1
|
Griffin TM, Lopes EBP, Cortassa D, Batushansky A, Jeffries MA, Makosa D, Jopkiewicz A, Mehta-D'souza P, Komaravolu RK, Kinter MT. Sexually dimorphic metabolic effects of a high fat diet on knee osteoarthritis in mice. Biol Sex Differ 2024; 15:103. [PMID: 39639386 PMCID: PMC11619521 DOI: 10.1186/s13293-024-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Women have a higher risk of developing osteoarthritis (OA) than men, including with obesity. To better understand this disparity, we investigated sex differences in metabolic and inflammatory factors associated with OA using a diet-induced mouse model of obesity. We hypothesized that 20 weeks of high-fat diet (HFD) would induce sexually dimorphic changes in both systemic and local risk factors of knee OA. METHODS Male and female C57BL/6J mice were fed Chow or HFD from 6 to 26 weeks of age (n = 12 per diet and sex). We performed broad metabolic phenotyping, 16 S gut microbiome analysis, targeted gene expression analysis of synovium-infrapatellar fat tissue, targeted gene expression and proteomic analysis of articular cartilage, chondrocyte metabolic profiling, and OA histopathology. Two-way ANOVA statistics were utilized to determine the contribution of sex and diet and their interaction on outcomes. RESULTS Mice fed HFD weighed 1.76-fold (p < 0.0001) and 1.60-fold (p < 0.0001) more than male and female Chow cohorts, respectively, with both sexes reaching similar body fat levels (male: 43.9 ± 2.2%; female: 44.1 ± 3.8%). HFD caused greater cartilage pathology (p < 0.024) and synovial hyperplasia (p < 0.038) versus Chow in both sexes. Cartilage pathology was greater in male versus female mice (p = 0.048), and only male mice developed osteophytes with HFD (p = 0.044). Both sexes exhibited metabolic inflexibility on HFD, but only male mice developed glucose intolerance (p < 0.0001), fatty liver (p < 0.0001), and elevated serum amylase (p < 0.0001) with HFD versus Chow. HFD treatment caused sex-dependent differences in gut microbiota beta diversity (p = 0.01) and alteration in specific microbiome clades, such as a HFD-dependent reduction in abundance of Bifidobacterium only in male mice. In knee synovium and infrapatellar fat tissue, HFD upregulated the expression of pro-inflammatory and pro-fibrotic genes predominantly in female mice. In cartilage, lipid metabolism proteins were more abundant with HFD in male mice, whereas proteins involved in glycolysis/gluconeogenesis and biosynthesis of amino acids were greater in cartilage of female mice. Sex-dependent metabolic differences were observed in cartilage from young, healthy mice prior to pubertal maturation, but not in primary juvenile chondrocytes studied in vitro. CONCLUSIONS HFD induced numerous sex differences in metabolic and inflammatory outcomes, especially in joint tissues, suggesting that sex-specific cellular processes are involved during development of early-stage OA with obesity.
Collapse
Affiliation(s)
- Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Erika Barboza Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Labcorp Drug Development, Indianapolis, IN, USA
| | - Dominic Cortassa
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- VA Oklahoma City Health Care, Oklahoma City, OK, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Matlock A Jeffries
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Dawid Makosa
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- University of Western Australia, Perth, Western Australia, Australia
| | - Anita Jopkiewicz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Panier Group, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Padmaja Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Ravi K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
2
|
Henriques J, Berenbaum F, Mobasheri A. Obesity-induced fibrosis in osteoarthritis: Pathogenesis, consequences and novel therapeutic opportunities. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100511. [PMID: 39483440 PMCID: PMC11525450 DOI: 10.1016/j.ocarto.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 11/03/2024] Open
Abstract
Osteoarthritis (OA) is a significant global burden, affecting more than half a billion people across the world. It is characterized by degeneration and loss of articular cartilage, synovial inflammation, and subchondral bone sclerosis, leading to pain and functional impairment. After age, obesity is a major modifiable risk factor for OA, and it has recently been identified as a chronic disease by the World Health Organization (WHO). Obesity is associated with high morbidity and mortality, imposing a significant cost on individuals and society. Obesity increases the risk of knee OA through increased joint loading, altered body composition, and elevated pro-inflammatory adipokines in the systemic circulation. Moreover, obesity triggers fibrotic processes in different organs and tissues, including those involved in OA. Fibrosis in OA refers to the abnormal accumulation of fibrous tissue within and around the joints. It can be driven by increased adiposity, low-grade inflammation, oxidative stress, and metabolic alterations. However, the clinical outcomes of fibrosis in OA are unclear. This review focuses on the link between obesity and OA, explores the mechanism of obesity-driven fibrosis, and examines potential therapeutic opportunities for targeting fibrotic processes in OA.
Collapse
Affiliation(s)
- João Henriques
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Francis Berenbaum
- Sorbonne University, Paris, France
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- INSERM CRSA, Paris, France
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
3
|
Huang L, Guo Z, Huang M, Zeng X, Huang H. Triiodothyronine (T3) promotes browning of white adipose through inhibition of the PI3K/AKT signalling pathway. Sci Rep 2024; 14:20370. [PMID: 39223267 PMCID: PMC11369215 DOI: 10.1038/s41598-024-71591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity arises from an imbalance between energy consumption and energy expenditure, and thyroid hormone levels serve as a determinant of energy expenditure. We conducted experiments at the animal and cellular levels and combined those findings with clinical data to elucidate the role of triiodothyronine (T3) in facilitating the browning of white adipose tissue (WAT) and its underlying mechanism. The results showed (i) the impaired metabolic function of local WAT and the compensatory elevation of systemic thermogenesis in obesity; (ii) T3 treatment of white adipocytes in vitro and local WAT in vivo induced a shift towards a morphologically "brown" phenotype, accompanied by upregulation of mRNA and protein expression of browning-related and mitochondrial function markers, which suggest that T3 intervention promotes the browning of WAT; and (iii) the aforementioned processes could be modulated through inhibition of the PI3K/AKT signalling pathway; however, whether T3 affects the PI3K/AKT signalling pathway by affecting insulin signalling remains to be studied and clarified. The results of our study indicate that T3 treatment promotes browning of WAT through inhibition of the PI3K/AKT signalling pathway; these findings offer novel perspectives regarding the potential of localised therapies for addressing WAT volume in individuals with obesity.
Collapse
Affiliation(s)
- LingHong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - ZhiFeng Guo
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - MingJing Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - XiYing Zeng
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
4
|
Kobak KA, Batushansky A, Jopkiewicz A, Peelor FF, Kinter MT, Miller BF, Griffin TM. Effect of biological sex and short-term high-fat diet on cellular proliferation, ribosomal biogenesis, and targeted protein abundance in murine articular cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100495. [PMID: 39040627 PMCID: PMC11260562 DOI: 10.1016/j.ocarto.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Objective To identify factors contributing to sex-differences in OA risk by evaluating the short-term effect of high-fat (HF) diet on sex-specific changes in cartilage cell proliferation, ribosomal biogenesis, and targeted extra-cellular and cellular protein abundance. Materials and methods Knee cartilage was harvested to the subchondral bone from 20-week-old female and male C57BL/6J mice fed a low-fat or HF diet for 4 weeks and labeled with deuterium oxide for 1, 3, 5, 7, 15, or 21 days. Deuterium enrichment was quantified in isolated DNA and RNA to measure cell proliferation and ribosomal biogenesis, respectively. Protein concentration was measured using targeted high resolution accurate mass spectrometry. Results HF diet increased the maximal deuterium incorporation into DNA from approximately 40 to 50%, albeit at a slower rate. These findings, which were magnified in female versus male mice, indicate a greater number of proliferating cells with longer half-lives under HF diet conditions. HF diet caused distinct sex-dependent effects on deuterium incorporation into RNA, increasing the fraction of ribosomes undergoing biogenesis in male mice and doubling the rate of ribosome biogenesis in female mice. HF diet altered cartilage protein abundance similarly in both sexes, except for matrilin-3, which was more abundant in HF versus LF conditions in female mice only. Overall, HF diet treatment had a stronger effect than sex on cartilage protein abundance, with most changes involving extracellular matrix and matrix-associated proteins. Conclusions Short-term HF diet broadly altered cartilage matrix protein abundance, while sex-dependent effects primarily involved differences in cell proliferation and ribosomal biogenesis.
Collapse
Affiliation(s)
- Kamil A. Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Anita Jopkiewicz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Frederick F. Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Michael T. Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| | - Timothy M. Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
5
|
Chapman JH, Ghosh D, Attari S, Ude CC, Laurencin CT. Animal Models of Osteoarthritis: Updated Models and Outcome Measures 2016-2023. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:127-146. [PMID: 38983776 PMCID: PMC11233113 DOI: 10.1007/s40883-023-00309-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2024]
Abstract
Purpose Osteoarthritis (OA) is a global musculoskeletal disorder that affects primarily the knee and hip joints without any FDA-approved disease-modifying therapies. Animal models are essential research tools in developing therapies for OA; many animal studies have provided data for the initiation of human clinical trials. Despite this, there is still a need for strategies to recapitulate the human experience using animal models to better develop treatments and understand pathogenesis. Since our last review on animal models of osteoarthritis in 2016, there have been exciting updates in OA research and models. The main purpose of this review is to update the latest animal models and key features of studies in OA research. Method We used our existing classification method and screened articles in PubMed and bibliographic search for animal OA models between 2016 and 2023. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results Recent studies were analyzed and classified. We also identified ex vivo models as an area of ongoing research. Each animal model offers its own benefit in the study of OA and there are a full range of outcome measures that can be assessed. Despite the vast number of models, each has its drawbacks that have limited translating approved therapies for human use. Conclusion Depending on the outcome measures and objective of the study, researchers should pick the best model for their work. There have been several exciting studies since 2016 that have taken advantage of regenerative engineering techniques to develop therapies and better understand OA. Lay Summary Osteoarthritis (OA) is a chronic debilitating disease without any cure that affects mostly the knee and hip joints and often results in surgical joint replacement. Cartilage protects the joint from mechanical forces and degrades with age or in response to injury. The many contributing causes of OA are still being investigated, and animals are used for preclinical research and to test potential new treatments. A single consensus OA animal model for preclinical studies is non-existent. In this article, we review the many animal models for OA and provide a much-needed update on studies and model development since 2016.
Collapse
Affiliation(s)
- James H. Chapman
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Seyyedmorteza Attari
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Chinedu C. Ude
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Bimolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
6
|
Chan KM, Griffith JL, Pacheco YC, Allen KD. Wheel Running Exacerbates Joint Damage after Meniscal Injury in Mice, but Does Not Alter Gait or Physical Activity Levels. Med Sci Sports Exerc 2023; 55:1564-1576. [PMID: 37144624 PMCID: PMC10524358 DOI: 10.1249/mss.0000000000003198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE Exercise and physical activity are recommended to reduce pain and improve joint function in patients with knee osteoarthritis (OA). However, exercise has dose effects, with excessive exercise accelerating OA development and sedentary behaviors also promoting OA development. Prior work evaluating exercise in preclinical models has typically used prescribed exercise regimens; however, in-cage voluntary wheel running creates opportunities to evaluate how OA progression affects self-selected physical activity levels. This study aimed to evaluate how voluntary wheel running after a surgically induced meniscal injury affects gait characteristics and joint remodeling in C57Bl/6 mice. We hypothesize that injured mice will reduce physical activity levels as OA develops after meniscal injury and will engage in wheel running to a lesser extent than the uninjured animals. METHODS Seventy-two C57Bl/6 mice were divided into experimental groups based on sex, lifestyle (physically active vs sedentary), and surgery (meniscal injury or sham control). Voluntary wheel running data were continuously collected throughout the study, and gait data were collected at 3, 7, 11, and 15 wk after surgery. At end point, joints were processed for histology to assess cartilage damage. RESULTS After meniscal injury, physically active mice showed more severe joint damage relative to sedentary mice. Nevertheless, injured mice engaged in voluntary wheel running at the same rates and distances as mice with sham surgery. In addition, physically active mice and sedentary mice both developed a limp as meniscal injury progressed, yet exercise did not further exacerbate gait changes in the physically active mice, despite worsened joint damage. CONCLUSIONS Taken together, these data indicate a discordance between structural joint damage and joint function. Although wheel running after meniscal injury did worsen OA-related joint damage, physical activity did not necessarily inhibit or worsen OA-related joint dysfunction or pain in mice.
Collapse
Affiliation(s)
- Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Department of Kinesiology, Indiana University, Bloomington, IN
| | - Jacob L. Griffith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Yan Carlos Pacheco
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Department of Orthopedics and Sports Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
7
|
Nota MH, Nicolas S, O’Leary OF, Nolan YM. Outrunning a bad diet: interactions between exercise and a Western-style diet for adolescent mental health, metabolism and microbes. Neurosci Biobehav Rev 2023; 149:105147. [PMID: 36990371 DOI: 10.1016/j.neubiorev.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Adolescence is a period of biological, psychological and social changes, and the peak time for the emergence of mental health problems. During this life stage, brain plasticity including hippocampal neurogenesis is increased, which is crucial for cognitive functions and regulation of emotional responses. The hippocampus is especially susceptible to environmental and lifestyle influences, mediated by changes in physiological systems, resulting in enhanced brain plasticity but also an elevated risk for developing mental health problems. Indeed, adolescence is accompanied by increased activation of the maturing hypothalamic-pituitary-adrenal axis, sensitivity to metabolic changes due to increased nutritional needs and hormonal changes, and gut microbiota maturation. Importantly, dietary habits and levels of physical activity significantly impact these systems. In this review, the interactions between exercise and Western-style diets, which are high in fat and sugar, on adolescent stress susceptibility, metabolism and the gut microbiota are explored. We provide an overview of current knowledge on implications of these interactions for hippocampal function and adolescent mental health, and speculate on potential mechanisms which require further investigation.
Collapse
|
8
|
Abstract
OBJECTIVES To determine the causal association between genetically predicted obesity and the risk of hip osteoarthritis. METHODS We performed two-sample Mendelian randomization (MR) analysis to analyze the association between body mass index (BMI) and hip osteoarthritis using pooled-level genome-wide association study (GWAS) data. The inverse variance weighted (IVW), MR‒Egger, and weighted median methods were used to estimate the causal association. In addition, we applied the MR Steiger filtering method, MR robust adjusted profile score (MR.RAPS) methods, and the MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global test to examine and address potential horizontal pleiotropy. RESULTS We found a causal relationship between genetically predicted BMI and the risk of hip osteoarthritis by the IVW method [OR = 1.45, 95% confidence interval (CI) = 1.04-2.00, P = 0.02]. In the sensitivity analysis, the results of the MR‒Egger and weighted median methods revealed similar estimations but with a wide CI with lower precision. The funnel plot, MR-Egger intercept, and MR-PRESSO all indicated the absence of a directional pleiotropic effect. In addition, no heterogeneity was observed in the present analysis. Therefore, the result of IVW is most suitable and reliable for the present MR analysis. CONCLUSION There is a causal relationship between obesity and a higher risk of hip osteoarthritis, suggesting that weight management may be an intervention for the prevention and management of hip osteoarthritis. LEVEL OF EVIDENCE Bioinformatics, Basic science.
Collapse
|
9
|
Guan Z, Yuan W, Jia J, Zhang C, Zhu J, Huang J, Zhang W, Fan D, Leng H, Li Z, Xu Y, Song C. Bone mass loss in chronic heart failure is associated with sympathetic nerve activation. Bone 2023; 166:116596. [PMID: 36307018 DOI: 10.1016/j.bone.2022.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Chronic heart failure causes osteoporosis, but the mechanism remains unclear. The sympathetic nerve plays an important role in both bone metabolism and cardiovascular function. METHODS Thirty-six adult male SD rats were randomly divided into the following four groups: sham surgery (Sham) group, guanethidine (GD) group, abdominal transverse aorta coarctation-induced heart failure + normal saline (TAC) group, and TAC + guanethidine (TAC + GD) group. Normal saline (0.9 % NaCl) or guanethidine (40 mg/kg/ml) was intraperitoneally injected daily for 5 weeks. Then, DXA, micro-CT, ELISA and RT-PCR analyses were performed 12 weeks after treatment. RESULTS The bone loss in rats subjected to TAC-induced chronic heart failure and chemical sympathectomy with guanethidine was increased. Serum norepinephrine levels were increased in rats with TAC-induced heart failure but were decreased in TAC-induced heart failure rats treated with guanethidine. The expression of α2A adrenergic receptor, α2C adrenergic receptor, osteoprotegerin (OPG), and osteocalcin in the tibia decreased in the TAC-induced heart failure group, and the expression of β1 adrenergic receptor, β2 adrenergic receptor, receptor activator of nuclear factor-κ B ligand (RANKL), and RANKL/OPG in the tibia increased in the heart failure group. In addition, these changes in gene expression levels were rescued by chemical sympathectomy with guanethidine. CONCLUSIONS TAC-induced chronic heart failure is associated with bone mass loss, and the sympathetic nerve plays a significant role in heart failure-related bone mass loss. MINI ABSTRACT The present study supports the hypothesis that heart failure is related to bone loss, and the excessive activation of sympathetic nerves participates in this pathophysiological process. The present study suggests a potential pathological mechanism of osteoporosis associated with heart failure and new perspectives for developing strategies for heart failure-related bone loss.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wang Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Zijian Li
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Diseases, Beijing, China.
| |
Collapse
|
10
|
Zhu HQ, Luo J, Wang XQ, Zhang XA. Non-invasive brain stimulation for osteoarthritis. Front Aging Neurosci 2022; 14:987732. [PMID: 36247995 PMCID: PMC9557732 DOI: 10.3389/fnagi.2022.987732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, the prevalence of OA is increasing, and the elderly are the most common in patients with OA. OA has a severe impact on the daily life of patients, this increases the demand for treatment of OA. In recent years, the application of non-invasive brain stimulation (NIBS) has attracted extensive attention. It has been confirmed that NIBS plays an important role in regulating cortical excitability and oscillatory rhythm in specific brain regions. In this review, we summarized the therapeutic effects and mechanisms of different NIBS techniques in OA, clarified the potential of NIBS as a treatment choice for OA, and provided prospects for further research in the future.
Collapse
Affiliation(s)
- Hui-Qi Zhu
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jing Luo
- Department of Sport Rehabilitation, Xi’an University of Sport, Xi’an, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang,
| |
Collapse
|
11
|
Liu L, Tian F, Li GY, Xu W, Xia R. The effects and significance of gut microbiota and its metabolites on the regulation of osteoarthritis: Close coordination of gut-bone axis. Front Nutr 2022; 9:1012087. [PMID: 36204373 PMCID: PMC9530816 DOI: 10.3389/fnut.2022.1012087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease of articular cartilage in middle-aged and older individuals, which can result in the joint pain and dysfunction, and even cause the joint deformity or disability. With the enhancing process of global aging, OA has gradually become a major public health problem worldwide. Explaining pathogenesis of OA is critical for the development of new preventive and therapeutic interventions. In recent years, gut microbiota (GM) has been generally regarded as a “multifunctional organ,” which is closely relevant with a variety of immune, metabolic and inflammatory functions. Meanwhile, more and more human and animal researches have indicated the existence of gut-bone axis and suggested that GM and its metabolites are closely involved in the pathogenic process of OA, which might become a potential and promising intervention target. Based on the close coordination of gut-bone axis, this review aims to summarize and discuss the mechanisms of GM and its metabolites influencing OA from the aspects of the intestinal mucosal barrier modulation, intestinal metabolites modulation, immune modulation and strategies for the prevention or treatment of OA based on perspectives of GM and its metabolites, thus providing a profound knowledge and recognition of it.
Collapse
|
12
|
Kong H, Wang XQ, Zhang XA. Exercise for Osteoarthritis: A Literature Review of Pathology and Mechanism. Front Aging Neurosci 2022; 14:854026. [PMID: 35592699 PMCID: PMC9110817 DOI: 10.3389/fnagi.2022.854026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) has a very high incidence worldwide and has become a very common joint disease in the elderly. Currently, the treatment methods for OA include surgery, drug therapy, and exercise therapy. In recent years, the treatment of certain diseases by exercise has received increasing research and attention. Proper exercise can improve the physiological function of various organs of the body. At present, the treatment of OA is usually symptomatic. Limited methods are available for the treatment of OA according to its pathogenesis, and effective intervention has not been developed to slow down the progress of OA from the molecular level. Only by clarifying the mechanism of exercise treatment of OA and the influence of different exercise intensities on OA patients can we choose the appropriate exercise prescription to prevent and treat OA. This review mainly expounds the mechanism that exercise alleviates the pathological changes of OA by affecting the degradation of the ECM, apoptosis, inflammatory response, autophagy, and changes of ncRNA, and summarizes the effects of different exercise types on OA patients. Finally, it is found that different exercise types, exercise intensity, exercise time and exercise frequency have different effects on OA patients. At the same time, suitable exercise prescriptions are recommended for OA patients.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang,
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Xue-Qiang Wang,
| |
Collapse
|
13
|
Zhu S, Batushansky A, Jopkiewicz A, Makosa D, Humphries KM, Van Remmen H, Griffin TM. Sirt5 Deficiency Causes Posttranslational Protein Malonylation and Dysregulated Cellular Metabolism in Chondrocytes Under Obesity Conditions. Cartilage 2021; 13:1185S-1199S. [PMID: 33567897 PMCID: PMC8804736 DOI: 10.1177/1947603521993209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Obesity accelerates the development of osteoarthritis (OA) during aging and is associated with altered chondrocyte cellular metabolism. Protein lysine malonylation (MaK) is a posttranslational modification (PTM) that has been shown to play an important role during aging and obesity. The objective of this study was to investigate the role of sirtuin 5 (Sirt5) in regulating MaK and cellular metabolism in chondrocytes under obesity-related conditions. METHODS MaK and SIRT5 were immunostained in knee articular cartilage of obese db/db mice and different aged C57BL6 mice with or without destabilization of the medial meniscus surgery to induce OA. Primary chondrocytes were isolated from 7-day-old WT and Sirt5-/- mice and treated with varying concentrations of glucose and insulin to mimic obesity. Sirt5-dependent effects on MaK and metabolism were evaluated by western blot, Seahorse Respirometry, and gas/chromatography-mass/spectrometry (GC-MS) metabolic profiling. RESULTS MaK was significantly increased in cartilage of db/db mice and in chondrocytes treated with high concentrations of glucose and insulin (GluhiInshi). Sirt5 was increased in an age-dependent manner following joint injury, and Sirt5 deficient primary chondrocytes had increased MaK, decreased glycolysis rate, and reduced basal mitochondrial respiration. GC-MS identified 41 metabolites. Sirt5 deficiency altered 13 distinct metabolites under basal conditions and 18 metabolites under GluhiInshi treatment. Pathway analysis identified a wide range of Sirt5-dependent altered metabolic pathways that include amino acid metabolism, TCA cycle, and glycolysis. CONCLUSION This study provides the first evidence that Sirt5 broadly regulates chondrocyte metabolism. We observed changes in SIRT5 and MaK levels in cartilage with obesity and joint injury, suggesting that the Sirt5-MaK pathway may contribute to altered chondrocyte metabolism that occurs during OA development.
Collapse
Affiliation(s)
- Shouan Zhu
- Aging and Metabolism Research Program,
Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Shouan Zhu, Department of Biomedical
Sciences, Ohio Musculoskeletal and Neurological Institute, Ohio University, Life
Science Building, 250, Athens, OH 45701, USA.
| | - Albert Batushansky
- Aging and Metabolism Research Program,
Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Anita Jopkiewicz
- Aging and Metabolism Research Program,
Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Veterans Affairs Medical Center,
Oklahoma City, OK, USA
| | - Dawid Makosa
- Aging and Metabolism Research Program,
Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program,
Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Reynolds Oklahoma Center on Aging,
University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Biochemistry and Molecular
Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program,
Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Veterans Affairs Medical Center,
Oklahoma City, OK, USA,Reynolds Oklahoma Center on Aging,
University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Physiology, University of
Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Timothy M. Griffin
- Aging and Metabolism Research Program,
Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Veterans Affairs Medical Center,
Oklahoma City, OK, USA,Reynolds Oklahoma Center on Aging,
University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Biochemistry and Molecular
Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Physiology, University of
Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
14
|
Hahn AK, Batushansky A, Rawle RA, Prado Lopes EB, June RK, Griffin TM. Effects of long-term exercise and a high-fat diet on synovial fluid metabolomics and joint structural phenotypes in mice: an integrated network analysis. Osteoarthritis Cartilage 2021; 29:1549-1563. [PMID: 34461226 PMCID: PMC8542629 DOI: 10.1016/j.joca.2021.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore how systemic factors that modify knee osteoarthritis risk are connected to 'whole-joint' structural changes by evaluating the effects of high-fat diet and wheel running exercise on synovial fluid (SF) metabolomics. METHODS Male mice were fed a defined control or high-fat (60% kcal fat) diet from 6 to 52 weeks of age, and half the animals were housed with running wheels from 26 to 52 weeks of age (n = 9-13 per group). Joint tissue structure and osteoarthritis pathology were evaluated by histology and micro-computed tomography. Systemic metabolic and inflammatory changes were evaluated by body composition, glucose tolerance testing, and serum biomarkers. SF metabolites were analyzed by high performance-liquid chromatography mass spectrometry. We built correlation-based network models to evaluate the connectivity between systemic and local metabolic biomarkers and osteoarthritis structural pathology within each experimental group. RESULTS High-fat diet caused moderate osteoarthritis, including cartilage pathology, synovitis and increased subchondral bone density. In contrast, voluntary exercise had a negligible effect on these joint structure components. 1,412 SF metabolite features were detected, with high-fat sedentary mice being the most distinct. Diet and activity uniquely altered SF metabolites attributed to amino acids, lipids, and steroids. Notably, high-fat diet increased network connections to systemic biomarkers such as interleukin-1β and glucose intolerance. In contrast, exercise increased local joint-level network connections, especially among subchondral bone features and SF metabolites. CONCLUSION Network mapping showed that obesity strengthened SF metabolite links to blood glucose and inflammation, whereas exercise strengthened SF metabolite links to subchondral bone structure.
Collapse
Affiliation(s)
- A K Hahn
- Molecular Biosciences Program, Montana State University, Bozeman, MT, 59717, USA; Department of Cell Biology & Neuroscience, Montana State University, Bozeman, MT, 59717, USA; Department of Biological and Environmental Sciences, Carroll College, Helena, MT, 59625, USA
| | - A Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK, 73104, USA
| | - R A Rawle
- Molecular Biosciences Program, Montana State University, Bozeman, MT, 59717, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - E B Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK, 73104, USA
| | - R K June
- Molecular Biosciences Program, Montana State University, Bozeman, MT, 59717, USA; Department of Cell Biology & Neuroscience, Montana State University, Bozeman, MT, 59717, USA; Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, USA.
| | - T M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK, 73104, USA; Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
15
|
Effect of Whole-Body Vibration Training on Muscle Activation for Individuals with Knee Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6671390. [PMID: 33855078 PMCID: PMC8019384 DOI: 10.1155/2021/6671390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Whole-body vibration (WBV) training may improve the strength of lower extremity muscles in patients with knee osteoarthritis (KOA), but the inconsistency in vibration parameters leads to differences in findings. This cross-sectional study is aimed at observing the effects of different vibration frequencies and knee flexion angles on the activation of lower extremity muscles in patients with KOA. Enrolled participants received WBV training at 0, 30, and 60° knee flexion angles with vibration frequencies of 0, 5, 10, and 20 Hz. Activation rates for vastus medialis, vastus lateralis, rectus femoris, biceps femoris, and semitendinosus in different combinations were collected through surface electromyography. The effects of frequency and angle on muscle activation rate were quantified by repeated measures ANOVA. Individual and synergistic effects of frequency and angle were also analysed. Twenty-six participants with KOA were included. Muscle activation increased with the vibration frequency in 0–20 Hz range and with knee flexion angle in 0–60° range. WBV training at 20 Hz was the most effective for knee muscle activation, and static squatting at 60° was the most suitable for WBV training. Therefore, WBV training can increase the activation rate of knee flexor and extensor muscles in patients with KOA, and the most efficient combination was 20 Hz vibration frequency and 60° knee flexion. When applying WBV to patients with KOA, individual differences and rehabilitation purposes should be considered in selecting vibration parameters and knee angle to effectively increase neuromuscular activity.
Collapse
|
16
|
Sun AR, Udduttula A, Li J, Liu Y, Ren PG, Zhang P. Cartilage tissue engineering for obesity-induced osteoarthritis: Physiology, challenges, and future prospects. J Orthop Translat 2021; 26:3-15. [PMID: 33437618 PMCID: PMC7773977 DOI: 10.1016/j.jot.2020.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease with pathological changes that affect whole joint tissue. Obesity is acknowledged as the most influential risk factor for both the initiation and progression of OA in weight-bearing and non-weight-bearing joints. Obesity-induced OA is a newly defined phenotypic group in which chronic low-grade inflammation has a central role. Aside from persistent chronic inflammation, abnormal mechanical loading due to increased body weight on weight-bearing joints is accountable for the initiation and progression of obesity-induced OA. The current therapeutic approaches for OA are still evolving. Tissue-engineering-based strategy for cartilage regeneration is one of the most promising treatment breakthroughs in recent years. However, patients with obesity-induced OA are often excluded from cartilage repair attempts due to the abnormal mechanical demands, altered biomechanical and biochemical activities of cells, persistent chronic inflammation, and other obesity-associated factors. With the alarming increase in the number of obese populations globally, the need for an innovative therapeutic approach that could effectively repair and restore the damaged synovial joints is of significant importance for this sub-population of patients. In this review, we discuss the involvement of the systemic and localized inflammatory response in obesity-induced OA and the impact of altered mechanical loading on pathological changes in the synovial joint. Moreover, we examine the current strategies in cartilage tissue engineering and address the critical challenges of cell-based therapies for OA. Besides, we provide examples of innovative ways and potential strategies to overcome the obstacles in the treatment of obesity-induced OA. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Altogether, this review delivers insight into obesity-induced OA and offers future research direction on the creation of tissue engineering-based therapies for obesity-induced OA.
Collapse
Affiliation(s)
- Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Anjaneyulu Udduttula
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Yanzhi Liu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
17
|
Guan Z, Jia J, Zhang C, Sun T, Zhang W, Yuan W, Leng H, Song C. Gut microbiome dysbiosis alleviates the progression of osteoarthritis in mice. Clin Sci (Lond) 2020; 134:3159-3174. [PMID: 33215637 DOI: 10.1042/cs20201224] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Gut microbiota dysbiosis has been studied under the pathological conditions of osteoarthritis (OA). However, the effect of antibiotic-induced gut flora dysbiosis on OA remains incompletely understood at present. Herein, we used a mouse (8 weeks) OA model of destabilization of the medial meniscus (DMM) and gut microbiome dysbiosis induced by antibiotic treatment with ampicillin and neomycin for 8 weeks. The results show that antibiotic-induced intestinal microbiota dysbiosis reduced the serum level of lipopolysaccharide (LPS) and the inflammatory response, such as suppression of the levels of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), which can lead to decreased matrix metalloprotease-13 (MMP-13) expression and improvement of OA after joint injury. In addition, trabecular thickness (Tb.Th) and osteophyte scores were increased significantly in antibiotic-induced male mice compared with female mice. We further used network correlation analysis to verify the effect of gut microbiota dysbiosis on OA. Therefore, the present study contributes to our understanding of the gut-joint axis in OA and reveals the relationship between the inflammatory response, sex and gut microbiota, which may provide new strategies to prevent the symptoms and long-term sequelae of OA. Conclusion: Our data showed that gut microbiome dysbiosis alleviates the progression of OA.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Tiantong Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wang Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| |
Collapse
|
18
|
Revealing metabolic pathways relevant to prediabetes based on metabolomics profiling analysis. Biochem Biophys Res Commun 2020; 533:188-194. [DOI: 10.1016/j.bbrc.2020.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
|