1
|
Maia F, Nakamura FY, Sarmento H, Marcelino R, Ribeiro J. Effects of lower-limb intermittent pneumatic compression on sports recovery: A systematic review and meta-analysis. Biol Sport 2024; 41:263-275. [PMID: 39416507 PMCID: PMC11475002 DOI: 10.5114/biolsport.2024.133665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/29/2023] [Accepted: 12/02/2023] [Indexed: 10/19/2024] Open
Abstract
Intermittent pneumatic compression (IPC) applied to lower limbs is becoming a popular postexercise recovery technique; however, it still lacks strong scientific support. The purpose of this systematic review and meta-analysis was to analyse the effects of lower-limb IPC on sports recovery, as well as to identify the most used protocols to optimize it. A systematic search was conducted across athletic and healthy populations, following the PRISMA guidelines, covering the databases: PubMed, Web of Science, SportDiscus, Academic Search Complete, and Science Direct; using the search terms: ("Pneumatic compression" OR "Intermittent pneumatic compression" OR "Recov* boot*") AND (Recover*). Data was extracted, and standardized mean differences were calculated with 95% confidence and prediction interval. The pooled data analysis was conducted using a random-effects model, with heterogeneity assessed using I2. A total of 17 studies (319 participants) were included. The studies' methodological quality was assessed using the PEDro scale, ranging from fair to good. Results indicate a trivial to small benefit towards lower-limb IPC in enhancing muscular function, as well as a trivial to moderate effect for pain and soreness measurements, and a highly variable effect on muscle damage markers. Moreover, protocols of about 20 to 30 minutes and pressures of about 80 mmHg appear to be the most used option to optimize recovery. In summary, lower-limb IPC might be a method with potential effects for recovery in sports, mainly reducing perceived soreness.
Collapse
Affiliation(s)
- Filipe Maia
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Maia, Portugal
- University of Maia, Maia, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Maia, Portugal
- University of Maia, Maia, Portugal
| | - Hugo Sarmento
- Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Rui Marcelino
- University of Maia, Maia, Portugal
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), CreativeLab Research Community, Vila Real, Portugal
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
| | - João Ribeiro
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Maia, Portugal
- University of Maia, Maia, Portugal
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
- SC Braga Education, Braga, Portugal
| |
Collapse
|
2
|
Maia F, Machado MVB, Silva G, Nakamura FY, Ribeiro J. Hemodynamic Effects of Intermittent Pneumatic Compression on Athletes: A Double-Blinded Randomized Crossover Study. Int J Sports Physiol Perform 2024; 19:932-938. [PMID: 39043362 DOI: 10.1123/ijspp.2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE There are multiple postexercise recovery technologies available in the market based on the assumption of blood-flow enhancement. Lower-limb intermittent pneumatic compression (IPC) has been widely used, but the available scientific evidence supporting its effectiveness remains scarce, requiring a deeper investigation into its underlying mechanisms. The aim of this study was to assess the hemodynamic effects caused by the use of IPC at rest. METHODS Twenty-two soccer and track and field athletes underwent two 15-minute IPC protocols (moderate- [80 mm Hg] and high-pressure [200 mm Hg]) in a randomized order. Systolic peak velocity, end-diastolic peak velocity, arterial diameter, and heart rate were measured before, during (at the eighth minute), and 2 minutes after each IPC protocol. RESULTS Significant effects were observed between before and during (eighth minute) the IPC protocol for measures of systolic (P < .001) and end-diastolic peak velocities (P < .001), with the greater effects observed during the high-pressure protocol. Moreover, 2 minutes after each IPC protocol, hemodynamic variables returned to values close to baseline. Arterial diameter presented significant differences between pressures during the IPC protocols (P < .05), while heart rate remained unaltered. CONCLUSION IPC effectively enhances transitory blood flow of athletes, particularly when applying high-pressure protocols.
Collapse
Affiliation(s)
- Filipe Maia
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - Marta V B Machado
- Angiology and Vascular Surgery Unit, Hospital Center of Vila Nova de Gaia e Espinho, Vila Nova de Gaia, Portugal
| | - Gustavo Silva
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - João Ribeiro
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
- Department of Performance Optimization (GOD), Sporting Clube de Braga SAD, Braga, Portugal
- SC Braga Education, Braga, Portugal
| |
Collapse
|
3
|
Keller B, Receno CN, Franconi CJ, Harenberg S, Stevens J, Mao X, Stevens SR, Moore G, Levine S, Chia J, Shungu D, Hanson MR. Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations. J Transl Med 2024; 22:627. [PMID: 38965566 PMCID: PMC11229500 DOI: 10.1186/s12967-024-05410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Post-exertional malaise (PEM), the hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), represents a constellation of abnormal responses to physical, cognitive, and/or emotional exertion including profound fatigue, cognitive dysfunction, and exertion intolerance, among numerous other maladies. Two sequential cardiopulmonary exercise tests (2-d CPET) provide objective evidence of abnormal responses to exertion in ME/CFS but validated only in studies with small sample sizes. Further, translation of results to impairment status and approaches to symptom reduction are lacking. METHODS Participants with ME/CFS (Canadian Criteria; n = 84) and sedentary controls (CTL; n = 71) completed two CPETs on a cycle ergometer separated by 24 h. Two-way repeated measures ANOVA compared CPET measures at rest, ventilatory/anaerobic threshold (VAT), and peak effort between phenotypes and CPETs. Intraclass correlations described stability of CPET measures across tests, and relevant objective CPET data indicated impairment status. A subset of case-control pairs (n = 55) matched for aerobic capacity, age, and sex, were also analyzed. RESULTS Unlike CTL, ME/CFS failed to reproduce CPET-1 measures during CPET-2 with significant declines at peak exertion in work, exercise time, V ˙ e, V ˙ O2, V ˙ CO2, V ˙ T, HR, O2pulse, DBP, and RPP. Likewise, CPET-2 declines were observed at VAT for V ˙ e/ V ˙ CO2, PetCO2, O2pulse, work, V ˙ O2 and SBP. Perception of effort (RPE) exceeded maximum effort criteria for ME/CFS and CTL on both CPETs. Results were similar in matched pairs. Intraclass correlations revealed greater stability in CPET variables across test days in CTL compared to ME/CFS owing to CPET-2 declines in ME/CFS. Lastly, CPET-2 data signaled more severe impairment status for ME/CFS compared to CPET-1. CONCLUSIONS Presently, this is the largest 2-d CPET study of ME/CFS to substantiate impaired recovery in ME/CFS following an exertional stressor. Abnormal post-exertional CPET responses persisted compared to CTL matched for aerobic capacity, indicating that fitness level does not predispose to exertion intolerance in ME/CFS. Moreover, contributions to exertion intolerance in ME/CFS by disrupted cardiac, pulmonary, and metabolic factors implicates autonomic nervous system dysregulation of blood flow and oxygen delivery for energy metabolism. The observable declines in post-exertional energy metabolism translate notably to a worsening of impairment status. Treatment considerations to address tangible reductions in physiological function are proffered. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, retrospectively registered, ID# NCT04026425, date of registration: 2019-07-17.
Collapse
Affiliation(s)
- Betsy Keller
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, 14850, USA.
| | - Candace N Receno
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, 14850, USA
| | - Carl J Franconi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Sebastian Harenberg
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Jared Stevens
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Staci R Stevens
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Geoff Moore
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, 14850, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Susan Levine
- Susan Levine, MD Clinical Practice, New York, NY, 10021, USA
| | | | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Perrey S, Quaresima V, Ferrari M. Muscle Oximetry in Sports Science: An Updated Systematic Review. Sports Med 2024; 54:975-996. [PMID: 38345731 PMCID: PMC11052892 DOI: 10.1007/s40279-023-01987-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 04/28/2024]
Abstract
BACKGROUND In the last 5 years since our last systematic review, a significant number of articles have been published on the technical aspects of muscle near-infrared spectroscopy (NIRS), the interpretation of the signals and the benefits of using the NIRS technique to measure the physiological status of muscles and to determine the workload of working muscles. OBJECTIVES Considering the consistent number of studies on the application of muscle oximetry in sports science published over the last 5 years, the objectives of this updated systematic review were to highlight the applications of muscle oximetry in the assessment of skeletal muscle oxidative performance in sports activities and to emphasize how this technology has been applied to exercise and training over the last 5 years. In addition, some recent instrumental developments will be briefly summarized. METHODS Preferred Reporting Items for Systematic Reviews guidelines were followed in a systematic fashion to search, appraise and synthesize existing literature on this topic. Electronic databases such as Scopus, MEDLINE/PubMed and SPORTDiscus were searched from March 2017 up to March 2023. Potential inclusions were screened against eligibility criteria relating to recreationally trained to elite athletes, with or without training programmes, who must have assessed physiological variables monitored by commercial oximeters or NIRS instrumentation. RESULTS Of the identified records, 191 studies regrouping 3435 participants, met the eligibility criteria. This systematic review highlighted a number of key findings in 37 domains of sport activities. Overall, NIRS information can be used as a meaningful marker of skeletal muscle oxidative capacity and can become one of the primary monitoring tools in practice in conjunction with, or in comparison with, heart rate or mechanical power indices in diverse exercise contexts and across different types of training and interventions. CONCLUSIONS Although the feasibility and success of the use of muscle oximetry in sports science is well documented, there is still a need for further instrumental development to overcome current instrumental limitations. Longitudinal studies are urgently needed to strengthen the benefits of using muscle oximetry in sports science.
Collapse
Affiliation(s)
- Stephane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Marco Ferrari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
5
|
Yang C, Yang Y, Xu Y, Zhang Z, Lake M, Fu W. Whole leg compression garments influence lower limb kinematics and associated muscle synergies during running. Front Bioeng Biotechnol 2024; 12:1310464. [PMID: 38444649 PMCID: PMC10912955 DOI: 10.3389/fbioe.2024.1310464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024] Open
Abstract
The utilization of compression garments (CGs) has demonstrated the potential to improve athletic performance; however, the specific mechanisms underlying this enhancement remain a subject of further investigation. This study aimed to examine the impact of CGs on running mechanics and muscle synergies from a neuromuscular control perspective. Twelve adult males ran on a treadmill at 12 km/h, while data pertaining to lower limb kinematics, kinetics, and electromyography were collected under two clothing conditions: whole leg compression garments and control. The Non-negative matrix factorization algorithm was employed to extract muscle synergy during running, subsequently followed by cluster analysis and correlation analysis. The findings revealed that the CGs increased knee extension and reduced hip flexion at foot strike compared with the control condition. Moreover, CGs were found to enhance stance-phase peak knee extension, while diminishing hip flexion and maximal hip extension during the stance-phase, and the ankle kinematics remained unaltered. We extracted and classified six synergies (SYN1-6) during running and found that only five SYNs were observed after wearing CGs. CGs altered the structure of the synergies and changed muscle activation weights and durations. The current study is the first to apply muscle synergy to discuss the effect of CGs on running biomechanics. Our findings provide neuromuscular evidence for the idea of previous studies that CGs alter the coordination of muscle groups, thereby affecting kinematic characteristics during running.
Collapse
Affiliation(s)
- Chenhao Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yang Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yongxin Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Zhenyuan Zhang
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Mark Lake
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Weijie Fu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Chen SY, You JW, Cho YC, Huang BH, Kuo HH, Huang J, Hsieh CC, Lan WC, Ou KL. Biomechanical stress distribution of medical inelastic fabrics with different porosity structures. J Mech Behav Biomed Mater 2023; 147:106105. [PMID: 37716207 DOI: 10.1016/j.jmbbm.2023.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023]
Abstract
Clothing fit and pressure comfort play important role in clothing comfort, especially in medical body sculpting clothing (MBSC). In the present study, different body movements (forward bending, side bending, and twisting) were adopted to simulate and investigate the biomechanical stress distribution of the human body with three kinds of porosity inelastic MBSCs through the finite element analysis method. The elastic modulus of the investigated MBSCs was also measured by means of tensile testing. Analytical results showed that in the compression region during body movements, the investigated inelastic MBSCs endured less compression stress, and most of the stress was transmitted to the human body. Moreover, the stresses on the body surface were decreased with the porosity increasing. However, most of the von Mises stresses on the human body were in the desired pressure comfort range. Therefore, these results could provide potential information in the modification of MBSC for medical applications.
Collapse
Affiliation(s)
- Shyuan-Yow Chen
- Department of Dentistry, Cathay General Hospital, Taipei, 106, Taiwan
| | - Jia-Wei You
- Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Yung-Chieh Cho
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Bai-Hung Huang
- Graduate Institute of Dental Science, College of Dentistry, China Medical University, Taichung, 404, Taiwan
| | - Hsin-Hui Kuo
- Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Chia-Chien Hsieh
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chien Lan
- Department of Oral Hygiene Care, Ching Kuo Institute of Management and Health, Keelung, 203, Taiwan.
| | - Keng-Liang Ou
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan; 3D Global Biotech Inc. (Spin-off Company from Taipei Medical University), New Taipei City, 221, Taiwan.
| |
Collapse
|
7
|
Do Sports Compression Garments Alter Measures of Peripheral Blood Flow? A Systematic Review with Meta-Analysis. Sports Med 2023; 53:481-501. [PMID: 36622554 DOI: 10.1007/s40279-022-01774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND One of the proposed mechanisms underlying the benefits of sports compression garments may be alterations in peripheral blood flow. OBJECTIVE We aimed to determine if sports compression garments alter measures of peripheral blood flow at rest, as well as during, immediately after and in recovery from a physiological challenge (i.e. exercise or an orthostatic challenge). METHODS We conducted a systematic literature search of databases including Scopus, SPORTDiscus and PubMed/MEDLINE. The criteria for inclusion of studies were: (1) original papers in English and a peer-reviewed journal; (2) assessed effect of compression garments on a measure of peripheral blood flow at rest and/or before, during or after a physiological challenge; (3) participants were healthy and without cardiovascular or metabolic disorders; and (4) a study population including athletes and physically active or healthy participants. The PEDro scale was used to assess the methodological quality of the included studies. A random-effects meta-analysis model was used. Changes in blood flow were quantified by standardised mean difference (SMD) [± 95% confidence interval (CI)]. RESULTS Of the 899 articles identified, 22 studies were included for the meta-analysis. The results indicated sports compression garments improve overall peripheral blood flow (SMD = 0.32, 95% CI 0.13, 0.51, p = 0.001), venous blood flow (SMD = 0.37, 95% CI 0.14, 0.60, p = 0.002) and arterial blood flow (SMD = 0.30, 95% CI 0.01, 0.59, p = 0.04). At rest, sports compression garments did not improve peripheral blood flow (SMD = 0.18, 95% CI - 0.02, 0.39, p = 0.08). However, subgroup analyses revealed sports compression garments enhance venous (SMD = 0.31 95% CI 0.02, 0.60, p = 0.03), but not arterial (SMD = 0.12, 95% CI - 0.16, 0.40, p = 0.16), blood flow. During a physiological challenge, peripheral blood flow was improved (SMD = 0.44, 95% CI 0.19, 0.69, p = 0.0007), with subgroup analyses revealing sports compression garments enhance venous (SMD = 0.48, 95% CI 0.11, 0.85, p = 0.01) and arterial blood flow (SMD = 0.44, 95% CI 0.03, 0.86, p = 0.04). At immediately after a physiological challenge, there were no changes in peripheral blood flow (SMD = - 0.04, 95% CI - 0.43, 0.34, p = 0.82) or subgroup analyses of venous (SMD = - 0.41, 95% CI - 1.32, 0.47, p = 0.35) and arterial (SMD = 0.12, 95% CI - 0.26, 0.51, p = 0.53) blood flow. In recovery, sports compression garments did not improve peripheral blood flow (SMD = 0.25, 95% CI - 0.45, 0.95, p = 0.49). The subgroup analyses showed enhanced venous (SMD = 0.67, 95% CI 0.17, 1.17, p = 0.009), but not arterial blood flow (SMD = 0.02, 95% CI - 1.06, 1.09, p = 0.98). CONCLUSIONS Use of sports compression garments enhances venous blood flow at rest, during and in recovery from, but not immediately after, a physiological challenge. Compression-induced changes in arterial blood flow were only evident during a physiological challenge.
Collapse
|
8
|
Limmer M, de Marées M, Roth R. Effects of Forearm Compression Sleeves on Muscle Hemodynamics and Muscular Strength and Endurance Parameters in Sports Climbing: A Randomized, Controlled Crossover Trial. Front Physiol 2022; 13:888860. [PMID: 35726278 PMCID: PMC9206081 DOI: 10.3389/fphys.2022.888860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: Wearing compression garments is a commonly used intervention in sports to improve performance and facilitate recovery. Some evidence supports the use of forearm compression to improve muscle tissue oxygenation and enhance sports climbing performance. However, evidence is lacking for an effect of compression garments on hand grip strength and specific sports climbing performance. The purpose of this study was to evaluate the immediate effects of forearm compression sleeves on muscular strength and endurance of finger flexor muscles in sports climbers. Materials and Methods: This randomized crossover study included 24 sports climbers who performed one familiarization trial and three subsequent test trials while wearing compression forearm sleeves (COMP), non-compressive placebo forearm sleeves (PLAC), or no forearm sleeves (CON). Test trials consisted of three performance measurements (intermittent hand grip strength and endurance measurements, finger hang, and lap climbing) at intervals of at least 48 h in a randomized order. Muscle oxygenation during hand grip and finger hang measurements was assessed by near-infrared spectroscopy. The maximum blood lactate level, rate of perceived exertion, and forearm muscle pain were also determined directly after the lap climbing trials. Results: COMP resulted in higher changes in oxy[heme] and tissue oxygen saturation (StO2) during the deoxygenation (oxy[heme]: COMP –10.7 ± 5.4, PLAC –6.7 ± 4.3, CON –6.9 ± 5.0 [μmol]; p = 0.014, ηp2 = 0.263; StO2: COMP –4.0 ± 2.2, PLAC –3.0 ± 1.4, CON –2.8 ± 1.8 [%]; p = 0.049, ηp2 = 0.194) and reoxygenation (oxy [heme]: COMP 10.2 ± 5.3, PLAC 6.0 ± 4.1, CON 6.3 ± 4.9 [μmol]; p = 0.011, ηp2 = 0.274; StO2: COMP 3.5 ± 1.9, PLAC 2.4 ± 1.2, CON 2.3 ± 1.9 [%]; p = 0.028, ηp2 = 0.225) phases of hand grip measurements, whereas total [heme] concentrations were not affected. No differences were detected between the conditions for the parameters of peak force and fatigue index in the hand grip, time to failure and hemodynamics in the finger hang, or performance-related parameters in the lap climbing measurements (p ≤ 0.05). Conclusions: Forearm compression sleeves did not enhance hand grip strength and endurance, sports climbing performance parameters, physiological responses, or perceptual measures. However, they did result in slightly more pronounced changes of oxy [heme] and StO2 in the deoxygenation and reoxygenation phases during the hand grip strength and endurance measurements.
Collapse
Affiliation(s)
- Mirjam Limmer
- Institute of Outdoor Sports and Environmental Science, German Sports University Cologne, Cologne, Germany
- *Correspondence: Mirjam Limmer, , orcid.org/0000-0002-8032-6152
| | - Markus de Marées
- Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Roth
- Institute of Outdoor Sports and Environmental Science, German Sports University Cologne, Cologne, Germany
| |
Collapse
|
9
|
Can Compression Garments Reduce the Deleterious Effects of Physical Exercise on Muscle Strength? A Systematic Review and Meta-Analyses. Sports Med 2022; 52:2159-2175. [PMID: 35476183 PMCID: PMC9388468 DOI: 10.1007/s40279-022-01681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 11/13/2022]
Abstract
Background The use of compression garments (CGs) during or after training and competition has gained popularity in the last few decades. However, the data concerning CGs’ beneficial effects on muscle strength-related outcomes after physical exercise remain inconclusive. Objective The aim was to determine whether wearing CGs during or after physical exercise would facilitate the recovery of muscle strength-related outcomes. Methods A systematic literature search was conducted across five databases (PubMed, SPORTDiscus, Web of Science, Scopus, and EBSCOhost). Data from 19 randomized controlled trials (RCTs) including 350 healthy participants were extracted and meta-analytically computed. Weighted between-study standardized mean differences (SMDs) with respect to their standard errors (SEs) were aggregated and corrected for sample size to compute overall SMDs. The type of physical exercise, the body area and timing of CG application, and the time interval between the end of the exercise and subsequent testing were assessed. Results CGs produced no strength-sparing effects (SMD [95% confidence interval]) at the following time points (t) after physical exercise: immediately ≤ t < 24 h: − 0.02 (− 0.22 to 0.19), p = 0.87; 24 ≤ t < 48 h: − 0.00 (− 0.22 to 0.21), p = 0.98; 48 ≤ t < 72 h: − 0.03 (− 0.43 to 0.37), p = 0.87; 72 ≤ t < 96 h: 0.14 (− 0.21 to 0.49), p = 0.43; 96 h ≤ t: 0.26 (− 0.33 to 0.85), p = 0.38. The body area where the CG was applied had no strength-sparing effects. CGs revealed weak strength-sparing effects after plyometric exercise. Conclusion Meta-analytical evidence suggests that wearing a CG during or after training does not seem to facilitate the recovery of muscle strength following physical exercise. Practitioners, athletes, coaches, and trainers should reconsider the use of CG as a tool to reduce the effects of physical exercise on muscle strength. Trial Registration Number PROSPERO CRD42021246753. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01681-4.
Collapse
|
10
|
Davis JK, Oikawa SY, Halson S, Stephens J, O'Riordan S, Luhrs K, Sopena B, Baker LB. In-Season Nutrition Strategies and Recovery Modalities to Enhance Recovery for Basketball Players: A Narrative Review. Sports Med 2021; 52:971-993. [PMID: 34905181 PMCID: PMC9023401 DOI: 10.1007/s40279-021-01606-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 01/15/2023]
Abstract
Basketball players face multiple challenges to in-season recovery. The purpose of this article is to review the literature on recovery modalities and nutritional strategies for basketball players and practical applications that can be incorporated throughout the season at various levels of competition. Sleep, protein, carbohydrate, and fluids should be the foundational components emphasized throughout the season for home and away games to promote recovery. Travel, whether by air or bus, poses nutritional and sleep challenges, therefore teams should be strategic about packing snacks and fluid options while on the road. Practitioners should also plan for meals at hotels and during air travel for their players. Basketball players should aim for a minimum of 8 h of sleep per night and be encouraged to get extra sleep during congested schedules since back-to back games, high workloads, and travel may negatively influence night-time sleep. Regular sleep monitoring, education, and feedback may aid in optimizing sleep in basketball players. In addition, incorporating consistent training times may be beneficial to reduce bed and wake time variability. Hydrotherapy, compression garments, and massage may also provide an effective recovery modality to incorporate post-competition. Future research, however, is warranted to understand the influence these modalities have on enhancing recovery in basketball players. Overall, a strategic well-rounded approach, encompassing both nutrition and recovery modality strategies, should be carefully considered and implemented with teams to support basketball players' recovery for training and competition throughout the season.
Collapse
Affiliation(s)
- Jon K Davis
- Gatorade Sports Science Institute, PepsiCo, Inc., 3800 Gaylord Parkway, Suite 210, Frisco, TX, 75034, USA.
| | - Sara Y Oikawa
- Gatorade Sports Science Institute, PepsiCo, Inc., Bradenton, FL, 34210, USA
| | - Shona Halson
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Department of Physiology, Australian Institute of Sport, Canberra, Australia
| | | | - Shane O'Riordan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Department of Physiology, Australian Institute of Sport, Canberra, Australia
| | - Kevin Luhrs
- Gatorade Sports Science Institute, PepsiCo, Inc., Bradenton, FL, 34210, USA
| | - Bridget Sopena
- Gatorade Sports Science Institute, PepsiCo, Inc., Barrington, IL, 60010, USA
| | - Lindsay B Baker
- Gatorade Sports Science Institute, PepsiCo, Inc., Barrington, IL, 60010, USA
| |
Collapse
|