1
|
Savekar PL, Nadaf SJ, Killedar SG, Kumbar VM, Hoskeri JH, Bhagwat DA, Gurav SS. Citric acid cross-linked pomegranate peel extract-loaded pH-responsive β-cyclodextrin/carboxymethyl tapioca starch hydrogel film for diabetic wound healing. Int J Biol Macromol 2024; 274:133366. [PMID: 38914385 DOI: 10.1016/j.ijbiomac.2024.133366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Pomegranate peel extract (PPE) hydrogel films filled with citric acid (CA) and β-cyclodextrin-carboxymethyl tapioca starch (CMS) were designed mainly to prevent wound infections and speed up the healing process. FTIR and NMR studies corroborated the carboxymethylation of neat tapioca starch (NS). CMS exhibited superior swelling behavior than NS. The amount of CA and β-CD controlled the physicochemical parameters of developed PPE/CA/β-CD/CMS films. Optimized film (OF) exhibited acceptable swellability, wound fluid absorptivity, water vapor transmission rate, water contact angle, and mechanical properties. Biodegradable, biocompatible, and antibacterial films exhibited pH dependence in the release of ellagic acid for up to 24 h. In mice model, PPE/CA/β-CD/CMS hydrogel film treatment showed promising wound healing effects, including increased collagen deposition, reduced inflammation, activation of the Wingless-related integration site (wnt) pathway leading to cell division, proliferation, and migration to the wound site. The expression of the WNT3A gene did not show any significant differences among all the studied groups. Developed PPE-loaded CA/β-CD/CMS film promoted wound healing by epithelialization, granulation tissue thickness, collagen deposition, and angiogenesis, hence could be recommended as a biodegradable and antibacterial hydrogel platform to improve the cell proliferation during the healing of diabetic wounds.
Collapse
Affiliation(s)
- Pranav L Savekar
- Shivraj College of Pharmacy, Gadhinglaj 416502, Maharashtra, India
| | - Sameer J Nadaf
- Bharati Vidyapeeth College of Pharmacy, Palus 416310, Maharashtra, India.
| | - Suresh G Killedar
- Anandi Pharmacy College, Kalambe Tarf Kale 416205, Maharashtra, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Nehru Nagar, Belagavi 590 010, Karnataka, India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women's University, Vijayapura, Karnataka, India
| | | | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403001, India.
| |
Collapse
|
2
|
Khan M. Chemical and Physical Architecture of Macromolecular Gels for Fracturing Fluid Applications in the Oil and Gas Industry; Current Status, Challenges, and Prospects. Gels 2024; 10:338. [PMID: 38786255 PMCID: PMC11121287 DOI: 10.3390/gels10050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Hydraulic fracturing is vital in recovering hydrocarbons from oil and gas reservoirs. It involves injecting a fluid under high pressure into reservoir rock. A significant part of fracturing fluids is the addition of polymers that become gels or gel-like under reservoir conditions. Polymers are employed as viscosifiers and friction reducers to provide proppants in fracturing fluids as a transport medium. There are numerous systems for fracturing fluids based on macromolecules. The employment of natural and man-made linear polymers, and also, to a lesser extent, synthetic hyperbranched polymers, as additives in fracturing fluids in the past one to two decades has shown great promise in enhancing the stability of fracturing fluids under various challenging reservoir conditions. Modern innovations demonstrate the importance of developing chemical structures and properties to improve performance. Key challenges include maintaining viscosity under reservoir conditions and achieving suitable shear-thinning behavior. The physical architecture of macromolecules and novel crosslinking processes are essential in addressing these issues. The effect of macromolecule interactions on reservoir conditions is very critical in regard to efficient fluid qualities and successful fracturing operations. In future, there is the potential for ongoing studies to produce specialized macromolecular solutions for increased efficiency and sustainability in oil and gas applications.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia; ; Tel.: +966-0138601671
- Interdisciplinary Research Center for Hydrogen Technologies and Energy Storage (IRC-HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
3
|
Guktur RE, Olorunfemi PO, Ochekpe NA. Process and isothermal storage stabilities of a live veterinary vaccine formulated with Plectranthus esculentus tuber starch derivatives as stabilizers. Int J Pharm 2024; 652:123766. [PMID: 38181991 DOI: 10.1016/j.ijpharm.2023.123766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Comparability stability studies of a live Newcastle Disease LaSota vaccine were conducted post freeze-drying and during storage at 5±2, 25±2 and 37±1 °C to demonstrate the equivalence/inequivalence of stability profiles of vaccines stabilized with peptone (reference), trehalose and starch derivatives (acetylated xerogel and carboxymethylated) from Plectranthus esculentus tubers. Variations in moisture content during storage at 5±2 °C; physical collapse/shrinkage, partial microcollapse, and hydrophilicity of lyophilisates were prominent in starch stabilized vaccines without additives. Using the mean embryo infective dose (EID50) test, the derivatives and peptone stabilized vaccines had < 0.5 logEID50 loss in titre during freeze-drying. At the storage temperatures of 5±2, 25±2 and 37±1 °C, using peptone, acetylated xerogel starch, carboxymethylated starch, and trehalose, the average shelf lives of the vaccines were 23-55, 21-26, and 2.6-4.9 months respectively. Acetylated xerogel and carboxymethylated derivatives of Plectranthus esculentus tuber starch with/without additives were able to keep the live ND LaSota vaccine stable during freeze-drying at 1-3 % w/v. The stability of all the vaccines declined as storage temperatures increased. The acetylated xerogel stabilized vaccines were more stable than all of the others at 25±2 and 37±1 °C temperatures.
Collapse
Affiliation(s)
- Ruth E Guktur
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Jos, Nigeria; National Veterinary Research Institute, PMB 01, Vom, Nigeria
| | - Patrick O Olorunfemi
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Jos, Nigeria
| | - Nelson A Ochekpe
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Jos, Nigeria.
| |
Collapse
|
4
|
Zuo Y, He Z, Yang W, Sun C, Ye X, Tian J, Kong X. Preparation of Neohesperidin-Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility. Molecules 2023; 28:molecules28093901. [PMID: 37175311 PMCID: PMC10179776 DOI: 10.3390/molecules28093901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Neohesperidin (NH), a natural flavonoid, exerts multiple actions, such as antioxidant, antiviral, antiallergic, vasoprotective, anticarcinogenic and anti-inflammatory effects, as well as inhibition of tumor progression. In this study, the NH-taro starch complex is prepared, and the effects of NH complexation on the physicochemical properties, structure and in vitro digestibility of taro starch (TS) are investigated. Results showed that NH complexation significantly affected starch gelatinization temperatures and reduced its enthalpy value (ΔH). The addition of NH increased the viscosity and thickening of taro starch, facilitating shearing and thinning. NH binds to TS via hydrogen bonds and promotes the formation of certain crystalline regions in taro starch. SEM images revealed that the surface of NH-TS complexes became looser with the increasing addition of NH. The digestibility results demonstrated that the increase in NH (from 0.1% to 1.1%, weight based on starch) could raise RS (resistant starch) from 21.66% to 27.75% and reduce RDS (rapidly digestible starch) from 33.51% to 26.76% in taro starch. Our work provided a theoretical reference for the NH-taro starch complex's modification of physicochemical properties and in vitro digestibility with potential in food and non-food applications.
Collapse
Affiliation(s)
- Youming Zuo
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zirui He
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weidong Yang
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chongde Sun
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- Institute of Food Processing Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhu Tian
- Institute of Food Processing Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Althomali RH, Alamry KA, Hussein MA, Guedes RM. An investigation on the adsorption and removal performance of a carboxymethylcellulose-based 4-aminophenazone@MWCNT nanocomposite against crystal violet and brilliant green dyes. RSC Adv 2023; 13:4303-4313. [PMID: 36760307 PMCID: PMC9891083 DOI: 10.1039/d2ra07321h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
The multistep chemical modification of carboxymethylcellulose (CMC) in the presence of 4-aminophenazone (A-PH) and multiwall carbon nanotubes (MWCNTs) has been successfully conducted. The environmental performance of this material has been thoroughly investigated. Crystal violet (CV) and brilliant green (BG) were eliminated by utilising a new hybrid nanocomposite material (A-PH-CMC/MWCNTs) from a simulated textile wastewater solution. Using SEM, EDX, XRD and FTIR spectroscopy methods, the detailed characterisation of A-PH-CMC/MWCNT nanocomposites was investigated. The results indicated that the adsorption capacity was dependent on six factors (e.g., contact duration, starting concentration, adsorbent mass, the effect of the solution pH, temperature and the effect of KNO3). In addition, thermodynamic and regeneration studies have been reported. According to the theories of pseudo-second-order kinetics, the removal process involves chemical adsorption. The experimental results were best suited by the Langmuir model, in which maximum adsorption capacities of 20.83 and 22.42 mg g-1 were predicted for the BG and CV dyes, respectively. The research is a preliminary case study demonstrating the excellent potential of A-PH-CMC/MWCNT nanocomposites as a material for CV and BG dye removal.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - R M Guedes
- LAETA-INEGI, DEMec, Mechanical Engineering Department, Faculty of Engineering of University of Porto (FEUP) Rua Dr Roberto Frias s/n 4200-465 Porto Portugal
| |
Collapse
|
6
|
Sivamaruthi BS, Nallasamy PK, Suganthy N, Kesika P, Chaiyasut C. Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Supare K, Mahanwar PA. Starch-derived superabsorbent polymers in agriculture applications: an overview. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Guktur RE, Nep EI, Kemas CU, Olorunfemi PO, Ngwuluka NC, Ochekpe NA, Sagay AS. Effects of Autoclaving and Freeze-Drying on Physicochemical Properties of Plectranthus esculentus Starch Derivatives. AAPS PharmSciTech 2022; 23:172. [PMID: 35739364 DOI: 10.1208/s12249-022-02300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
The goal of this research was to assess the effects of autoclaving followed by freeze-drying on acetylated xerogel (AXS) and carboxymethylated (CMS) derivatives of Plectranthus esculentus starch as potential vaccine stabilizers. Starch extracted from tubers of P. esculentus were modified by single (carboxymethylation) and dual (acetylation followed by xerogel formation) methods. The derivatives were formulated into vaccine stabilizer suspensions, autoclaved, and freeze-dried without additives or antigen. The derivatives and freeze-dried products were assessed by physical appearance, titration, moisture content (MC), TGA, DSC, XRD, SEM, and FTIR analyses. The degrees of substitution (DS) of the CMS and AXS derivatives were 0.345 and 0.033, respectively. Modification significantly reduced the MC of the derivatives. Freeze-dried AXS (FAXS) had lower MC than freeze-dried CMS (FCMS). The lower degree of hydrophilicity/MC of AXS and FAXS was confirmed by TGA and FTIR band intensities and shifts. Reduction in DSC water desorption/evaporation enthalpies (ΔH) from - 1168.8 mJ (NaS) to - 407.48 mJ (AXS) confirmed the influence of modification on moisture. FTIR confirmed acetylation and carboxymethylation of the derivatives by the presence of 1702.9 cm-1 and 1593 cm-1 bands, respectively (FTIR). Increasing concentrations of the derivatives yielded uncollapsed/unshrunken lyophilisates. SEM and XRD showed that modification, autoclaving, and freeze-drying yielded beehive-like microstructures of FCMS and FAXS that were completely amorphous. Processing (autoclaving and freeze-drying), therefore, enhanced the amorphousness of the starch derivatives which is required in vaccine stability during processing and storage. These findings indicate that these starch derivatives have potential as novel vaccine stabilizers.
Collapse
Affiliation(s)
- Ruth E Guktur
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria.,Viral Vaccines Production Division, National Veterinary Research Institute, PMB 01, Vom, Nigeria
| | - Elijah I Nep
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - Chinwe U Kemas
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - Patrick O Olorunfemi
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - Ndidi C Ngwuluka
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - Nelson A Ochekpe
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria.
| | - Atiene S Sagay
- Department of Obstetrics and Gynaecology, College of Health Sciences, University of Jos/Jos University Teaching Hospital, Jos, Nigeria
| |
Collapse
|
9
|
Physicochemical and Functional Properties of Modified KJ CMU-107 Rice Starches as Pharmaceutical Excipients. Polymers (Basel) 2022; 14:polym14071298. [PMID: 35406170 PMCID: PMC9003004 DOI: 10.3390/polym14071298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Starch extracted from KJ CMU-107 rice, with amylose content of 13.4%, was modified to yield pre-gelatinized starch (PGS), carboxymethyl starch (CMS), crosslinked carboxymethyl starch (CLCMS), crosslinked starch (CLS), and hydroxypropyl starch (HPS). Their physicochemical properties were assessed in comparison with the native starch (NS), and their functional properties were then evaluated for potential use as pharmaceutical excipients. Scanning electron microscopic (SEM) images and X-ray diffraction (XRD) patterns showed that granules of all but one of the modified starches retained the native character and crystalline arrangement. The exception, PGS, exhibited extensive granular rupture, which correlated with the loss of crystallinity suggested by the amorphous halo in XRD. Energy-dispersive X-ray (EDX) data confirmed the modification by the presence of related elements. Carboxymethylation increased solubility in unheated water, while crosslinking improved swelling. All modified starches displayed improved oil absorption capacity by 17–64%, while CMS and CLCMS also exhibited significant moisture sorption at above 75% RH PGS and HPS exhibited lower gelatinization temperature (Tg) and enthalpic change (ΔH), while CLS showed higher Tg and ΔH. CMS, CLCMS, and CLS showed adequate powder flow and compactibility, qualifying as potential tablet excipients. The 5% w/v solutions of CMS, CLMS, and HPS also formed intact films with suitable tensile strength. Overall, modified starches derived from KJ CMU-107 could potentially be developed into new pharmaceutical excipients.
Collapse
|
10
|
Abdullaevich YS, Ergashovich YK, Abdukhalilovich SA, Shavkat o'g'li GI. Synthesis and characterization of sodium‐carboxymethylcellulose from cotton, powder, microcrystalline and nanocellulose. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuldoshov Sherzod Abdullaevich
- Laboratory Chemistry and Technology of Cellulose and its Derivatives Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences Tashkent Uzbekistan
| | - Yunusov Khaydar Ergashovich
- Laboratory Chemistry and Technology of Cellulose and its Derivatives Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences Tashkent Uzbekistan
| | - Sarymsakov Abdushkur Abdukhalilovich
- Laboratory Chemistry and Technology of Cellulose and its Derivatives Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences Tashkent Uzbekistan
| | - Goyipnazarov Ilhom Shavkat o'g'li
- Laboratory Chemistry and Technology of Cellulose and its Derivatives Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences Tashkent Uzbekistan
| |
Collapse
|
11
|
Charoenthai N, Sanga‐ngam T, Kasemwong K, Sungthongjeen S, Puttipipatkhachorn S. Characterization of Hydroxypropyl Tapioca Starch and Its Pregelatinized Starch as Tablet Disintegrants. STARCH-STARKE 2022. [DOI: 10.1002/star.202100263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nattawut Charoenthai
- Department of Manufacturing Pharmacy Faculty of Pharmacy Mahidol University Bangkok 10400 Thailand
- Center of Innovative Pharmacy for Pharmaceutical and Herbal Product Development Faculty of Pharmacy Mahidol University Bangkok 10400 Thailand
| | - Theerapong Sanga‐ngam
- Department of Manufacturing Pharmacy Faculty of Pharmacy Mahidol University Bangkok 10400 Thailand
| | - Kittiwut Kasemwong
- National Nanotechnology Center National Science and Technology Development Agency Pathumthani 12120 Thailand
| | - Srisagul Sungthongjeen
- Department of Pharmaceutical Technology Faculty of Pharmaceutical Sciences Naresuan University Phitsanulok 65000 Thailand
| | - Satit Puttipipatkhachorn
- Department of Manufacturing Pharmacy Faculty of Pharmacy Mahidol University Bangkok 10400 Thailand
- Center of Innovative Pharmacy for Pharmaceutical and Herbal Product Development Faculty of Pharmacy Mahidol University Bangkok 10400 Thailand
| |
Collapse
|
12
|
Dalei G, Das S, Das SP. Evaluation of TEOS Plasma Polymerized Carboxymethyl Starch/Alginate Hydrogels as Controlled Drug Delivery Systems. STARCH-STARKE 2021. [DOI: 10.1002/star.202100226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ganeswar Dalei
- Plasma Research Laboratory Department of Chemistry Ravenshaw University Cuttack Odisha 753003 India
| | - Subhraseema Das
- Plasma Research Laboratory Department of Chemistry Ravenshaw University Cuttack Odisha 753003 India
| | - Smruti Prava Das
- Plasma Research Laboratory Department of Chemistry Ravenshaw University Cuttack Odisha 753003 India
| |
Collapse
|
13
|
Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials. Int J Biol Macromol 2021; 184:218-234. [PMID: 34144062 DOI: 10.1016/j.ijbiomac.2021.06.077] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022]
Abstract
Starch derivatives are versatile compounds that are widely used in the pharmaceutical industry. This article reviews the advances in the research on hydrophilic and hydrophobic starch derivatives used to develop drug delivery systems over the last ten years, specifically microparticles, nanoparticles, nanocrystals, hydrogels, and scaffolds using these materials. The fundamentals of drug delivery systems, regulatory aspects, and chemical modifications are also discussed, along with the synthesis of starch derivatives via oxidation, etherification, acid hydrolysis, esterification, and cross-linking. The chemical modification of starch as a means to overcome the challenges in obtaining solid dosage forms is also reviewed. In particular, dialdehyde starches are potential derivatives for direct drug attachment; carboxymethyl starches are used for drug encapsulation and release, giving rise to pH-sensitive devices through electrostatic interactions; and starch nanocrystals have high potential as hydrogel fillers to improve mechanical properties and control drug release through hydrophilic interactions. Starch esterification with alginate and acidic drugs could be very useful for site-specific, controlled release. Starch cross-linking with other biopolymers such as xanthan gum is promising for obtaining novel polyelectrolyte hydrogels with improved functional properties. Surface modification of starch nanoparticles by cross-linking and esterification reactions is a potential approach to obtain novel, smart solid dosages.
Collapse
|
14
|
Boontawee R, Issarachot O, Keawkroek K, Wiwattanapatapee R. Foldable/Expandable Gastro-retentive Films Based on Starch and Chitosan as a Carrier For Prolonged Release of Resveratrol. Curr Pharm Biotechnol 2021; 23:1009-1018. [PMID: 34132179 DOI: 10.2174/1389201022666210615115553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Resveratrol exerts a number of therapeutic effects, notably anti-inflammatory, antioxidant and anti-cancer activities which are beneficial for the treatment of gastric diseases. However, the efficacy of resveratrol is severely limited due to the poor aqueous solubility and rapid metabolism following oral administration. As a result, foldable/expandable devices based on natural polymers merging with solid dispersion technology have been developed to increase the solubility, prolong the gastric residence time, and provide a controlled release therapy of resveratrol. OBJECTIVES This research aimed to invent foldable/expandable films based on natural polymers, including starch and chitosan, for stomach-specific delivery and prolonged release of resveratrol. METHODS The films were prepared by solvent casting using either rice, tapioca, corn starch or pre-gelatinized corn starch combined with chitosan in different weight to weight ratios. Glycerol was included as a plasticizer. Resveratrol solid dispersions (Res-SD) prepared by solvent evaporation and employing PVP-K30 as a hydrophilic polymer were loaded into the polymeric film, which was subsequently folded prior to insertion in a hard gelatin capsule. RESULTS The solid dispersions improved the solubility of resveratrol by a factor of 500. All Res-SD loaded film formulations completely unfolded in simulated gastric fluid at 37oC within 10 min. Fluid absorption by the films was influenced by the ratio of amylose and amylopectin in the starch granules, with tapioca starch formulations displaying the highest fluid uptake. Films prepared from pre-gelatinized corn starch and chitosan resulted in highly efficient delivery of resveratrol, with more than 80%of the content released over a period of 12 hrs. Furthermore, the released polyphenol exhibited cytotoxic activity against human gastric adenocarcinoma cells and anti-inflammatory effects against lipopolysaccharide-stimulated murine, macrophage-like cells. CONCLUSIONS These findings demonstrate the potential of foldable/expandable films based on natural polymers as a promising stomach-specific carrier for improving the treatment of gastric disorders.
Collapse
Affiliation(s)
- Rattakorn Boontawee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Ousanee Issarachot
- Pharmacy Technician Department, Sirindhron College of Public Health of Suphanburi, Thailand
| | - Kanidta Keawkroek
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Ruedeekorn Wiwattanapatapee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
15
|
Tran PHL, Tran TTD. The Use of Natural Materials in Film Coating for Controlled Oral Drug Release. Curr Med Chem 2021; 28:1829-1840. [PMID: 32164506 DOI: 10.2174/0929867327666200312113547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although synthetic materials have been used in film coating processes for drug delivery for many years, substantial studies on natural materials have also been conducted because of their biodegradable and unique properties. METHODS Because of the ability to form and modify films for controlled oral drug delivery, increasing attention has been shown to these materials in the design of film coating systems in recent research. RESULTS This review aims to provide an overview of natural materials focusing on film coating for oral delivery, specifically in terms of their classification and their combinations in film coating formulations for adjusting the desired properties for controlled drug delivery. CONCLUSIONS Discussing natural materials and their potential applications in film coating would benefit the optimization of processes and strategies for future utilization.
Collapse
Affiliation(s)
| | - Thao Truong-Dinh Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Višić K, Pušić T, Čurlin M. Carboxymethyl Cellulose and Carboxymethyl Starch as Surface Modifiers and Greying Inhibitors in Washing of Cotton Fabrics. Polymers (Basel) 2021; 13:1174. [PMID: 33917462 PMCID: PMC8038726 DOI: 10.3390/polym13071174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
This research is focused on cellulose and starch derivatives, carboxymethyl cellulose (CMC) and carboxymethyl starch (CMS), added to the detergent in washing reference cotton fabric in soft and hard water at 40, 60 and 90 °C. The applied polymers were analyzed through the potential of surface cellulose modification and inhibition of stain transfer from standard stain donors to modified and initial cotton fabrics. The surface modification of the cotton fabrics, characterized by the zeta potential and amounts of deposits, was coupled with the cluster analysis as well as a whiteness assessment. The obtained results of the zeta potential and degree of whiteness of the reference cotton fabrics before and after washing showed differences between CMC and CMS. The appropriateness of the cluster analysis was confirmed in assessing the potential of applied polymers for surface modification of cotton fabrics and greying inhibition.
Collapse
Affiliation(s)
- Ksenija Višić
- Faculty of Textile Technology, University of Zagreb, Zagreb 10000, Croatia;
| | - Tanja Pušić
- Faculty of Textile Technology, University of Zagreb, Zagreb 10000, Croatia;
| | - Mirjana Čurlin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb 10000, Croatia;
| |
Collapse
|
17
|
Pooresmaeil M, Namazi H. Developments on carboxymethyl starch-based smart systems as promising drug carriers: A review. Carbohydr Polym 2021; 258:117654. [DOI: 10.1016/j.carbpol.2021.117654] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
|
18
|
Kang H, Guan L, An K, Tian D. Preparation and physicochemical properties of konjac glucomannan ibuprofen ester as a polysaccharide-drug conjugate. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1821709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Huiting Kang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
| | - Lianxiong Guan
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
| | - Kai An
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
| | - Dating Tian
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi, People’s Republic of China
| |
Collapse
|
19
|
Garcia MAVT, Garcia CF, Faraco AAG. Pharmaceutical and Biomedical Applications of Native and Modified Starch: A Review. STARCH-STARKE 2020. [DOI: 10.1002/star.201900270] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Aparecida Vieira Teixeira Garcia
- Departamento de Alimentos, Faculdade de Farmácia/UFMG Av. Presidente Antônio Carlos, 6627 ‐ Campus Pampulha ‐ CEP 31270‐901 Belo Horizonte ‐ MG ‐ Brasil Brazil
| | - Cleverson Fernando Garcia
- Departamento de QuímicaCentro Federal de Educação Tecnológica de Minas Gerais (CEFET‐MG) Av. Amazonas, 5.253, Nova Suiça. CEP 30421‐169. Belo Horizonte ‐ MG ‐ Brasil Brazil
| | - André Augusto Gomes Faraco
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia/UFMGAv. Presidente Antônio Carlos, 6627 ‐ Campus Pampulha ‐ CEP 31270‐901 Belo Horizonte ‐ MG ‐ Brasil Brazil
| |
Collapse
|
20
|
New alkylated xanthan gum as amphiphilic derivatives: Synthesis, physicochemical and rheological studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Nita LE, Chiriac AP, Rusu AG, Ghilan A, Dumitriu RP, Bercea M, Tudorachi N. Stimuli Responsive Scaffolds Based on Carboxymethyl Starch and Poly(2‐Dimethylaminoethyl Methacrylate) for Anti‐Inflammatory Drug Delivery. Macromol Biosci 2020; 20:e1900412. [DOI: 10.1002/mabi.201900412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/21/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Loredana Elena Nita
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Alina Gabriela Rusu
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Alina Ghilan
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Raluca P. Dumitriu
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| | - Nita Tudorachi
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley RO‐700487 Iasi Romania
| |
Collapse
|
22
|
Mondal A, Kumar KJ. Effect of thermal modification on the release characteristics of pink potato starch of Jharkhand, India. Int J Biol Macromol 2019; 140:1091-1097. [PMID: 31415857 DOI: 10.1016/j.ijbiomac.2019.08.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 11/28/2022]
Abstract
Excipient plays an essential role in drug delivery system, which promotes the drug to reach a particular site of action. Excipients directly or indirectly affect the duration and rate of drug release and absorption. In the current study, physicochemical properties, flow properties and release characteristics of native and modified pink potato starches were investigated to determine their excipient characteristics. Amylose content, water holding capacity, swelling and solubility properties were found to increase after pregelatinization and retrogradation. The SEM micrographs reveals the loss of granular structure of native after thermal modification. The FT-IR study confirms the gelatinization characteristics of the pregelatinized starch. X-ray diffraction pattern confirms the reduction of crystallinity after thermal modification. Tablets containing Paracetamol as a model drug showed that native, pregelatinized and modified pink potato starch could be useful for the manufacturing of immediate release formulation.
Collapse
Affiliation(s)
- Arup Mondal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - K Jayaram Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
23
|
Jiang M, Hong Y, Gu Z, Cheng L, Li Z, Li C. Preparation of a starch-based carrier for oral delivery of Vitamin E to the small intestine. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Yun T, Pang B, Lu J, Lv Y, Cheng Y, Wang H. Study on the derivation of cassava residue and its application in surface sizing. Int J Biol Macromol 2019; 128:80-84. [DOI: 10.1016/j.ijbiomac.2019.01.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/01/2019] [Accepted: 01/22/2019] [Indexed: 11/24/2022]
|
25
|
Azubuike C, Ubani-Ukoma U, Madu S, Yomi-Faseun O, Yusuf S. Characterization and application of Borassus aethiopum (Arecaceae) shoot pregelatinized starch as binding agent in paracetamol tablets. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2019. [DOI: 10.4103/jrptps.jrptps_29_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Han H, Hou J, Yang N, Zhang Y, Chen H, Zhang Z, Shen Y, Huang S, Guo S. Insight on the changes of cassava and potato starch granules during gelatinization. Int J Biol Macromol 2018; 126:37-43. [PMID: 30584939 DOI: 10.1016/j.ijbiomac.2018.12.201] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 11/27/2022]
Abstract
Gelatinization is an important property of starch for biomedical applications. However, studies on the changes in starch granules in terms of morphology, swelling, amylose leaching and so on during gelatinization, which are key to uncovering the starch gelatinization process, have rarely been reported. Herein, changes of cassava and potato starch granules during gelatinization were investigated. It was found that there is a substantial difference in the granule changes during gelatinization between cassava and potato starch. Cassava starch granules remain intact with slight swelling, with approximately 8.5% amylose leaching in water for 30 min at 60 °C. In sharp contrast, potato starch granules swell very well and rapidly, losing much integrity with 51.05% amylose leaching. The gelatinization time and temperature have much greater effects on the changes of potato starch granules than cassava starch granules.
Collapse
Affiliation(s)
- Huijie Han
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingwen Hou
- Instrumental Analysis Centre, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yihui Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huanfei Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; School of Pharmacy and Chemistry, Dali University, 671000, China
| | - Zhipeng Zhang
- The Lab of Cardiovascular, Cerebrovascular and Metabolic Disorder, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shengtang Huang
- The Lab of Cardiovascular, Cerebrovascular and Metabolic Disorder, Hubei University of Science and Technology, Xianning 437100, China.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
27
|
Nordin NA, Rahman NA, Talip N, Yacob N. Citric Acid Cross-Linking of Carboxymethyl Sago Starch Based Hydrogel for Controlled Release Application. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/masy.201800086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nurul Aida Nordin
- Faculty of Science; Department of Chemistry; Universiti Putra Malaysia; 43400 Serdang Selangor Malaysia
| | - Norizah Abdul Rahman
- Faculty of Science; Department of Chemistry; Universiti Putra Malaysia; 43400 Serdang Selangor Malaysia
| | - Norhashidah Talip
- Radiation Polymer Modification Group; Radiation Processing Technology Division; Malaysian Nuclear Agency; Bangi 43000 Kajang Selangor Malaysia
| | - Norzita Yacob
- Radiation Polymer Modification Group; Radiation Processing Technology Division; Malaysian Nuclear Agency; Bangi 43000 Kajang Selangor Malaysia
| |
Collapse
|
28
|
Neuro-fuzzy modeling of ibuprofen-sustained release from tablets based on different cellulose derivatives. Drug Deliv Transl Res 2018; 9:162-177. [DOI: 10.1007/s13346-018-00592-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Physicochemical and disintegrant properties of sodium Carboxymethyl starch derived from Borassus aethiopum (Arecaceae) shoot. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1565-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Bamiro OA, Duro-Emanuel AJ. Factorial analysis of the binding properties of acetylated ginger starch in metronidazole tablet formulations. Int J Pharm Investig 2017; 7:18-24. [PMID: 28405575 PMCID: PMC5370345 DOI: 10.4103/jphi.jphi_31_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The delivery of drug is often affected by formulation processes and the excipients used in the formulation. MATERIALS AND METHODS A 23 factorial analysis was used in this study to evaluate the effect of acetylated ginger starch (AGS) (Zingiber officinale) as a binder in metronidazole tablets, in comparison to corn starch (CS) BP. The individual and interacting effects of variables (binder type X1, binder concentration X2, and compression pressure X3) used on tablet properties such as friability, crushing strength, crushing strength friability ratio (CSFR), disintegration and crushing strength friability/disintegration time ratio (CSFR/DT) were determined. The effect of these binders on the granule properties using Hausner's ratio, Carr's index (CI), angle of repose, and densities as response parameters was also determined. RESULTS Granules prepared with AGS had high densities and small granule sizes when compared with those containing CS. Granules containing CS have better flow properties. X1 (binder type) has a significant effect on the crushing strength of the tablet. It also had the highest effects on CSFR and CSFR/DT. The combination of XIX3 had the highest effect on crushing strength and DT. CONCLUSION This study shows that, in formulations, care must be taken in choosing the excipients and the process parameters required for the formulation since these can affect the delivery of the drug individually or in combination. AGS could be useful as a binder when a tablet with low crushing strength and fast disintegration is desired.
Collapse
Affiliation(s)
- Oluyemisi Adebowale Bamiro
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Olabisi Onabanjo University, Ibadan, Nigeria
| | - Abioye Josephina Duro-Emanuel
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Olabisi Onabanjo University, Ibadan, Nigeria
| |
Collapse
|