1
|
Moreno CRC, Raad R, Gusmão WDP, Luz CS, Silva VM, Prestes RM, Saraiva SP, Lemos LC, Vasconcelos SP, Nehme PXSA, Louzada FM, Marqueze EC. Are We Ready to Implement Circadian Hygiene Interventions and Programs? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16772. [PMID: 36554651 PMCID: PMC9781949 DOI: 10.3390/ijerph192416772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Circadian hygiene, a concept not to be confused with the notion of public or social hygiene, should be discussed among experts and society. Light-dark cycles and other possible synchronizers of the human circadian timing system affect ways of life, including sleeping, eating, working and physical activity. Some of these behaviors have also been investigated individually as synchronizers (e.g., eating times). Therefore, the knowledge held today about circadian rhythms, and their implications for health, allows future perspectives in this field to be mapped. The present article summarizes the latest knowledge on factors influencing circadian rhythms to discuss a perspective for the future of health promotion based on circadian hygiene. However, it is important to highlight that circadian hygiene is the product of an imbrication of individual and societal involvement. First, it is important to adopt practices and devise public health policies in line with circadian hygiene. Second, individual healthy habits require internal rhythms to be examined. Last, the research agenda on circadian hygiene can be developed on a public as well as individual level, raising the question as to how much society is willing to embrace this change.
Collapse
Affiliation(s)
- Claudia R. C. Moreno
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
- Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden
| | - Rose Raad
- Department of Technology of Architecture, School of Architecture and Urbanism, University of São Paulo, São Paulo 05508-080, Brazil
| | - Waléria D. P. Gusmão
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Cristina S. Luz
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Victor M. Silva
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Renilda M. Prestes
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Susy P. Saraiva
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Lucia C. Lemos
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Suleima P. Vasconcelos
- Public Health Graduate Program, Federal University of Acre, Rio Branco 69920-900, Brazil
| | - Patrícia X. S. A. Nehme
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Fernando M. Louzada
- Department of Physiology, Federal University of Paraná, Curitiba 81531-980, Brazil
| | - Elaine C. Marqueze
- Department of Epidemiology, Public Health Graduate Program, Catholic University of Santos, Santos 11015-001, Brazil
| |
Collapse
|
2
|
Yu Y, Chen Y, Ma L, Qu YY, Li YN, Peng Y, Zhu YL, He J, Gou HY, Zhu YM. Efficacy of agomelatine with cognitive behavioral therapy for delayed sleep-wake phase disorder in young adults: A randomized controlled study. Behav Sleep Med 2022:1-11. [PMID: 36263691 DOI: 10.1080/15402002.2022.2136178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Delayed sleep-wake phase disorder (DSWPD) is common and easily misdiagnosed in young people, and to date, there is no evidence-based treatment. PURPOSE A nonblinded randomized controlled study evaluated the effect of agomelatine therapy (AT) and cognitive behavior therapy (CBT) on DSWPD in young adults. METHODS Sixty adolescents and young adults (range = 19-24 years, mean = 22 years, 52% female) diagnosed with DSWPD were randomized to receive 4 weeks of agomelatine therapy with or without cognitive behavior therapy. Sleep diaries, Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), Insomnia Severity Index (ISI), and World Health Organization wellbeing questionnaire (WHO-5) were measured pre-treatment and post-treatment. RESULTS Agomelatine therapy for 4 weeks shifted the sleep-wake rhythm (p < .001) forward in both groups at the week 4 assessment. There were no significant differences in sleep onset (p = .099) and sleep offset (p = .959) between the CBT group and the no treatment (NT) group at the follow-up visits. However, significant differences were found in sleep duration (p = .002), sleep quality (p=0.005), sleep difficulties (p < .001), daytime sleepiness (p = .001), and wellbeing (p = .007) between groups. CONCLUSIONS The improvements were received largely through the sleep-promoting effects of agomelatine therapy, and combining with cognitive behavior therapy on maintenance of altered sleep rhythms might be feasible.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Yan Chen
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Long Ma
- Department of Cardiology, Second Hospital of Heilongjiang Province, 209 Jiangdu Road, 150028, Harbin, China
| | - You-Yang Qu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Yu-Nong Li
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Ying Peng
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, 150006, Harbin, China
| | - Yu-Lan Zhu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Jia He
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Hai-Yan Gou
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| | - Yan-Mei Zhu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086, Harbin, China
| |
Collapse
|
3
|
CE: Pain and Mental Health Symptoms After Traumatic Orthopedic Injury. Am J Nurs 2022; 122:26-37. [DOI: 10.1097/01.naj.0000873444.48723.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Abdraboh ME, El-Missiry MA, Othman AI, Taha AN, Elhamed DSA, Amer ME. Constant light exposure and/or pinealectomy increases susceptibility to trichloroethylene-induced hepatotoxicity and liver cancer in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60371-60384. [PMID: 35419691 PMCID: PMC9427929 DOI: 10.1007/s11356-022-19976-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/25/2022] [Indexed: 05/09/2023]
Abstract
Exposure to light at night, pineal gland impairment, and the environmental pollutant trichloroethylene (TCE) have serious implications for health and contribute to illness, including liver cancer. The adverse effect of the association of continuous exposure to light with decreased melatonin levels and TCE-induced toxicity is not disclosed in target organs. This work explored the role of light and pineal impairment in increasing susceptibility to liver toxicity and cancer upon exposure to TCE. Male albino mice were divided into groups as follows: control group (12-h light/12-h dark cycle), constant light (24-h light), pinealectomized (Pnx) mice, sham surgically treated group, TCE-treated groups subjected to two doses (500 and 1000 mg/kg) at two different light regimens, and combination of Pnx and TCE-treated mice kept at a 12-h light/12-h dark cycle. Melatonin levels were significantly decreased in both Pnx mice and TCE-treated animals at both light regimens. Aspartate transaminase, alanine aminotransferase, activities, and serum bilirubin levels were significantly elevated, whereas albumin levels were markedly decreased in Pnx mice, TCE-treated mice, and the combination group. Histopathological investigations reflected changes in liver function parameters indicating liver injury and induction of cancer. These effects were accompanied by significant increase of the liver cancer biomarker alpha-fetoprotein and the expression of the metastatic markers CD44, TGFβ-1, and VEGF, along with increased oxidative stress indicators and inflammatory cytokines (IL-6, IL-1β, and TNF-α) in both Pnx and TCE-treated mice and the combination group at both light regimens. Taken together, our findings indicated that low melatonin levels, exposure to constant light, and the combination of both factors increases susceptibility to the toxic and carcinogenic effects of TCE on the liver.
Collapse
Affiliation(s)
- Mohamed E Abdraboh
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Faculty of Science, New Mansoura University, Mansoura, Egypt
| | | | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed Nageeb Taha
- Neurosurgery Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dalia S Abd Elhamed
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Hu S, Luo L, Bian X, Liu RH, Zhao S, Chen Y, Sun K, Jiang J, Liu Z, Zeng L. Pu-erh Tea Restored Circadian Rhythm Disruption by Regulating Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5610-5623. [PMID: 35475616 DOI: 10.1021/acs.jafc.2c01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pu-erh tea is a healthy beverage rich in phytochemicals, and its effect on the risk of inducing circadian rhythm disorders (CRD) is unclear. In this study, healthy mice were given water or 0.25% (w/v) Pu-erh tea for 7 weeks, followed by a 40 day disruption of the light/dark cycle. CRD caused dysregulation of neurotransmitter secretion and clock gene oscillations, intestinal inflammation, and disruption of intestinal microbes and metabolites. Pu-erh tea boosted the indole and 5-hydroxytryptamine pathways of tryptophan metabolism via the gut-liver-brain axis. Furthermore, its metabolites (e.g., IAA, Indole, 5-HT) enhanced hepatic glycolipid metabolism and down-regulated intestinal oxidative stress by improving the brain hormone release. Tryptophan metabolites and bile acids also promoted liver lipid metabolism and inhibited intestinal inflammation (MyD88/NF-κB) via the enterohepatic circulation. Collectively, 0.25% (w/v) Pu-erh tea has the potential to prevent CRD by promoting indole and 5-HT pathways of tryptophan metabolism and signaling interactions in the gut-liver-brain axis.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine Chongqing Medical University, Chongqing 400016, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York 14850-7201, United States
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Jielin Jiang
- Menghai Tea Factory·TAETEA Group, Xishuangbanna Dai Autonomous Prefecture, Yunnan 666200, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
6
|
Hu S, Luo L, Zeng L. Tea combats circadian rhythm disorder syndrome via the gut-liver-brain axis: potential mechanisms speculated. Crit Rev Food Sci Nutr 2022; 63:7126-7147. [PMID: 35187990 DOI: 10.1080/10408398.2022.2040945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circadian rhythm is an intrinsic mechanism developed by organisms to adapt to external environmental signals. Nowadays, owing to the job and after-work entertainment, staying up late - Circadian rhythm disorders (CRD) are common. CRD is linked to the development of fatty liver, type 2 diabetes, and chronic gastroenteritis, which affecting the body's metabolic and inflammatory responses via multi-organ crosstalk (gut-liver-brain axis, etc.). However, studies on the mechanisms of multi-organ interactions by CRD are still weak. Current studies on therapeutic agents for CRD remain inadequate, and phytochemicals have been shown to alleviate CRD-induced syndromes that may be used for CRD-therapy in the future. Tea, a popular phytochemical-rich beverage, reduces glucolipid metabolism and inflammation. But it is immature and unclear in the mechanisms of alleviation of CRD-mediated syndrome. Here, we have analyzed the threat of CRD to hosts and their offspring' health from the perspective of the "gut-liver-brain" axis. The potential mechanisms of tea in alleviating CRD were further explored. It might be by interfering with bile acid metabolism, tryptophan metabolism, and G protein-coupled receptors, with FXR, AHR, and GPCR as potential targets. We hope to provide new perspectives on the role of tea in the prevention and mitigation of CRD.HighlightsThe review highlights the health challenges of CRD via the gut-liver-brain axis.CRD research should focus on the health effects on healthy models and its offspring.Tea may prevent CRD by regulating bile acid, tryptophan, and GPCR.Potential targets for tea prevention and mitigation of CRD include FXR, AHR and GPCR.A comprehensive assessment mechanism for tea in improving CRD should be established.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Louis M, Staiano P, Micalo L, Chaudary N. Cystic Fibrosis and Sleep Circadian Rhythms. Pulm Ther 2022; 8:139-147. [PMID: 35149967 PMCID: PMC9098776 DOI: 10.1007/s41030-022-00184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Cystic fibrosis (CF) is due to a mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which leads to unusual water and chloride secretion across epithelial surfaces. The lungs are responsible for most morbidity, though other organs are frequently affected. Sleep abnormalities have long been recognized in CF. Abnormal ventilation and oxygenation, sinus disease, deconditioning due to muscle weakness and recurrent infections, and inflammation have been thought to play a role in sleep disorders in CF. However, there is evidence that CFTR gene dysregulation can affect circadian rhythms in CF. Early recognition and treatment of circadian rhythms may improve outcomes in CF.
Collapse
Affiliation(s)
- Mariam Louis
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Jacksonville, FL, USA
| | - Peter Staiano
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Jacksonville, FL, USA
| | - Lavender Micalo
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Adult Cystic Fibrosis Center, Virginia Commonwealth University, 1200 East Broad Street, Box 980050, Richmond, VA, 23298, USA
| | - Nauman Chaudary
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Adult Cystic Fibrosis Center, Virginia Commonwealth University, 1200 East Broad Street, Box 980050, Richmond, VA, 23298, USA.
| |
Collapse
|
8
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin's Benefits and Risks as a Therapy for Sleep Disturbances in the Elderly: Current Insights. Nat Sci Sleep 2022; 14:1843-1855. [PMID: 36267165 PMCID: PMC9578490 DOI: 10.2147/nss.s380465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 01/19/2023] Open
Abstract
Aging is accompanied by circadian changes, including disruptive alterations in the sleep/wake cycle, as well as the beginning of low-degree inflammation ("inflammaging"), a scenario that leads to several chronic illnesses, including cancer, and metabolic, cardiovascular, and neurological dysfunctions. As a result, any effective approach to healthy aging must consider both the correction of circadian disturbance and the control of low-grade inflammation. One of the most important prerequisites for healthy aging is the preservation of robust circadian rhythmicity (particularly of the sleep/wake cycle). Sleep disturbance disrupts various activities in the central nervous system, including waste molecule elimination. Melatonin is a chemical with extraordinary phylogenetic conservation found in all known aerobic creatures whose alteration plays an important role in sleep changes with aging. Every day, the late afternoon/nocturnal surge in pineal melatonin helps to synchronize both the central circadian pacemaker found in the hypothalamic suprachiasmatic nuclei (SCN) and a plethora of peripheral cellular circadian clocks. Melatonin is an example of an endogenous chronobiotic substance that can influence the timing and amplitude of circadian rhythms. Moreover, melatonin is also an excellent anti-inflammatory agent, buffering free radicals, down-regulating proinflammatory cytokines, and reducing insulin resistance, among other things. We present both scientific and clinical evidence that melatonin is a safe drug for treating sleep disturbances in the elderly.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | |
Collapse
|