1
|
Yao L, Liu Y, Li M, Zheng H, Sun M, He M, Zhong Z, Ma S, Huang H, Wang H. The central regulatory effects of acupuncture in treating primary insomnia: a review. Front Neurol 2024; 15:1406485. [PMID: 39719980 PMCID: PMC11666528 DOI: 10.3389/fneur.2024.1406485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic insomnia has the potential to significantly impact physical well-being, occupational performance, and overall quality of life. This review summarizes the clinical and basic research on the central regulatory mechanism of acupuncture in treating primary insomnia (PI), aiming to explore the clinical effectiveness and possible mechanism of acupuncture in treating PI. The currently available drugs for insomnia exhibit notable adverse effects and tend to induce dependence. Empirical evidence from clinical investigations has demonstrated that acupuncture has a favorable safety profile while substantially enhancing the sleep quality of individuals diagnosed with PI. The combination of acupuncture and medication has been shown to augment the therapeutic efficacy of medication while reducing the dosage and mitigating the occurrence of unwanted effects. A review of the current clinical and basic research on the effects of acupuncture on central alterations in PI patients revealed that acupuncture exerts a regulatory influence on the functional activity of brain regions implicated in cognitive and emotional processes. Additionally, acupuncture has been found to impact metabolite levels and circadian clock gene expression and enhance inflammatory responses and energy metabolism. Notably, a single acupuncture intervention had a modulatory effect on functional brain regions similar to that of cumulative acupuncture. The current clinical trials on acupuncture have been limited in scale, and basic research has focused on a single objective. With the continuous progress of brain research, extensive clinical randomized controlled trials of high quality can be combined with various neuroimaging technology modalities. Moreover, different targets and pathways can be explored through basic research. This may serve to enhance the understanding of the fundamental central nervous system mechanisms involved in the efficacy of acupuncture in treating PI.
Collapse
Affiliation(s)
- Lin Yao
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanze Liu
- Acupuncture and Tuina Center, The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Mengyuan Li
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haizhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Mengmeng Sun
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min He
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Haipeng Huang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Hongfeng Wang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Wang YQ, Ma WX, Kong LX, Zhang H, Yuan PC, Qu WM, Liu CF, Huang ZL. Ambient chemical and physical approaches for the modulation of sleep and wakefulness. Sleep Med Rev 2024; 79:102015. [PMID: 39447526 DOI: 10.1016/j.smrv.2024.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Humans spend a third of their lives asleep. While the sleep-wake behaviors are primarily modulated by homeostasis and circadian rhythm, several ambient chemical and physical factors, including light, sound, odor, vibration, temperature, electromagnetic radiation, and ultrasound, also affect sleep and wakefulness. Light at different wavelengths has different effects on sleep and wakefulness. Sound not only promotes but also suppresses sleep; this effect is mediated by certain nuclei, including the pedunculopontine nucleus and inferior colliculus. Certain sleep-promoting odorants regulate sleep through the involvement of the olfactory bulb and olfactory tubercle. In addition, vibrations may induce sleep through the vestibular system. A modest increase in ambient temperature leads to an increase in sleep duration through the involvement of the preoptic area. Electromagnetic radiation has a dual effect on sleep-wake behaviors. The stimulation produced by the ambient chemical and physical factors activates the peripheral sensory system, which converts the chemical and physical stimuli into nerve impulses. This signal is then transmitted to the central nervous system, including several nuclei associated with the modulation of sleep-wake behaviors. This review summarizes the effects of ambient chemical and physical factors on the regulation of sleep and wakefulness, as well as the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Thomas DC, Somaiya T, Meira E Cruz M, Kodaganallur Pitchumani P, Ardeshna A, Ravi A, Prabhakar S. The enigma of sleep: Implications of sleep neuroscience for the dental clinician and patient. J Am Dent Assoc 2024; 155:735-746. [PMID: 39007793 DOI: 10.1016/j.adaj.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Sleep disturbances have been shown to result in considerable morbidity and mortality. It is important for dental clinicians to understand the neuroscience behind sleep disorders. TYPES OF STUDIES REVIEWED The authors conducted a search of the literature published from January 1990 through March 2024 of sleep medicine-related articles, with a focus on neuroscience. The authors prioritized articles about the science of sleep as related to dental medicine. RESULTS The authors found a proliferation of articles related to sleep neuroscience along with its implications in dental medicine. The authors also found that the intricate neuroscientific principles of sleep medicine are being investigated robustly. The salient features of, and the differences between, central and obstructive sleep apneas have been elucidated. Sleep genes, such as CRY, PER1, PER2, and CLOCK, and their relationship to cancer and neurodegeneration are also additions to this rapidly developing science. CONCLUSIONS AND PRACTICAL IMPLICATIONS The dental clinician has the potential to be the first to screen patients for possible sleep disorders and make prompt referrals to the appropriate medical professionals. This can be lifesaving as well as minimize potential future morbidity for the patient.
Collapse
|
4
|
Bruni O, Angriman M, Miano S, DelRosso LM, Spruyt K, Mogavero MP, Ferri R. Individualized approaches to pediatric chronic insomnia: Advancing precision medicine in sleep disorders. Sleep Med Rev 2024; 76:101946. [PMID: 38735089 DOI: 10.1016/j.smrv.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/25/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
The manifestations of chronic insomnia undergo age-related changes. In younger infants and children, behavioral insomnia emerges as the most prevalent form and typically responds to behavioral interventions. However, distinct clusters of clinical presentations suggest the presence of various phenotypes, potentially implicating the primary involvement of specific neurotransmitters. These conceptualizations, coupled with genetic studies on pleiotropy and polygenicity, may aid in identifying individuals at risk of persistent insomnia into adulthood and shed light on novel treatment options. In school-age children, the predominant presentation is sleep-onset insomnia, often linked with nighttime fears, anxiety symptoms, poor sleep hygiene, limit-setting issues, and inadequate sleep duration. The manifestations of insomnia in adolescence correlate with the profound changes occurring in sleep architecture, circadian rhythms, and homeostatic processes. The primary symptoms during adolescence include delayed sleep onset, sleep misperception, persistent negative thoughts about sleep, and physiological hyperarousal-paralleling features observed in adult insomnia. An approach centered on distinct presentations may provide a framework for precision-based treatment options. Enhanced comprehension of insomnia's manifestations across diverse developmental stages can facilitate accurate assessment. Efforts to subtype insomnia in childhood align with this objective, potentially guiding the selection of appropriate treatments tailored to individual neurobiological, clinical, and familial features.
Collapse
Affiliation(s)
- Oliviero Bruni
- Developmental and Social Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
| | - Marco Angriman
- Child Neurology and Neurorehabilitation Unit, Bolzano Hospital, Via Guncina 54, 39100, Bolzano, Italy
| | - Silvia Miano
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Via Tesserete 46, 6900, Lugano, Switzerland
| | - Lourdes M DelRosso
- University of California San Francisco, Fresno, 2625 E. Divisadero St. Fresno, CA, 93721, USA
| | - Karen Spruyt
- Université de Paris, NeuroDiderot Inserm, Academic Hospital Robert Debré Ap-Hp in the Building Bingen, 48 Bd Sérurier, 75019, Paris, France
| | - Maria P Mogavero
- Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, 20127, Milan, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Via C. Ruggero 73, 94018, Troina, Italy
| |
Collapse
|
5
|
Morin CM, Buysse DJ. Management of Insomnia. N Engl J Med 2024; 391:247-258. [PMID: 39018534 DOI: 10.1056/nejmcp2305655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Affiliation(s)
- Charles M Morin
- From the School of Psychology and Centre de Recherche CERVO-BRAIN Research Center, Université Laval, Quebec, QC, Canada (C.M.M.); and the Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh (D.J.B.)
| | - Daniel J Buysse
- From the School of Psychology and Centre de Recherche CERVO-BRAIN Research Center, Université Laval, Quebec, QC, Canada (C.M.M.); and the Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh (D.J.B.)
| |
Collapse
|
6
|
Yang Y, Sun L, Liu X, Liu W, Zhang Z, Zhou X, Zhao X, Zheng R, Zhang Y, Guo W, Wang X, Li X, Pang J, Li F, Tao Y, Shi D, Shen W, Wang L, Zang J, Li S. Neurotransmitters: Impressive regulators of tumor progression. Biomed Pharmacother 2024; 176:116844. [PMID: 38823279 DOI: 10.1016/j.biopha.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
In contemporary times, tumors have emerged as the primary cause of mortality in the global population. Ongoing research has shed light on the significance of neurotransmitters in the regulation of tumors. It has been established that neurotransmitters play a pivotal role in tumor cell angiogenesis by triggering the transformation of stromal cells into tumor cells, modulating receptors on tumor stem cells, and even inducing immunosuppression. These actions ultimately foster the proliferation and metastasis of tumor cells. Several major neurotransmitters have been found to exert modulatory effects on tumor cells, including the ability to restrict emergency hematopoiesis and bind to receptors on the postsynaptic membrane, thereby inhibiting malignant progression. The abnormal secretion of neurotransmitters is closely associated with tumor progression, suggesting that focusing on neurotransmitters may yield unexpected breakthroughs in tumor therapy. This article presents an analysis and outlook on the potential of targeting neurotransmitters in tumor therapy.
Collapse
Affiliation(s)
- Yumei Yang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Lei Sun
- Department of Critical Care Medicine, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Xuerou Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Wei Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Zhen Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xingqi Zhou
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xinli Zhao
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Ruijie Zheng
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Yongjun Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Wanqing Guo
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xiaoli Wang
- College of Pharmacy, Anhui University of Traditional Chinese Medicine, China
| | - Xian Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Jinlong Pang
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Feng Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yu Tao
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Dongmin Shi
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Wenyi Shen
- Department of Respiratory and Critical Care Medicine, Lianshui County People's Hospital, Jiangsu, China
| | - Liping Wang
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Jialan Zang
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China.
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| |
Collapse
|
7
|
Bódizs R, Schneider B, Ujma PP, Horváth CG, Dresler M, Rosenblum Y. Fundamentals of sleep regulation: Model and benchmark values for fractal and oscillatory neurodynamics. Prog Neurobiol 2024; 234:102589. [PMID: 38458483 DOI: 10.1016/j.pneurobio.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Homeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instantaneous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, age-related differences and brain topography characteristics. These effects are well captured and reflected in the spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a suitable standardization and reference measure. Here we propose an index of sleep homeostasis based on the spectral exponent, reflecting the level of membrane hyperpolarization and/or network bistability in the central nervous system in humans. In addition, we advance the idea that the U-shaped overnight deceleration of oscillatory slow and fast sleep spindle frequencies marks the biological night, providing somnologists with an EEG-index of circadian sleep regulation. Evidence supporting this assertion comes from studies based on sleep replacement, forced desynchrony protocols and high-resolution analyses of sleep spindles. Finally, ultradian sleep regulatory mechanisms are indicated by the recurrent, abrupt shifts in dominant oscillatory frequencies, with spindle ranges signifying non-rapid eye movement and non-spindle oscillations - rapid eye movement phases of the sleep cycles. Reconsidering the indicators of fundamental sleep regulatory processes in the framework of the new Fractal and Oscillatory Adjustment Model (FOAM) offers an appealing opportunity to bridge the gap between the two-process model of sleep regulation and clinical somnology.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
| | - Bence Schneider
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Csenge G Horváth
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yevgenia Rosenblum
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Kim M, Kim Y, Lee HW, Jung JC, Oh S. Chrysanthemum morifolium and Its Bioactive Substance Enhanced the Sleep Quality in Rodent Models via Cl - Channel Activation. Nutrients 2023; 15:1309. [PMID: 36986039 PMCID: PMC10059900 DOI: 10.3390/nu15061309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Dried Chrysanthemum morifolium (Chry) flowers have been used in Korea as a traditional insomnia treatment. In this study, the sleep-promoting activity and improving sleep quality of Chry extract (ext) and its active substance linarin were analyzed by pentobarbital-induced sleep experiment in mice and electroencephalography (EEG), electromyogram (EMG) analysis in rats. In a dose-dependent manner, Chry ext and linarin promoted longer sleep duration in the pentobarbital-induced sleep test compared to pentobarbital-only groups at both hypnotic and subhypnotic doses. Chry ext administration also significantly improved sleep quality, as seen in the relative power of low-frequency (delta) waves when compared with the control group. Linarin increased Cl- uptake in the SH-SY5Y human cell line and chloride influx was reduced by bicuculline. After administration of Chry ext, the hippocampus, frontal cortex, and hypothalamus from rodents were collected and blotted for glutamic acid decarboxylase (GAD)65/67 and gamma-aminobutyric acid (GABA)A receptors subunit expression levels. The expression of α1-subunits, β2-subunits, and GAD65/67 of the GABAA receptor was modulated in the rodent brain. In conclusion, Chry ext augments pentobarbital-induced sleep duration and enhances sleep quality in EEG waves. These effects might be due to the activation of the Cl- channel.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - YuJaung Kim
- Department of Neurology, Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hyang Woon Lee
- Department of Neurology, Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
- Graduate Programs in Artificial Intelligence Convergence, Computational Medicine, System Health Science and Engineering, Ewha Womans University, Seoul 03765, Republic of Korea
| | - Jae-Chul Jung
- Life Science Research Institute, NOVAREX Co., Ltd., Cheongju 28220, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
9
|
Elder GJ, Lazar AS, Alfonso‐Miller P, Taylor J. Sleep disturbances in Lewy body dementia: A systematic review. Int J Geriatr Psychiatry 2022; 37:10.1002/gps.5814. [PMID: 36168299 PMCID: PMC9827922 DOI: 10.1002/gps.5814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Lewy body dementia (LBD) refers to both dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD). Sleep disturbances are common in LBD, and can include poor sleep quality, excessive daytime sleepiness (EDS), and rapid eye movement behaviour disorder (RBD). Despite the high clinical prevalence of sleep disturbances in LBD, they are under-studied relative to other dementias. The aim of the present systematic review was to examine the nature of sleep disturbances in LBD, summarise the effect of treatment studies upon sleep, and highlight specific and necessary directions for future research. METHODS Published studies in English were located by searching PubMED and PSYCArticles databases (until 10 June 2022). The search protocol was pre-registered in PROSPERO (CRD42021293490) and performed in accordance with PRISMA guidelines. RESULTS Following full-text review, a final total of 70 articles were included. These included 20 studies focussing on subjective sleep, 14 on RBD, 8 on EDS, 7 on objective sleep, and 1 on circadian rhythms. The majority of the 18 treatment studies used pharmacological interventions (n = 12), had an open-label design (n = 8), and were of low-to-moderate quality. Most studies (n = 55) included only patients with DLB. Due to the heterogeneity of the studies, we reported a narrative synthesis without meta-analysis. CONCLUSIONS At least one form of sleep disturbance may be present in as many as 90% of people with LBD. Subjectively poor sleep quality, excessive daytime sleepiness, and RBD are more common and severe in LBD relative to other dementias.
Collapse
Affiliation(s)
- Greg J. Elder
- Northumbria Sleep ResearchDepartment of PsychologyFaculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Alpar S. Lazar
- Sleep and Brain Research UnitFaculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Pam Alfonso‐Miller
- Northumbria Sleep ResearchDepartment of PsychologyFaculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - John‐Paul Taylor
- Translational and Clinical Research InstituteNewcastle UniversityCampus for Ageing and VitalityNewcastle Upon TyneUK
| |
Collapse
|
10
|
Sabnis R. Novel 3-Aminopyrrolidine and Piperidine Macrocyclic Orexin Receptor Agonists for Treating Sleep Disorders. ACS Med Chem Lett 2022; 13:1390-1391. [PMID: 36105324 PMCID: PMC9465892 DOI: 10.1021/acsmedchemlett.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ram
W. Sabnis
- Smith, Gambrell & Russell LLP,
1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309,
United States
| |
Collapse
|
11
|
Sabnis RW. Novel Macrocyclic Urea Orexin Receptor Agonists for Treating Sleep Disorders. ACS Med Chem Lett 2022; 13:1010-1011. [DOI: 10.1021/acsmedchemlett.2c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 West Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|