1
|
Alaguthevar R, Packialakshmi JS, Murugesan B, Rhim JW, Thiyagamoorthy U. In-package cold plasma treatment to extend the shelf life of food. Compr Rev Food Sci Food Saf 2024; 23:e13318. [PMID: 38532699 DOI: 10.1111/1541-4337.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.
Collapse
Affiliation(s)
- Ramalakshmi Alaguthevar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Balakrishnan Murugesan
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - UmaMaheshwari Thiyagamoorthy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Soil Science and Agricultural Chemistry, ADAC & RI, Tamil Nadu Agricultural University, Trichy, Tamil Nadu, India
| |
Collapse
|
2
|
Soufbaf M, Nohekhan M, Bakhtiari M. Inhibitory effects of cold atmospheric plasma on population growth of the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) in laboratory. PLoS One 2023; 18:e0294852. [PMID: 38011133 PMCID: PMC10681201 DOI: 10.1371/journal.pone.0294852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Potential sterilizing effects of the atmospheric cold plasma on the carob moth, Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae) was studied under laboratory conditions by means of life history experimentation. The results showed that the population growth parameters of the carob moth decreased in all periods of 15 to 60 sec of plasma treatments applied on 1 -day-old eggs. Overall, 19.5% and 23.8% of reproduced eggs were fertile when the experimental males and females mated with normal moths in indirect treatments of 15 and 30 sec, respectively. The highest intrinsic rate of population increase, r, was in control (0.11 day-1) and the highest decrease in this parameter was in the 30 sec direct treatment (- 0.073 day-1). The results showed that cold plasma had an acceptable potential to sterilize the pest if plasma was applied at egg stage. This potential will be explored from the perspective of insect sterility technique and the genetical / physiological mechanisms involved should be studied in future.
Collapse
Affiliation(s)
- Mahmoud Soufbaf
- Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Mojtaba Nohekhan
- Plasma and Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Mahdieh Bakhtiari
- Plasma and Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| |
Collapse
|
3
|
Jiang H, Lin Q, Shi W, Yu X, Wang S. Food preservation by cold plasma from dielectric barrier discharges in agri-food industries. Front Nutr 2022; 9:1015980. [PMID: 36466425 PMCID: PMC9709125 DOI: 10.3389/fnut.2022.1015980] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Cold plasma (CP) can be defined as partially or wholly ionized gas carrying myriads of highly reactive products, such as electrons, negative ions, positive ions, free radicals, excited or non-excited atoms, and photons at ambient temperature. It is generated at 30-60°C under atmospheric or reduced pressure (vacuum). In contrast to thermal plasma, it requires less power, exhibits electron temperatures much higher than the corresponding gas (macroscopic temperature), and does not present a local thermodynamic equilibrium. Dielectric barrier discharges (DBD) are one of the most convenient and efficient methods to produce CP. SCOPE AND APPROACH Cold plasma technology has the potential to replace traditional agri-food processing purification methods because of its low energy requirements and flexible system design. CP technology works by reducing bacteria levels and removing pests and mycotoxins from your produce at harvest. It can also catalyze physiological and biochemical reactions and modify materials. It can meet microbial food safety standards, improve the physical, nutritional, and sensory characteristics of the products, preserve unstable bioactive compounds, and modulate enzyme activities. This manuscript also discusses the quality characteristics of food components before/after CP treatment. KEY FINDINGS AND CONCLUSION In the past decade, CP treatments of food products have experienced increased popularity due to their potential contributions to non-thermal food processing. There is no doubt that CP treatment is a flexible approach with demonstrated efficacy for controlling many risks across food and agricultural sustainability sectors. In addition, CP technologies also can be applied in food-related areas, including modification of chemical structures and desensitization treatments. There is a need to fully assess the benefits and risks of stand-alone CP unit processes or their integration as a processing chain as soon as the economic, ecological, and consumer benefits and acceptability are considered.
Collapse
Affiliation(s)
- Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Qian Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Wenqing Shi
- Shanxi Rural Science and Technology Development Centre, Xi’an, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
4
|
TMT-based proteomic analysis of the inactivation effect of high voltage atmospheric cold plasma treatment on Pseudomonas aeruginosa. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Rüster V, Werner H, Wieneke S, Avramidis G, Ten Bosch L, Krause ET, Strube C, Bartels T. Short-time cold atmospheric pressure plasma exposure can kill all life stages of the poultry red mite, Dermanyssus gallinae, under laboratory conditions. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:139-152. [PMID: 36272039 PMCID: PMC9666290 DOI: 10.1007/s10493-022-00751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
In the present study, the acaricidal effects of cold atmospheric pressure plasma treatment on poultry red mites of different developmental stages have been investigated under laboratory conditions using a dielectric barrier discharge system. A total of 1890 poultry red mites and 90 mite eggs, respectively, were exposed to the plasma under various parameter settings with a single plasma pulse generated using the gas mixture of the ambient air at atmospheric pressure. The results showed that all developmental stages of the poultry red mite could be killed by cold atmospheric pressure plasma treatment. Plasma exposure to mite eggs resulted in a complete 100% hatch inhibition regardless of the parameter settings. Post-exposure mortality rates of larvae, nymphs and adults showed significant differences after utilization of plasma at 10 W for 1.0 s. In addition, the mortality rate increased with progressing time after plasma exposure. An average mortality rate of 99.7% was observed after 12 h in all mites exposed to plasma, regardless of the selected plasma parameter, developmental stage, and nutritional status of the mites. Cold atmospheric pressure plasma has an acaricidal effect on all developmental stages of Dermanyssus gallinae, suggesting that it could be developed to an effective method for the control of poultry red mites in laying hen husbandry.
Collapse
Affiliation(s)
- Vanessa Rüster
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Henrik Werner
- Faculty of Engineering and Health, University of Applied Sciences and Art, Göttingen, Germany
| | - Stephan Wieneke
- Faculty of Engineering and Health, University of Applied Sciences and Art, Göttingen, Germany
| | - Georg Avramidis
- Faculty of Engineering and Health, University of Applied Sciences and Art, Göttingen, Germany
| | - Lars Ten Bosch
- University of Applied Sciences and Art, Hildesheim, Germany
| | - Eike Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Bartels
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany.
| |
Collapse
|
6
|
Abotaleb AO, Badr NF, Rashed UM. Assessment of the potential of non-thermal atmospheric pressure plasma discharge and microwave energy against Tribolium castaneum and Trogoderma granarium. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:528-543. [PMID: 33766180 DOI: 10.1017/s0007485321000225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study was carried out to investigate the efficacy of the non-thermal atmospheric pressure plasma produced with dielectric barrier discharge (APPD) using air as a processing gas and microwave energy to control Tribolium castaneum and Trogoderma granarium adults and larvae in wheat grains. Insects' mortality was found to be power and time-dependent. The results indicated that non-thermal APPD and the microwave have enough insecticidal effect on the target pests. From the bioassay, LT50's and LT90's levels were estimated, T. granarium larvae appeared more tolerant to non-thermal APPD and the microwave energy than adults 7 days post-exposure. The germination percentage of wheat grains increased as the time of exposure to the non-thermal APPD increased. On the contrary, the germination percentage of wheat grains decreased as the time of exposure to the microwave increased. In addition, changes in antioxidant enzyme activities, catalase (CAT), glutathione S-transferase (GST) and peroxidase, in adults and larvae were examined after 24 h post-treatment to non-thermal APPD at 15.9 W power level, which caused 50% mortality. The activity of CAT, GST and lipid peroxide in the treated larvae showed a significant increase post-exposure to the non-thermal APPD at 15.9 W power level. On the other hand, no significant change in GSH-Px activity was observed. Reductions in the level of glutathione (GSH) and protein content occurred in treated larvae in comparison with the control.
Collapse
Affiliation(s)
- Abeer O Abotaleb
- Stord Product Pest Department, Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Naglaa F Badr
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Usama M Rashed
- Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Ikmal Misnal MF, Redzuan N, Firdaus Zainal MN, Raja Ibrahim RK, Ahmad N, Agun L. Emerging cold plasma treatment on rice grains: A mini review. CHEMOSPHERE 2021; 274:129972. [PMID: 33979941 DOI: 10.1016/j.chemosphere.2021.129972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Future demand of rice is projected to increase with the increase of global population. However, the presence of bacteria, insects, and fungi has resulted in various changes in the physical and chemical characteristics of rice grain. To make it worse, the overuse of post-harvest chemicals (fungicide and pesticide) has caused possible risks to human health through either occupational or non-occupational exposure. For the last few years, cold plasma has been developed as an alternative non-thermal emerging technology for rice grains treatment due to its ability to inactivate or decontaminate pathogens without causing thermal damage and free of any harmful residues. Therefore, this review describes the operational mechanism of cold plasma treatment technology on rice grains, existing reactor system designs, and parameters influenced by the treatment technology (reactor design parameters and treatment process parameters). Possible advanced investigation on future reactor design modification as well as standard operating range of influenced parameters were suggested for improved efficiency and effectiveness of cold plasma treatment.
Collapse
Affiliation(s)
- Mohd Fadthul Ikmal Misnal
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Norizah Redzuan
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Muhamad Nor Firdaus Zainal
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | | | - Norhayati Ahmad
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Linda Agun
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
8
|
Esmaeili Z, Hosseinzadeh Samani B, Nemati A, Nazari F, Rostami S. Development of novel green pesticide system by using cold plasma to control
Plodia
interpunctella
in pistachio. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zahra Esmaeili
- Department of Mechanical Engineering of Biosystem Shahrekord University Shahrekord Iran
| | | | - Alireza Nemati
- Department of Plant Protection, Faculty of Agriculture Shahrekord University Shahrekord Iran
| | - Firouzeh Nazari
- Food and Drug Affairs Iran University of Medical Sciences Tehran Iran
| | - Sajad Rostami
- Department of Mechanical Engineering of Biosystem Shahrekord University Shahrekord Iran
| |
Collapse
|
9
|
Potential of cold plasma to control Callosobruchus chinensis (Chrysomelidae: Bruchinae) in chickpea cultivars during four year storage. Sci Rep 2021; 11:13425. [PMID: 34183731 PMCID: PMC8238940 DOI: 10.1038/s41598-021-92792-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Cold plasma has proven itself as a promising method of food preservation by controlling food spoilage bacteria at very low temperatures. It is showing potential for insect control. Synthetic pesticides are mostly used to control Callosobruchus chinensis L. (Chrysomelidae: Coleoptera) to which it has developed resistance. The prospective potential of cold plasma treatment to control pulse beetle infestation of chickpea in the storage for about four years of plasma treatment was studied. The four chickpea cultivars were treated with cold plasma at different power 40, 50, and 60 W each for 10, 15, 20 min. Plasma treated and untreated chickpeas were stored in an airtight ziplock pouch. At regular intervals, the grains were observed for infestation. It was found most effective in controlling the pulse beetle infestation of treated chickpea samples. While plasma untreated chickpeas were attacked and damaged mostly by pulse beetle within the first quarter of the storage study. To avoid the problems created by the use of pesticides cold plasma treatment is found to be the best alternative in the protection of chickpea invasion by pulse beetle during a longer storage period. The findings in the present research may be used for the preparation of legumes which may also soak and cook faster like quick-cooking legumes and preserved for years without invasion of pulse beetle.
Collapse
|
10
|
Paul A, Radhakrishnan M, Anandakumar S, Shanmugasundaram S, Anandharamakrishnan C. Disinfestation techniques for major cereals: A status report. Compr Rev Food Sci Food Saf 2020; 19:1125-1155. [DOI: 10.1111/1541-4337.12555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Anjaly Paul
- Centre of Excellence in Nonthermal ProcessingIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Mahendran Radhakrishnan
- Centre of Excellence in Nonthermal ProcessingIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Sugumar Anandakumar
- Department of Food Packaging and System DevelopmentIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Saravanan Shanmugasundaram
- Planning and Monitoring CellIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Chinnaswamy Anandharamakrishnan
- Computational Modeling and Nano Scale Processing UnitIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| |
Collapse
|
11
|
Hassan AM, Sileem TM, Hassan RS. Verification of atmospheric plasma irradiation as an alternative control method for Tribolium castaneum (Herbst). BRAZ J BIOL 2019; 80:673-679. [PMID: 31644660 DOI: 10.1590/1519-6984.222662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022] Open
Abstract
Radio frequency plasma, RF plasma, has been applied to a number of industrial applications. Laboratory experiments were conducted to determine the RF plasma potential in Tribolium castaneum (Herbst) control. Three treatment variables: (1) helium or argon plasmas; (2) two power levels (50 and 100 watt); and (3) different RF plasma exposure times (0, 20, 40, 60 and 90 seconds) were examined in this study. The susceptibility of T. castaneum to treatment varies as gas, power level, and the exposure time varies. A positive correlation was found between insect mortality percent in treating larvae as well as treated pupae and exposure time to RF plasma and also the power level of irradiation. The results revealed that no live insects were found after a 90 second, 100 watt helium RF plasma treatment. The survival percents of the adults were developed from treated larvae and treated pupae were significantly reduced by increasing of the exposure time or power level. Obtained data indicated that the treatment with RF plasma might be considered as an environmentally compatible or alternative supplement to the other control methods for stored product-pests management.
Collapse
Affiliation(s)
- A M Hassan
- Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, Abo-Zaabal, Egypt
| | - T M Sileem
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Abo-Zaabal, Egypt
| | - R S Hassan
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Abo-Zaabal, Egypt
| |
Collapse
|
12
|
Sarangapani C, Patange A, Bourke P, Keener K, Cullen P. Recent Advances in the Application of Cold Plasma Technology in Foods. Annu Rev Food Sci Technol 2018; 9:609-629. [DOI: 10.1146/annurev-food-030117-012517] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Apurva Patange
- BioPlasma Research Group, Dublin Institute of Technology, Dublin, Ireland
| | - Paula Bourke
- BioPlasma Research Group, Dublin Institute of Technology, Dublin, Ireland
| | - Kevin Keener
- Center for Crop Utilization Research, Iowa State University, Ames, Iowa 50011, USA
| | - P.J. Cullen
- BioPlasma Research Group, Dublin Institute of Technology, Dublin, Ireland
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
13
|
Muhammad AI, Xiang Q, Liao X, Liu D, Ding T. Understanding the Impact of Nonthermal Plasma on Food Constituents and Microstructure—A Review. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-017-2042-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol 2018; 36:615-626. [PMID: 29329724 DOI: 10.1016/j.tibtech.2017.11.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/24/2022]
Abstract
Cold plasma science and technology is increasingly investigated for translation to a plethora of issues in the agriculture and food sectors. The diversity of the mechanisms of action of cold plasma, and the flexibility as a standalone technology or one that can integrate with other technologies, provide a rich resource for driving innovative solutions. The emerging understanding of the longer-term role of cold plasma reactive species and follow-on effects across a range of systems will suggest how cold plasma may be optimally applied to biological systems in the agricultural and food sectors. Here we present the current status, emerging issues, regulatory context, and opportunities of cold plasma with respect to the broad stages of primary and secondary food production.
Collapse
Affiliation(s)
- Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland.
| | - Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland.
| | - Daniela Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland.
| | - Patrick J Cullen
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kevin Keener
- Centre for Crops Utilization Research, Bio-Century Research Farm, Iowa State University, 1041 Food Sciences Building, Ames, IA 50011-1061, USA
| |
Collapse
|
15
|
Tolouie H, Mohammadifar MA, Ghomi H, Hashemi M. Cold atmospheric plasma manipulation of proteins in food systems. Crit Rev Food Sci Nutr 2017; 58:2583-2597. [PMID: 28613926 DOI: 10.1080/10408398.2017.1335689] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasma processing has been getting a lot of attention in recent applications as a novel, eco-friendly, and highly efficient approach. Cold plasma has mostly been used to reduce microbial counts in foodstuff and biological materials, as well as in different levels of packaging, particularly in cases where there is thermal sensitivity. As it is a very recent application, the impact of cold plasma treatment has been studied on the protein structures of food and pharmaceutical systems, as well as in the packaging industry. Proteins, as a food constituent, play a remarkable role in the techno-functional characteristics of processed foods and/or the physico-chemical properties of protein-based films. At the same time, some proteins are responsible for reduction in quality and nutritional value, and/or causing allergic reactions in the human body. This study is a review of the influences of different types of plasma on the conformation and function of proteins with food origin, especially enzymes and allergens, as well as protein-made packaging films. In enzyme manipulation with plasma, deactivation has been reported to be either partial or complete. In addition, an activity increase has been observed in some cases. These variations are caused by the effect of different active species of plasma on the enzyme structure and its function. The level and type of variations in the functional properties of food proteins, purified proteins in food, and plasma-treated protein films are affected by a number of control factors, including treatment power, time, and gas type, as well as the nature of the substance and the treatment environment.
Collapse
Affiliation(s)
- Haniye Tolouie
- a Department of Food Science and Technology , Shahid Beheshti University of Medical Science , Tehran , Iran
| | - Mohammad Amin Mohammadifar
- b Research Group for Food Production Engineering , National Food Institute, Technical University of Denmark, SøltoftsPlads , Kgs. Lyngby , Denmark
| | - Hamid Ghomi
- c Laser and Plasma Research Institute, Shahid Beheshti University, Evin , Tehran , Iran
| | - Maryam Hashemi
- d Microbial Biotechnology Department , Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, Agricultural Research, Education and Extension Organization (AREEO) , Karaj , Iran
| |
Collapse
|
16
|
|
17
|
|