1
|
El-Said KS, Attia MS, Abdelmoaty BE, Salim EI. Synergistic antitumor effects of atorvastatin and chemotherapies: In vitro and in vivo studies. Biochem Biophys Res Commun 2025; 742:151078. [PMID: 39632292 DOI: 10.1016/j.bbrc.2024.151078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Atorvastatin (ATOR) acts on certain antitumor pathways; the consequences of chemotherapies continue to be a major concern, notwithstanding the increased efficacy provided by contemporary therapies. This study investigated the synergistic effects and underlying mechanisms of different treatment protocols using ATOR on the THP-1 cell line and on lung cancer in mice. For the in vitro study, an MTT assay was performed, and then different combinations against the THP-1 cell line were used as follows: non-treated cells, THP-1/ATOR IC50, THP-1/cytarabine (CYT) IC50, THP-1/doxorubicin (DOX) IC50, THP-1/DOX/CYT, THP-1/ATOR/CYT, THP-1/ATOR/DOX, and THP-1/ATOR/CYT/DOX. For the in vivo study, CD-1 male mice were used; G1 was the normal control. Gs2-5 were administered with urethane (Ure) and butylated hydroxytoluene (BHT). G2 was the positive control. G3 was treated with ATOR (20 mg/kg). G4 was treated with Bevacizumab (Bev) (5 mg/kg). G5 was co-treated with ATOR/Bev. Histopathological and immunohistochemical investigations, flow cytometry and molecular analysis of PI3K, Akt, and mTOR genes were performed after different treatment protocols. The results showed that different combinatorial treatment settings of ATOR in vitro increase the apoptotic-inducing capacity and cell cycle arrest. Co-treatment with ATOR and Bev led to a significant decrease in S-phase and G2/M percentages. Furthermore, in vivo co-treatment with ATOR/Bev decreased tumor incidence and size with a significant reduction of the immunohistochemical PCNA (LI%) in lung parenchyma, targeting PI3K/Akt/mTOR, and VEGF-A signaling pathways. Co-treatment with ATOR and chemotherapies led to cell cycle arrest, modulation of the PI3K/Akt/mTOR, and VEGF-A signaling pathways in tumor cells.
Collapse
Affiliation(s)
- Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Merna Saied Attia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Bassant Ezzat Abdelmoaty
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Elsayed Ibrahim Salim
- Research Lab. of Molecular Carcinogenesis, Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Tulbah AS. Formulation and in vitro characterization of inhalable dasatinib-nanoemulsion as a treatment potential against A549 and Calu-3 lung cancer cells. Int J Health Sci (Qassim) 2025; 19:4-14. [PMID: 39760056 PMCID: PMC11699237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Objective Dasatinib (DTB) is a second-generation tyrosine kinase inhibitor that was found it could help with lung cancer treatment. However, DTB has low aqueous solubility and poor bioavailability due to its incomplete absorption and high first-pass effect. The objective of this study was to improve DTB's solubility, delivery, and efficacy as a potential lung cancer treatment by developing an inhalable DTB-nanoemulsion (DNE) formulation. Methods The DNE formulation was prepared by the spontaneous emulsification method, using oleic acid as the oil phase and a mixture of Kolliphor RH 40 and dipropylene glycol as surfactant. Compared with free DTB, the DNE formulation enhanced the aqueous solubility, flow property, and delivery of DTB to the lungs with a good fine-particle dose, fine-particle fraction, and mass median aerodynamic diameter. Results The DNE formulation was safe on lung cancer cells when the cell viability and toxicity were evaluated and IC50 values were found to be 0.0431 μg/mL and 0.0443 μg/mL on A549 and Calu-3 cells, respectively. Moreover, DNE formulation significantly increased its anti-cancer effectiveness against A549 and Calu-3 lung cancer cells by interfering with cell cycle progression through apoptosis or cell cycle arrest. Conclusion The nanoemulsion formulation has the potential to be an effective carrier for DTB, which could possibly be used to treat lung cancer.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
El-Marakby EM, Fayez H, Motaleb MA, Mansour M. Atorvastatin-loaded cubosome: a repurposed targeted delivery systems for enhanced targeting against breast cancer. Pharm Dev Technol 2024; 29:236-247. [PMID: 38451055 DOI: 10.1080/10837450.2024.2323620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cancer ranks as one of the most challenging illnesses to deal with because progressive phenotypic and genotypic alterations in cancer cells result in resistance and recurrence. Thus, the creation of novel medications or alternative therapy approaches is mandatory. Repurposing of old drugs is an attractive approach over the traditional drug discovery process in terms of shorter drug development duration, low-cost, highly efficient and minimum risk of failure. In this study Atorvastatin, a statin drug used to treat abnormal cholesterol levels and prevent cardiovascular disease in people at high risk, was introduced and encapsulated in cubic liquid crystals as anticancer candidate aiming at sustaining its release and achieving better cellular uptake in cancer cells. The cubic liquid crystals were successfully prepared and optimized with an entrapment effieciency of 73.57% ±1.35 and particle size around 200 nm. The selected formulae were effectively doped with radioactive iodine 131I to enable the noninvasive visualization and trafficking of the new formulae. The in vivo evaluation in solid tumor bearing mice was conducted for comparing131I-Atorvastatin solution,131I-Atorvastatin loaded cubosome and 131I-Atorvastatin chitosan coated cubosome. The in vivo biodistribution study revealed that tumor radioactivity uptake of 131I-Atorvastatin cubosome and chitosan coated cubosome exhibited high accumulation in tumor tissues (target organ) scoring ID%/g of 5.67 ± 0.2 and 5.03 ± 0.1, respectively 1h post injection compared to drug solution which recorded 3.09 ± 0.05% 1h post injection. Concerning the targeting efficiency, the target/non target ratio for 131I-Atorvastatin chitosan coated cubosome was higher than that of 131I-Atorvastatin solution and 131I ATV-loaded cubosome at all time intervals and recorded T/NT ratio of 2.908 2h post injection.
Collapse
Affiliation(s)
- Eman M El-Marakby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hend Fayez
- Labeled Compounds Department, Hot Labs Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - M A Motaleb
- Labeled Compounds Department, Hot Labs Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Fouad AG, Ali MRA, Naguib DM, Farouk HO, Zanaty MI, El-Ela FIA. Design, optimization, and in vivo evaluation of invasome-mediated candesartan for the control of diabetes-associated atherosclerosis. Drug Deliv Transl Res 2024; 14:474-490. [PMID: 37605039 PMCID: PMC10761454 DOI: 10.1007/s13346-023-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Atherosclerosis is an inflammatory disease characterized by the accumulation of arterial plaque. Diabetes mellitus stands out as a major risk factor for atherosclerosis. Candesartan is a potent angiotensin II receptor antagonist that enhances arterial blood flow and reduces insulin resistance. However, oral candesartan has limited activity because of its low bioavailability, water solubility, hepatic first-pass degradation, and efficacy. The current study aims to develop nasal candesartan-loaded invasome (CLI) drops to improve candesartan's permeation, release, and bioavailability as a potential treatment for diabetes-associated atherosclerosis. Design expert software was used to prepare various CLI formulations to determine the impact of the concentrations of ethanol, cineole, and phospholipid. The desirability index was used to estimate the optimized formulation composition to maximize entrapment efficiency and minimize vesicle size. The optimized formulation had a 1% ethanol concentration, a 1.5% cineole concentration, and a 2.32% phospholipid concentration. The selected optimized formulation was then tested in a rat model of diabetes and atherosclerosis to evaluate its activity. The results showed that nasal CLI drops significantly raised serum HDL levels by a ratio of 1.42 and lowered serum glucose, cholesterol, triglycerides, LDL, and VLDL levels by 69.70%, 72.22%, 36.52%, 58.0%, and 65.31%, respectively, compared with diabetic atherosclerotic rats, throwing an insight on the potential for promising anti-diabetic and anti-atherosclerotic activities. Additionally, atherosclerotic lesions were improved in rats treated with CLI, as shown in histopathology. In conclusion, the results of this investigation showed that treatment with nasal CSN-loaded invasome formulation drops prevented the initiation and progression of diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, El-Shahid/Shehata Ahmed Hijaz St., Beni-Suef, Egypt.
| | - Mohammed R A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Demiana M Naguib
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Hanan O Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, 62521, Egypt
| | - Mohamed I Zanaty
- Biotechnology and Life Science Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Gamal A, Aboelhadid SM, Abo El-Ela FI, Abdel-Baki AAS, Ibrahium SM, EL-Mallah AM, Al-Quraishy S, Hassan AO, Gadelhaq SM. Synthesis of Carvacrol-Loaded Invasomes Nanoparticles Improved Acaricide Efficacy, Cuticle Invasion and Inhibition of Acetylcholinestrase against Hard Ticks. Microorganisms 2023; 11:microorganisms11030733. [PMID: 36985306 PMCID: PMC10057972 DOI: 10.3390/microorganisms11030733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Carvacrol is a monoterpenoid phenol found in many essential oils that has antibacterial, antifungal and antiparasitic activities. Drug loaded-invasome systems are used to deliver drugs utilizing nanoparticles to improve bioavailability, efficacy, and drug release duration. As a result, the present study developed carvacrol-loaded invasomes and evaluated their acaricidal effect against Rhipicephalus annulatus (cattle tick) and Rhipicephalus sanguineus (dog tick). Carvacrol loaded-invasome (CLI) was prepared and characterized using UV/Vis spectrophotometer, zeta potential measurements, Scanning Transmission Electron Microscopy (STEM), Fourier Transform Infrared (FT-IR) Spectroscopy, and Differential Scanning Calorimetry Analysis. CLI (5%) induced significant mortality (100%) in R. annulatus adult ticks with LC50 of 2.60%, whereas the LC50 of pure carvacrol was 4.30%. Carvacrol and CLI were shown to have a significant larvicidal action on both tick species, with LC50s of 0.24 and 0.21% against R. annulatus and 0.27 and 0.23% against R. sanguineus, respectively. Carvacrol and CLI (5%) induced significant repellent activities for 24 h against R. annulatus and R. sanguineus, as evidenced by the rod method and the petri-dish selective area choice method, respectively. High-performance liquid chromatography (HPLC) demonstrated that the CLI form had 3.86 times the permeability of pure carvacrol. Moreover, carvacrol and CLI inhibited acetylcholinesterase activity and decreased glutathione and malonedealdehyde levels in the treated ticks. In conclusion, invasomes significantly improved adulticidal and repellency activities of carvacrol against both tick species.
Collapse
Affiliation(s)
- Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Shawky M. Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence:
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Samar M. Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum Branch, Fayum 16101, Egypt
| | - Almahy M. EL-Mallah
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh P.O. Box 2455, Saudi Arabia
| | - Ahmed O. Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sahar M. Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia 61519, Egypt
| |
Collapse
|
6
|
Tulbah AS. In vitro bio-characterization of solid lipid nanoparticles of favipiravir in A549 human lung epithelial cancer cells. J Taibah Univ Med Sci 2023; 18:1076-1086. [PMID: 36994222 PMCID: PMC10040896 DOI: 10.1016/j.jtumed.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Objectives Lung cancer is a leading cause of mortality worldwide. In lung cancer treatment, nebulized solid lipid nanoparticles may be a viable drug delivery method, helping the drug reach sites of action, and improving its inhalation efficiency and pulmonary deposition. This research focused on evaluating the effectiveness of solid lipid nanoparticles of favipiravir (Fav-SLNps) in facilitating drug delivery to sites of action in lung cancer treatment. Methods The hot-evaporation method was used to formulate Fav-SLNps. The in vitro cell viability, anti-cancer effects, and cellular uptake activity were evaluated in A549 human lung adenocarcinoma cells treated with the Fav-SLNp formulation. Results The Fav-SLNps were formulated successfully. Importantly, Fav-SLNps at a concentration of 322.6 μg/ml were found to be safe and non-toxic toward A549 cells in vitro. The formulation had potential anti-proliferative properties via increasing the proportions of cells in G2/M and G0/G1 phases to 1.20 and 1.13 times those in untreated cells. Additionally, Fav-SLNp treatment significantly induced necrosis in A549 cells. Furthermore, the use of SLNps in the Fav formulation resulted in a macrophage drug uptake 1.23 times that of the free drug. Conclusion Our results confirmed the internalization and anti-cancer activity of the Fav-SLNp formulation in the A549 lung cancer cell line. Our findings suggest that Fav-SLNps could potentially be used as lung cancer treatment to facilitate drug delivery to sites of action in the lungs.
Collapse
|
7
|
Relevance of drying treatment on the extraction of high valuable compounds from invasive brown seaweed Rugulopteryx okamurae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Salem HF, Abd El-Maboud MM, Said ASA, Salem MN, Sabry D, Hussain N, El-Ghafar OAMA, Hussein RRS. Nano Methotrexate versus Methotrexate in Targeting Rheumatoid Arthritis. Pharmaceuticals (Basel) 2022; 16:60. [PMID: 36678557 PMCID: PMC9866098 DOI: 10.3390/ph16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Nanomedicine has emerged as an important approach for targeting RA medication. Rheumatoid arthritis (RA) is a widespread autoimmune disorder marked by multiple inflamed joints. Gold nanoparticles (GNPs) have been demonstrated as efficacious nanocarriers due to their unique characteristics and the relative simplicity of their synthesis in varied sizes; moreover, they have the capability to alleviate several inflammatory markers. The current objective was to combine methotrexate (MTX) with GNPs to overcome MTX restrictions. GNPs were fabricated by a chemical reduction technique, utilizing sodium citrate and tween 20. The MTX-GNPs formulations were characterized in vitro by % entrapment efficiency (%EE), particle size, polydispersity index (PDI) zeta potential, and % release. The MTX-GNPs formulation was administrated as an intra-articular solution, and additionally, incorporated into a Carbopol gel to investigate its anti-arthritic effectiveness and bioavailability in vivo. The results indicated that a %EE of 87.53 ± 1.10%, and a particle size of 60.62 ± 2.41 nm with a PDI of 0.31 ± 0.03, and a zeta potential of −27.80 ± 0.36 mV were optimal. The in vitro release of MTX from the MTX-GNPs formulation demonstrated that the MTX-GNPs formulation’s release was 34.91 ± 1.96% and considerably (p < 0.05) lower than that of free MTX, showing a significant difference in dissolution patterns (p < 0.05). In vivo, MTX-GNPs formulations inhibited IL-6 by 36.52%, ACCP (63.25 %), COMP (28.16%), and RANKL (63.67%), as well as elevated IL-10 by 190.18%. Transdermal MTX-GNPs decreased IL-6 by 22.52%, ACCP (56.63%), COMP (52.64%), and RANKL (79.5%), as well as increased IL-10 by 168.37%. Histological investigation supported these recent findings. Conclusions: Marked improvements in MTX anti-arthritic effects are seen when it is conjugated to GNPs.
Collapse
Affiliation(s)
- Heba F. Salem
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | | | - Amira S. A. Said
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Clinical Pharmacy, College of Pharmacy, Al Ain University, Al Ain P.O. Box 112612, United Arab Emirates
| | - Mohamed Nabil Salem
- Department of Internal Medicine, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Cairo 11562, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain P.O. Box 112612, United Arab Emirates
| | - Omnia A. M. Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni Suef 62511, Egypt
| | - Raghda R. S. Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Clinical Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| |
Collapse
|
9
|
Shaghaghi Z, Alvandi M, Farzipour S, Dehbanpour MR, Nosrati S. A review of effects of atorvastatin in cancer therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:27. [PMID: 36459301 DOI: 10.1007/s12032-022-01892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
Cancer is one of the most challenging diseases to manage. A sizeable number of researches are done each year to find better diagnostic and therapeutic strategies. At the present time, a package of chemotherapy, targeted therapy, radiotherapy, and immunotherapy is available to cope with cancer cells. Regarding chemo-radiation therapy, low effectiveness and normal tissue toxicity are like barriers against optimal response. To remedy the situation, some agents have been proposed as adjuvants to improve tumor responses. Statins, the known substances for reducing lipid, have shown a considerable capability for cancer treatment. Among them, atorvastatin as a reductase (HMG-CoA) inhibitor might affect proliferation, migration, and survival of cancer cells. Since finding an appropriate adjutant is of great importance, numerous studies have been conducted to precisely unveil antitumor effects of atorvastatin and its associated pathways. In this review, we aim to comprehensively review the most highlighted studies which focus on the use of atorvastatin in cancer therapy.
Collapse
Affiliation(s)
- Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Soghra Farzipour
- Department of Cardiology, Cardiovascular Diseases Research Center, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Reza Dehbanpour
- Department of Radiology, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Nosrati
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str, 03-195, Warsaw, Poland
| |
Collapse
|
10
|
Tulbah AS, Bader A, Ong HX, Traini D. In vitro evaluation of nebulized eucalyptol nano-emulsion formulation as a potential COVID-19 treatment. Saudi Pharm J 2022; 30:1691-1699. [PMID: 36164456 PMCID: PMC9494862 DOI: 10.1016/j.jsps.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus is a type of acute atypical respiratory disease representing the leading cause of death worldwide. Eucalyptol (EUC) known also as 1,8-cineole is a potential inhibitor candidate for COVID-19 (main protease-Mpro) with effective antiviral properties but undergoes physico-chemical instability and poor water solubility. Nano-emulsion (NE) is a promising drug delivery system to improve the stability and efficacy of drugs. This work focuses on studying the anti- COVID-19 activity of EUC by developing nebulized eucalyptol nano-emulsion (EUC-NE) as a potentially effective treatment for COVID-19. The EUC -NE formulation was prepared using Tween 80 as a surfactant. In vitro evaluation of the EUC-NE formulation displayed an entrapment efficiency of 77.49 %, a droplet size of 122.37 nm, and an EUC % release of 84.7 %. The aerodynamic characterization and cytotoxicity of EUC-NE formulation were assessed, and results showed high lung deposition and low inhibitory concentration. The antiviral mechanism of the EUC-NE formulation was performed, and it was found that it exerts its action by virucidal, viral replication, and viral adsorption. Our results confirmed the antiviral activity of the EUC-NE formulation against COVID-19 and the efficacy of nano-emulsion as a delivery system, which can improve the cytotoxicity and inhibitory activity of EUC.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia,Corresponding author
| | - Ammar Bader
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, NSW, Australia,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, NSW, Australia,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| |
Collapse
|
11
|
Tulbah AS. Inhaled Atorvastatin Nanoparticles For Lung Cancer. Curr Drug Deliv 2022; 19:1073-1082. [PMID: 35473526 DOI: 10.2174/1567201819666220426091500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/05/2022] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is one of the main causes of mortality globally. This research paper aims at the development of an inhaled nanotechnology for lung cancer to deliver an atorvastatin calcium compound, for lung cancer, capable of reaching the tumor site directly via inhalation. METHODS Atorvastatin calcium micellar nanoparticles (ATO-NPs) encapsulated with Pluronic F-127 and polyvinyl alcohol (PVA) were manufactured utilizing the solvent and anti-solvent precipitation technique. The physicochemical features of the formulation were evaluated in terms of their physicochemical characteristics using Fourier transform infrared spectroscopy, differential scanning calorimetry, and dynamic light scattering. Additionally, the Andersen Cascade impactor was used at 15 L/minutes to assist in the aerosols performances of the formulation. The ATO-NPs formula's cell viability was tested in vitro using the A549 non-small cell lung cancer cell type. RESULTS Transmission electron microscopy was utilized to determine the ATO-NPs particle morphology, demonstrating a spherical shape with a smooth surface. The fine particle fraction of the aerosol produced was 62.70 ± 1.18%. This finding suggests that atorvastatin micellar nanoparticles are suitable for medication administration by inhalation with a wide particle size dispersion. Moreover, it was found in vitro that concentrations up to 21 µg/mL of the atorvastatin nanoparticles were safe and non-toxic on the cell model. CONCLUSION This study found that atorvastatin micellar nanoparticles for inhalation could potentially be used for lung cancer treatment.
Collapse
Affiliation(s)
- Alaa S Tulbah
- Pharmaceutics Department, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| |
Collapse
|