1
|
Lee JH, Zhang J, Yu SP. Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke. Neural Regen Res 2017; 12:341-350. [PMID: 28469636 PMCID: PMC5399699 DOI: 10.4103/1673-5374.202915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Stroke is a leading cause of disability and death, yet effective treatments for acute stroke has been very limited. Thus far, tissue plasminogen activator has been the only FDA-approved drug for thrombolytic treatment of ischemic stroke patients, yet its application is only applicable to less than 4–5% of stroke patients due to the narrow therapeutic window (< 4.5 hours after the onset of stroke) and the high risk of hemorrhagic transformation. Emerging evidence from basic and clinical studies has shown that therapeutic hypothermia, also known as targeted temperature management, can be a promising therapy for patients with different types of stroke. Moreover, the success in animal models using pharmacologically induced hypothermia (PIH) has gained increasing momentum for clinical translation of hypothermic therapy. This review provides an updated overview of the mechanisms and protective effects of therapeutic hypothermia, as well as the recent development and findings behind PIH treatment. It is expected that a safe and effective hypothermic therapy has a high translational potential for clinical treatment of patients with stroke and other CNS injuries.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - James Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| |
Collapse
|
2
|
Zanelli S, Buck M, Fairchild K. Physiologic and pharmacologic considerations for hypothermia therapy in neonates. J Perinatol 2011; 31:377-86. [PMID: 21183927 PMCID: PMC3552186 DOI: 10.1038/jp.2010.146] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
With mounting evidence that hypothermia is neuroprotective in newborns with hypoxic-ischemic encephalopathy (HIE), an increasing number of centers are offering this therapy. Hypothermia is associated with a wide range of physiologic changes affecting every organ system, and awareness of these effects is essential for optimum patient management. Lowering the core temperature also alters pharmacokinetic and pharmacodynamic properties of medications commonly used in asphyxiated neonates, necessitating close attention to drug efficacy and side effects. Rewarming introduces additional risks and challenges as the hypothermia-associated physiologic and pharmacologic changes are reversed. In this review we provide an organ system-based assessment of physiologic changes associated with hypothermia. We also summarize evidence from randomized controlled trials showing lack of serious adverse effects of moderate hypothermia therapy in term and near-term newborns with moderate-to-severe HIE. Finally, we review the effects of hypothermia on drug metabolism and clearance based on studies in animal models and human adults, and limited data from neonates.
Collapse
Affiliation(s)
- S Zanelli
- Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - M Buck
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA,Department of Pharmacy, University of Virginia, Charlottesville, VA, USA
| | - K Fairchild
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Kim JO, Lim HR, Kim HM. The association between serum IGF-1 and neonatal growth and disease in a NICU. KOREAN JOURNAL OF PEDIATRICS 2009. [DOI: 10.3345/kjp.2009.52.2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jung Ok Kim
- Department of Pediatrics, College of Medicine, Kyungpook National University, Daegu, Korea
| | - Hae Ri Lim
- Department of Pediatrics, College of Medicine, Kyungpook National University, Daegu, Korea
| | - Heng Mi Kim
- Department of Pediatrics, College of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
4
|
Abstract
There is strong evidence that prolonged, moderate cerebral hypothermia initiated within a few hours after severe hypoxia-ischemia and continued until resolution of the acute phase of delayed cell death can reduce neuronal loss and improve behavioral recovery in term infants and adults after cardiac arrest. This review examines the evidence that mild to moderate hypothermia is protective after hypoxia-ischemia in models of preterm brain injury and evaluates the potential risks. Induced hypothermia likely has potential to significantly reduce disability. Cautious, systematic trials are essential before hypothermia can be used in these vulnerable infants.
Collapse
Affiliation(s)
- Alistair Jan Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
5
|
Bennet L, Booth LC, Ahmed-Nasef N, Dean JM, Davidson J, Quaedackers JS, Gunn AJ. Male disadvantage? Fetal sex and cardiovascular responses to asphyxia in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1280-6. [PMID: 17596324 DOI: 10.1152/ajpregu.00342.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clinically and experimentally male fetuses are at significantly greater risk of dying or suffering injury at birth, particularly after premature delivery. We undertook a retrospective cohort analysis of 60 female and 65 male singleton preterm fetal sheep (103–104 days, 0.7 gestation) with mean arterial blood pressure (MAP), heart rate, and carotid and femoral blood flow recordings during 25 min of umbilical cord occlusion in utero. Occlusions were stopped early if fetal MAP fell below 8 mmHg or if there was asystole for >20 s. Fetuses that were able to complete the full 25-min period of occlusion showed no differences between sexes for any cardiovascular responses. Similar numbers of occlusions were stopped early in males (mean: 21 min, n = 16) and females (mean: 23 min, n = 16); however, they showed different responses. Short-occlusion males ( n = 16) showed a slower initial fall in femoral vascular conductance, followed by greater bradycardia, hypotension, and associated organ hypoperfusion compared with full-occlusion fetuses. In contrast, short-occlusion females ( n = 16) showed a significantly more rapid early increase in femoral vascular conductance than the full-occlusion fetuses, followed by worsening of bradycardia and hypotension that was intermediate to the full-occlusion fetuses and short-occlusion males. Among all fetuses, MAP at 15 min of occlusion, corresponding with the time of the maximal rate of fall, was correlated with postmortem weight in males ( R2 = 0.07) but not females. In conclusion, male and female fetuses showed remarkably similar chemoreflex and hemodynamic responses to severe asphyxia, but some males did show impaired hemodynamic adaptation within the normal weight range.
Collapse
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
6
|
George S, Scotter J, Dean JM, Bennet L, Waldvogel HJ, Guan J, Faull RLM, Gunn AJ. Induced cerebral hypothermia reduces post-hypoxic loss of phenotypic striatal neurons in preterm fetal sheep. Exp Neurol 2007; 203:137-47. [PMID: 16962098 DOI: 10.1016/j.expneurol.2006.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 12/20/2022]
Abstract
Perinatal hypoxic-ischemic injury of the basal ganglia is a significant cause of disability in premature infants. Prolonged, moderate cerebral hypothermia has been shown to be neuroprotective after experimental hypoxia-ischemia; however, it has not been tested in the preterm brain. We therefore examined the effects of severe hypoxia and the potential neuroprotective effects of delayed hypothermia on phenotypic striatal neurons. Preterm (0.7 gestation) fetal sheep received complete umbilical cord occlusion for 25 min followed by cerebral hypothermia (fetal extradural temperature reduced from 39.4+/-0.3 degrees C to 29.5+/-2.6 degrees C) from 90 min to 70 h after the end of occlusion. Hypothermia was associated with a significant overall reduction in striatal neuronal loss compared with normothermia-occlusion fetuses (mean+/-SEM, 5.5+/-1.2% vs. 38.1+/-6.5%, P<0.01). Immunohistochemical studies showed that occlusion resulted in a significant loss of calbindin-28 kd, glutamic acid decarboxylase isoform 67 and neuronal nitric oxide synthase-immunopositive neurons (n=7, P<0.05), but not choline acetyltransferase-positive neurons, compared with sham controls (n=7). Hypothermia (n=7) significantly reduced the loss of calbindin-28 kd and neuronal nitric oxide synthase, but not glutamic acid decarboxylase-immunopositive neurons. In conclusion, delayed, prolonged moderate head cooling was associated with selective protection of particular phenotypic striatal projection neurons after severe hypoxia in the preterm fetus. These findings suggest that head cooling may help reduce basal ganglia injury in some premature babies.
Collapse
Affiliation(s)
- S George
- Department of Physiology, Faculty of Medicine and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bennet L, Dean JM, Wassink G, Gunn AJ. Differential effects of hypothermia on early and late epileptiform events after severe hypoxia in preterm fetal sheep. J Neurophysiol 2006; 97:572-8. [PMID: 17093117 DOI: 10.1152/jn.00957.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Moderate cerebral hypothermia is consistently neuroprotective after experimental hypoxia-ischemia; however, its mechanisms remain poorly defined. Using a model of complete umbilical cord occlusion for 25 min in 0.7 gestation fetal sheep, we examined the effects of cerebral hypothermia (fetal extradural temperature reduced from 39.5 +/- 0.2 degrees C to <34 degrees C; mean +/- SD), from 90 min to 70 h after the end of the insult, on postocclusion epileptiform activity. In the first 6 h after the end of occlusion, fetal electroencephalographic (EEG) activity was abnormal with a mixture of fast and slow epileptiform transients superimposed on a suppressed background; seizures started a mean of 8 h after occlusion. There was a close correlation between numbers of these EEG transients and subsequent neuronal loss in the striatum after 3 days recovery (r(2) = 0.65, P = 0.008). Hypothermia was associated with a marked reduction in numbers of epileptiform transients in the first 6 h, reduced amplitude of seizures, and reduced striatal neuronal loss. In conclusion, neuroprotection with delayed, prolonged head cooling after a severe asphyxial insult in the preterm fetus was associated with potent, specific suppression of epileptiform transients in the early recovery phase but not of numbers of delayed seizures.
Collapse
Affiliation(s)
- L Bennet
- Department of Physiology, Faculty of Medicine and Health Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
8
|
Azra Haider B, Bhutta ZA. Birth asphyxia in developing countries: current status and public health implications. Curr Probl Pediatr Adolesc Health Care 2006; 36:178-88. [PMID: 16631096 DOI: 10.1016/j.cppeds.2005.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Batool Azra Haider
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | | |
Collapse
|
9
|
Challis JRG, Bloomfield FH, Bocking AD, Casciani V, Chisaka H, Connor K, Dong X, Gluckman P, Harding JE, Johnstone J, Li W, Lye S, Okamura K, Premyslova M. Fetal signals and parturition. J Obstet Gynaecol Res 2005; 31:492-9. [PMID: 16343248 DOI: 10.1111/j.1447-0756.2005.00342.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|