973388 DOI: 10.1016/j.mtbio.2021.100098] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen hydrogels are among the most well-studied platforms for drug delivery and in situ tissue engineering, thanks to their low cost, low immunogenicity, versatility, biocompatibility, and similarity to the natural extracellular matrix (ECM). Despite collagen being largely responsible for the tensile properties of native connective tissues, collagen hydrogels have relatively low mechanical properties in the absence of covalent cross-linking. This is particularly problematic when attempting to regenerate stiffer and stronger native tissues such as bone. Furthermore, in contrast to hydrogels based on ECM proteins such as fibronectin, collagen hydrogels do not have any growth factor (GF)-specific binding sites and often cannot sequester physiological (small) amounts of the protein. GF binding and in situ presentation are properties that can aid significantly in the tissue regeneration process by dictating cell fate without causing adverse effects such as malignant tumorigenic tissue growth. To alleviate these issues, researchers have developed several strategies to increase the mechanical properties of collagen hydrogels using physical or chemical modifications. This can expand the applicability of collagen hydrogels to tissues subject to a continuous load. GF delivery has also been explored, mathematically and experimentally, through the development of direct loading, chemical cross-linking, electrostatic interaction, and other carrier systems. This comprehensive article explores the ways in which these parameters, mechanical properties and GF delivery, have been optimized in collagen hydrogel systems and examines their in vitro or in vivo biological effect. This article can, therefore, be a useful tool to streamline future studies in the field, by pointing researchers into the appropriate direction according to their collagen hydrogel design requirements.
Collapse
Affiliation(s)
| | | | - O. Dobre
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - C. González-García
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - M.J. Dalby
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| | - M. Salmeron-Sanchez
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, UK
| |
Collapse
|
11
|
Balestri W, Morris RH, Hunt JA, Reinwald Y. Current Advances on the Regeneration of Musculoskeletal Interfaces. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:548-571. [PMID: 33176607 DOI: 10.1089/ten.teb.2020.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The regeneration of the musculoskeletal system has been widely investigated. There is now detailed knowledge about the organs composing this system. Research has also investigated the zones between individual tissues where physical, mechanical, and biochemical properties transition. However, the understanding of the regeneration of musculoskeletal interfaces is still lacking behind. Numerous disorders and injuries can degrade or damage tissue interfaces. Their inability to regenerate can delay the tissue repair and regeneration process, leading to graft instability, high morbidity, and pain. Moreover, the knowledge of the mechanism of tissue interface development is not complete. This review presents an overview of the most recent approaches of the regeneration of musculoskeletal interfaces, including the latest in vitro, preclinical, and clinical studies. Impact statement Interfaces between soft and hard tissues are ubiquitous within the body. These transition zones are crucial for joint motion, stabilisation and load transfer between tissues, but do not seem to regenerate well after injury or deterioration. The knowledge about their biology is vast, but little is known about their development. Various musculoskeletal disorders in combination with risk factors including aging and unhealthy lifestyle, can lead to local imbalances, misalignments, inflammation, pain and restricted mobility. Our manuscript reviews the current approaches taken to promote the regeneration of musculoskeletal interfaces through in vitro, pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Robert H Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - John A Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,College of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Yvonne Reinwald
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
12
|
Chen Z, Fan D, Shang L. Exploring the potential of the recombinant human collagens for biomedical and clinical applications: a short review. ACTA ACUST UNITED AC 2020; 16:012001. [PMID: 32679570 DOI: 10.1088/1748-605x/aba6fa] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural animal collagen and its recombinant collagen are favourable replacements in human tissue engineering due to their remarkable biomedical property. However, this exploitation is largely restricted due to the potential of immunogenicity and virus contamination. Exploring new ways to produce human collagen is fundamental to its biomedical and clinical application. All human fibrillar collagen molecules have three polypeptide chains constructed from a repeating Gly-Xaa-Yaa triplet, where Xaa and Yaa represent one random amino acid. Using cDNA techniques to modify several repeat sequences of the cDNA fragment, a novel human collagen, named recombinant human-like collagen (rHLC), with low immunogenicity and little risk from hidden virus can be engineered and notably tailored to specific applications. Human-like collagen (HLC) was initially used as a coating to modify the tissue engineering scaffold, and then used as the scaffold after cross-link agents were added to increase its mechanical strength. Due to its good biocompatibility, low immunogenicity, stabilised property, and the ability of mass production, HLC has been widely used in skin injury treatments, vascular scaffolds engineering, cartilage, bone defect repair, skincare, haemostatic sponge, and drug delivery, including coating with medical nanoparticles. In this review, we symmetrically reviewed the development, recent advances in design and application of HLC, and other recombinant human collagen-based biomedicine potentials. At the end, future improvements are also discussed.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China. Shaanxi Key Laboratory of Degradable Biomedical Materials; Shaanxi R&D Center of Biomaterial and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China
| | | | | |
Collapse
|
13
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Lee JM, Suen SKQ, Ng WL, Ma WC, Yeong WY. Bioprinting of Collagen: Considerations, Potentials, and Applications. Macromol Biosci 2020; 21:e2000280. [PMID: 33073537 DOI: 10.1002/mabi.202000280] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Collagen is the most abundant extracellular matrix protein that is widely used in tissue engineering (TE). There is little research done on printing pure collagen. To understand the bottlenecks in printing pure collagen, it is imperative to understand collagen from a bottom-up approach. Here it is aimed to provide a comprehensive overview of collagen printing, where collagen assembly in vivo and the various sources of collagen available for TE application are first understood. Next, the current printing technologies and strategy for printing collagen-based materials are highlighted. Considerations and key challenges faced in collagen printing are identified. Finally, the key research areas that would enhance the functionality of printed collagen are presented.
Collapse
Affiliation(s)
- Jia Min Lee
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sean Kang Qiang Suen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wei Long Ng
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wai Cheung Ma
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
15
|
Nguyen PK, Baek K, Deng F, Criscione JD, Tuan RS, Kuo CK. Tendon Tissue-Engineering Scaffolds. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Davison-Kotler E, Marshall WS, García-Gareta E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering (Basel) 2019; 6:E56. [PMID: 31261996 PMCID: PMC6783949 DOI: 10.3390/bioengineering6030056] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
Collagen is the most frequently used protein in the fields of biomaterials and regenerative medicine. Within the skin, collagen type I and III are the most abundant, while collagen type VII is associated with pathologies of the dermal-epidermal junction. The focus of this review is mainly collagens I and III, with a brief overview of collagen VII. Currently, the majority of collagen is extracted from animal sources; however, animal-derived collagen has a number of shortcomings, including immunogenicity, batch-to-batch variation, and pathogenic contamination. Recombinant collagen is a potential solution to the aforementioned issues, although production of correctly post-translationally modified recombinant human collagen has not yet been performed at industrial scale. This review provides an overview of current collagen sources, associated shortcomings, and potential resolutions. Recombinant expression systems are discussed, as well as the issues associated with each method of expression.
Collapse
Affiliation(s)
- Evan Davison-Kotler
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
- Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - William S Marshall
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| |
Collapse
|
17
|
Ramshaw JA, Werkmeister JA, Glattauer V. Recent progress with recombinant collagens produced in Escherichia coli. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Challenges for Natural Hydrogels in Tissue Engineering. Gels 2019; 5:gels5020030. [PMID: 31146448 PMCID: PMC6631000 DOI: 10.3390/gels5020030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Protein-based biopolymers derived from natural tissues possess a hierarchical structure in their native state. Strongly solvating, reducing and stabilizing agents, as well as heat, pressure, and enzymes are used to isolate protein-based biopolymers from their natural tissue, solubilize them in aqueous solution and convert them into injectable or preformed hydrogels for applications in tissue engineering and regenerative medicine. This review aims to highlight the need to investigate the nano-/micro-structure of hydrogels derived from the extracellular matrix proteins of natural tissues. Future work should focus on identifying the nature of secondary, tertiary, and higher order structure formation in protein-based hydrogels derived from natural tissues, quantifying their composition, and characterizing their binding pockets with cell surface receptors. These advances promise to lead to wide-spread use of protein-based hydrogels derived from natural tissues as injectable or preformed matrices for cell delivery in tissue engineering and regenerative medicine.
Collapse
|