1
|
Yayehrad AT, Marew T, Matsabisa M, Wondie GB. Physicochemical Characterization and Evaluation of Ficus vasta Gum as a Binder in Tablet Formulation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8852784. [PMID: 37593524 PMCID: PMC10432117 DOI: 10.1155/2023/8852784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Binders are ingredients used in tablet granulation process for tablet cohesiveness which confirms that the tablet remains intact after compression. Natural gums have been employed as disintegrants, emulsifying agents, suspending agents, and binders in tablets. Even though Ficus vasta gum is claimed as a possible pharmaceutical excipient by some phytochemical studies, literature is scanty on its efficacy as a tablet binder. The purpose of this study was to isolate, characterize, and comparatively evaluate Ficus vasta gum as a potential binder in tablet formulation. Gum was extracted from Ficus vasta tree, characterized for physicochemical properties, and applied as a binder in paracetamol granule and tablet formulation. Granules were prepared using 4%, 6%, 8%, and 10% w/w concentration of the gum and standard binders (polyvinylpyrrolidone K-30 and Starch@1500) by wet granulation. The formulated tablets were then evaluated for tablet quality parameters, and comparison between the test and standard binders was done by ANOVA. The dried crude gum yielded 50.63% (w/w) of a brownish yellow purified gum. The angle of repose, Carr's index, and the Hausner ratio all complied with the pharmacopoeial recommendations. The gum is compatible with the model drug, paracetamol. The paracetamol granules prepared with Ficus gum binder demonstrated an optimum size range and size distribution with substantial flow and compressibility properties. Ficus gum binder demonstrated significantly higher disintegration time and strength properties than that of similar concentrations of Starch@1500 but lower than polyvinylpyrrolidone (p < 0.05). Ficus gum has better binding properties than starch but lower than polyvinylpyrrolidone. Hence, Ficus vasta gum can be used as an alternative tablet binder in tablet manufacturing.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Tesfa Marew
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Motlalepula Matsabisa
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Gebremariam Birhanu Wondie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
2
|
Shakir R, Hanif S, Salawi A, Arshad R, Sarfraz RM, Irfan M, Raza SA, Barkat K, Sabei FY, Almoshari Y, Alshamrani M, Syed MA. Exorbitant Drug Loading of Metformin and Sitagliptin in Mucoadhesive Buccal Tablet: In Vitro and In Vivo Characterization in Healthy Volunteers. Pharmaceuticals (Basel) 2022; 15:686. [PMID: 35745605 PMCID: PMC9227047 DOI: 10.3390/ph15060686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of the proposed study is to develop a mucoadhesive buccal delivery system for the sustained delivery of metformin (MET) and sitagliptin (SIT) against diabetes mellitus (DM) with improved bioavailability. Polymeric blend of Carbopol® 940 (CP), agarose (AG) or polyvinylpyrrolidone K30 (PVP) as mucoadhesive agents in formulations (R1-R15) were compressed via the direct compression technique. Tablets were characterized for solid state studies, physicochemical and in vivo mucoadhesion studies in healthy volunteers. Outcomes did not reveal any unusual peak or interaction between the drugs and polymers in the physical mixture through Fourier Transform Infrared Spectroscopy (FTIR) and DSC analysis. The mucoadhesive blend of CP and PVP was superior compared to other blends. The formulation R4 revealed exorbitant loading of drugs with complete drug release for 6 h with ex vivo mucoadhesive strength and time of 26.99 g and 8.1 h, respectively. It was further scrutinized to evaluate it as an optimized formulation where it was found to be stable for up to 6 months. The formulation R4 depicted Korsmeyer-Peppas model and first-order mode of release correspondingly for SIT and MET. Moreover, it showed hemocompatibility, biocompatibility and stability with non-significant changes in the dissolution profile. Overall, the CP blend with PVP was found appropriate to yield the desired release coupled with the optimized mucoadhesive properties of the buccal tablets, ensuring sufficient pharmaceutical stability.
Collapse
Affiliation(s)
- Rouheena Shakir
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (R.S.); (R.A.); (K.B.)
| | - Sana Hanif
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (F.Y.S.); (Y.A.); (M.A.)
| | - Rabia Arshad
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (R.S.); (R.A.); (K.B.)
| | | | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Atif Raza
- Department of Pharmaceutics, Punjab University College of Pharmacy, University of The Punjab, Lahore 54590, Pakistan;
| | - Kashif Barkat
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (R.S.); (R.A.); (K.B.)
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (F.Y.S.); (Y.A.); (M.A.)
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (F.Y.S.); (Y.A.); (M.A.)
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (F.Y.S.); (Y.A.); (M.A.)
| | - Muhammad Ali Syed
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (R.S.); (R.A.); (K.B.)
| |
Collapse
|
3
|
Investigation of the Absorption of Nanosized lamotrigine Containing Nasal Powder via the Nasal Cavity. Molecules 2020; 25:molecules25051065. [PMID: 32120992 PMCID: PMC7179229 DOI: 10.3390/molecules25051065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nasal drug delivery has become a popular research field in the last years. This is not surprising since the nose possesses unique anatomical and physical properties. Via the nasal mucosa local, systemic, and directly central nerve systemic (CNS) effect is achievable. Powders have favorable physicochemical properties over liquid formulations. Lamotrigine (LAM) is an antiepileptic agent with a relatively mild side effect spectrum, but only available in tablet form on market. Reducing the particle size to the nano range can affect the bioavailability of pharmaceutical products. The aim of this article was to continue the work started, compare the in vitro properties of a nanonized lamotrigine containing nasal powder (nanoLAMpowder) and its physical mixture (PM) that were prepared by dry milling. Moreover, to study their trans-epithelial absorption to reach the blood and target the brain by axonal transport. Due to the dry milling technique, the particle size of LAM, their surface and also their structure changed that led to higher in vitro dissolution and permeability rate. The results of the in vivo tests showed that the axonal transport of the drug was assumable by both intranasal formulations because the drug was present in the brain within a really short time, but the LAM from the nanoLAMpowder liberated even faster.
Collapse
|
4
|
Rashad AA, Nageeb El-Helaly S, Abd El Rehim RT, El-Gazayerly ON. Chronological Delivery of Antihypertensive Drugs in Bilayered Core-in-Cup Buccoadhesive Tablets: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2019; 21:21. [PMID: 31823090 DOI: 10.1208/s12249-019-1575-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022] Open
Abstract
Hypertension shows circadian blood pressure rhythms (day-night pattern) that urge the delivery of antihypertensive drugs at the right time in the desired levels. Thus, a bilayered core-in-cup buccoadhesive tablet was formulated that immediately releases olmesartan, to give a burst effect, and controls azelnidipine release, to prolong its therapeutic effect. The main challenge was the poor bioavailability of azelnidipine due to its poor aqueous solubility and first-pass effect. Hence, liquisolid compact buccoadhesive tablets were prepared to enhance solubility, dissolution profiles, and bypass the oral route. Two factorial designs were conducted to study the type and concentration effect of the mucoadhesive polymers on the dissolution and mucoadhesion of olmesartan and azelnidipine. Characterization studies were conducted regarding drug content, surface pH, water uptake, mucoadhesive strength, in vitro release, and ex vivo permeability. The core-in-cup olmesartan/azelnidipine buccoadhesive tablet showed similar release profile to the statistically optimized formulae of each drug. In vitro dissolution study showed enhanced release of azelnidipine than the directly compressed tablets, to comply with the regulatory standards of controlled release systems. In vivo pharmacokinetic study of olmesartan and azelnidipine conducted on human volunteers against Rezaltas® 10/8 mg tablet showed percentage relative bioavailability of 106.12 and 470.82%, respectively. Graphical Abstract.
Collapse
|
5
|
Tunpanich P, Limpongsa E, Pongjanyakul T, Sripanidkulchai B, Jaipakdee N. Mucoadhesive sustained-release tablets for vaginal delivery of Curcuma comosa extracts: Preparation and characterization. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Wang L, Zhou Y, Wu M, Wu M, Li X, Gong X, Chang J, Zhang X. Functional nanocarrier for drug and gene delivery via local administration in mucosal tissues. Nanomedicine (Lond) 2017; 13:69-88. [PMID: 29173025 DOI: 10.2217/nnm-2017-0143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local administration has many advantages for treating diseases. However, the surface mucus layer becomes a major obstacle that easily traps and fast removes local administrated drugs and genes in mucosal tissues. Fortunately, the rapidly developing nanocarriers with special physical and chemical properties may help to refine the treatment of mucosal tissues via delivering drugs and genes to the target tissue, and prolong the drug action time. Therefore, this review focuses on the strategies to apply different nanocarriers for drug-delivery in mucosal tissues, including mucoadhesive and mucus-penetrating types. Delivering drugs and genes to anatomical sites with high mucus turnover becomes more feasible and effective, and maintains sufficient local drug concentration to improve treatment efficacy.
Collapse
Affiliation(s)
- Lingwei Wang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Yurui Zhou
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials & Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Menglin Wu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Minghao Wu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials & Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Jin Chang
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials & Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, PR China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
7
|
Gieszinger P, Csóka I, Pallagi E, Katona G, Jójárt-Laczkovich O, Szabó-Révész P, Ambrus R. Preliminary study of nanonized lamotrigine containing products for nasal powder formulation. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2453-2466. [PMID: 28860716 PMCID: PMC5574602 DOI: 10.2147/dddt.s138559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The nasal delivery of drugs offers a great alternative route to avoid adverse events and to increase patient compliance due to its advantageous properties. Besides nasal application, topical, systemic and central effects are also available. Nasal powders (NPs) have better adhesion due to the additive polymers that may be, eg, gelling or good wettability agents; thus, their bioavailability is better compared to the liquid formulations. Using nanoparticles, innovative and more efficient products can be achieved, which may lead to the improvement of different therapies. The aim of this study was to produce NP formulations containing lamotrigine (LAM) as interactive physical mixtures and nanosized LAM-based formulations. After risk assessment of the preliminary tests, the micrometric properties (particle size and morphology) and the structural properties (differential scanning calorimetry [DSC], X-ray powder diffraction [XRPD]) were investigated; thereafter, physicochemical properties (solubility, polarity) and in vitro dissolution and diffusion profiles were also examined. These product samples showed an appropriate particle size ranging 10–25 µm, while the particle size of LAM in the products was between 120 and 230 nm and the dissolved amount of drug was >60% after 5 minutes in these cases.
Collapse
Affiliation(s)
- Péter Gieszinger
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Edina Pallagi
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Orsolya Jójárt-Laczkovich
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Micro- and nano-carrier systems: The non-invasive and painless local administration strategies for disease therapy in mucosal tissues. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:153-171. [DOI: 10.1016/j.nano.2016.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
|
9
|
Patil H, Tiwari RV, Repka MA. Recent advancements in mucoadhesive floating drug delivery systems: A mini-review. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Solanki AR, Kamath BV, Thakore S. Carbohydrate crosslinked biocompatible polyurethanes: Synthesis, characterization, and drug delivery studies. J Appl Polym Sci 2015. [DOI: 10.1002/app.42223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Archana Ritesh Solanki
- Department of Chemistry; Faculty of Science; The Maharaja Sayajirao University of Baroda; Vadodara 390002 India
| | - Bolavinayak V. Kamath
- Institute of Infrastructure Technology Research and Management; Ahmedabad 380026 India
| | - Sonal Thakore
- Department of Chemistry; Faculty of Science; The Maharaja Sayajirao University of Baroda; Vadodara 390002 India
| |
Collapse
|
11
|
Arnold J, Hunkeler D. Gastro retention using polymer cocoons. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 43:26-32. [DOI: 10.3109/21691401.2014.940084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. JOURNAL OF DRUG DELIVERY 2013; 2013:340315. [PMID: 23936656 PMCID: PMC3712247 DOI: 10.1155/2013/340315] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/04/2013] [Accepted: 06/11/2013] [Indexed: 01/27/2023]
Abstract
Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs) can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1) protection of the loaded drug from the harsh environment of the GI tract, (2) release of the drug in a controlled manner at target sites, (3) prolongation of the residence time in the gut by mucoadhesion, and (4) inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.
Collapse
|