1
|
Abbaspour M, Faeznia F, Zanjanian P, Ruzbehi M, Shourgashti K, Ziaee A, Sardou HS, Nokhodchi A. Preparation and Evaluation of Berberine-Excipient Complexes in Enhancing the Dissolution Rate of Berberine Incorporated into Pellet Formulations. AAPS PharmSciTech 2024; 25:154. [PMID: 38961012 DOI: 10.1208/s12249-024-02863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Berberine is used in the treatment of metabolic syndrome and its low solubility and very poor oral bioavailability of berberine was one of the primary hurdles for its market approval. This study aimed to improve the solubility and bioavailability of berberine by preparing pellet formulations containing drug-excipient complex (obtained by solid dispersion). Berberine-excipient solid dispersion complexes were obtained with different ratios by the solvent evaporation method. The maximum saturation solubility test was performed as a key factor for choosing the optimal complex for the drug-excipient. The properties of these complexes were investigated by FTIR, DSC, XRD and dissolution tests. The obtained pellets were evaluated and compared in terms of pelletization efficiency, particle size, mechanical strength, sphericity and drug release profile in simulated media of gastric and intestine. Solid-state analysis showed complex formation between the drug and excipients used in solid dispersion. The optimal berberine-phospholipid complex showed a 2-fold increase and the optimal berberine-gelucire and berberine-citric acid complexes showed more than a 3-fold increase in the solubility of berberine compared to pure berberine powder. The evaluation of pellets from each of the optimal complexes showed that the rate and amount of drug released from all pellet formulations in the simulated gastric medium were significantly lower than in the intestine medium. The results of this study showed that the use of berberine-citric acid or berberine-gelucire complex could be considered a promising technique to increase the saturation solubility and improve the release characteristics of berberine from the pellet formulation.
Collapse
Affiliation(s)
- Mohammadreza Abbaspour
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Faeznia
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Zanjanian
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Ruzbehi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Shourgashti
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosseinn Ziaee
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Shahdadi Sardou
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK.
- Lupin Research Inc, Coral Springs, Florida, USA.
| |
Collapse
|
2
|
Tipduangta P, Chansakaow S, Tansakul P, Meungjai R, Dilokthornsakul P. Polymer Matrix and Manufacturing Methods in Solid Dispersion System for Enhancing Andrographolide Solubility and Absorption: A Systematic Review. Pharmaceutics 2024; 16:688. [PMID: 38794350 PMCID: PMC11125128 DOI: 10.3390/pharmaceutics16050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Andrographolide (ADG) has poor aqueous solubility and low bioavailability. This study systematically reviews the use of solid dispersion (SD) techniques to enhance the solubility and absorption of ADG, with a focus on the methods and polymers utilized. Methodology: We searched electronic databases including PubMed, Web of Science, Scopus®, Embase and ScienceDirect Elsevier® up to November 2023 for studies on the solubility or absorption of ADG in SD formulations. Two reviewers independently reviewed the retrieved articles and extracted data using a standardized form and synthesized the data qualitatively. Results: SD significantly improved ADG solubility with up to a 4.7-fold increase and resulted in a decrease in 50% release time (T1/2) to less than 5 min. SD could also improve ADG absorption, as evidenced by higher Cmax and AUC and reduced Tmax. Notably, Soluplus-based SDs showed marked solubility and absorption enhancements. Among the five SD techniques (rotary evaporation, spray drying, hot-melt extrusion, freeze drying and vacuum drying) examined, spray drying emerged as the most effective, enabling a one-step process without the need for post-milling. Conclusions: SD techniques, particularly using Soluplus and spray drying, effectively enhance the solubility and absorption of ADG. This insight is vital for the future development of ADG-SD matrices.
Collapse
Affiliation(s)
- Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.C.); (R.M.)
- The College of Herbal Pharmacy of Thailand, The Pharmacy Council of Thailand, Nonthaburi 11000, Thailand
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.C.); (R.M.)
- The College of Herbal Pharmacy of Thailand, The Pharmacy Council of Thailand, Nonthaburi 11000, Thailand
| | - Pimpimon Tansakul
- The College of Herbal Pharmacy of Thailand, The Pharmacy Council of Thailand, Nonthaburi 11000, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Rungarun Meungjai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.C.); (R.M.)
| | - Piyameth Dilokthornsakul
- Center for Medical and Health Technology Assessment (CM-HTA), Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Rajbhar K, Karodadeo GR, Kumar V, Barethiya V, Lahane A, Kale S, Thakre V, Dixit G, Kohale N, Hiradeve S, Rarokar NR. Comparative assessment of solubility enhancement of itroconazole by solid dispersion and co-crystallization technique: Investigation of simultaneous effect of media composition on drug dissolution. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:843-855. [PMID: 37182590 DOI: 10.1016/j.pharma.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Solubility of the drug is an important property of the drug as it affects the release, absorption, dissolution rate and ultimately bioavailability of the drug. Hence, the poorly aqueous soluble drug, need to be processed, to enhance its solubility and dissolution. The Biopharmaceutical System of Classification (BCS) II drugs are poorly soluble and have high permeability. Though their good ability to permeate through the membrane make them clinically useful but the problem associated with the solubility restrict their clinical use. Therefore, there is need to improve the solubility of such drug molecules to get effective pharmacological action. Itraconazole (ITZ) is an antifungal agent used in the treatment of fungal infections having poor aqueous solubility as belonging to BCS class II. The present study was aim to enhance the solubility of ITZ by solid dispersion and co-crystallization techniques. Investigation of simultaneous effect of media composition on drug dissolution was also the objective of this work. The ITZ-SD and ITZ-CCs were prepared from ITZ and other excipients like PEG 4000, oxalic acid, fumaric and malic acid by solvent evaporation, kneading technique, slurry conversion and solvent drop grinding methods. The prepared ITZ-SD, ITZ-OA-CCs, ITZ-FA-CCs and ITZ-MA-CCs were evaluated for FTIR, DSC, PXRD, % yield, micromeritic properties. The optimized ITZ-SD and ITZ-CCs were used to compress a tablet and subject to post-compression parameters. The results of FTIR and DSC showed the absence of interaction between the drug and excipients. The PXRD pattern demonstrated the formation of crystalline structures with 6 folds increased in solubility during saturation solubility analysis. In vitro dissolution was carried out in dissolution media with different pH which shows the maximum release from ITZ-SD and ITZ-CCs in pH 6.8. This also revealed the highly pH dependent solubility and dissolution behavior of the weakly basic BCS class II drug (ITZ) with pKa value of 3.7. The overall results in this study indicated the potential of solid dispersion and co-crystals for enhancement of solubility of the poorly water-soluble drugs.
Collapse
Affiliation(s)
- Kusum Rajbhar
- Department of Pharmaceutics, Priyadarshini J.L. College of Pharmacy, Electronic zone building, Hingna road, Nagpur, 440016, Maharashtra, India
| | - Gaurav Ramesh Karodadeo
- G H Raisoni Institute of Life Sciences, Shradha Park, Hingna-Wadi Link Road, Nagpur, 440016, Maharashtra, India.
| | - Vivek Kumar
- Sir H.N. Reliance Foundation Hospital and Research Centre, Prarthana Samaj, Raja Rammohan Roy Road, Girgaon, Mumbai, 400004, Maharashtra, India
| | - Varsha Barethiya
- Department of Pharmaceutics, Priyadarshini J.L. College of Pharmacy, Electronic zone building, Hingna road, Nagpur, 440016, Maharashtra, India
| | - Amol Lahane
- Dr. R.N. Lahoti Pharmaceutical Education and Research Center, Sultanpur, Buldhana, 443302, India
| | - Shubham Kale
- Vardhaman College of Pharmacy, Karanja (Lad), Dist-Washim, 444105 Washim, India
| | - Vaibhav Thakre
- Vardhaman College of Pharmacy, Karanja (Lad), Dist-Washim, 444105 Washim, India
| | - Gouri Dixit
- Department of Pharmaceutics, Priyadarshini J.L. College of Pharmacy, Electronic zone building, Hingna road, Nagpur, 440016, Maharashtra, India
| | - Nitin Kohale
- Vardhaman College of Pharmacy, Karanja (Lad), Dist-Washim, 444105 Washim, India
| | - Sachin Hiradeve
- G H Raisoni Institute of Life Sciences, Shradha Park, Hingna-Wadi Link Road, Nagpur, 440016, Maharashtra, India
| | - Nilesh Ramesh Rarokar
- G H Raisoni Institute of Life Sciences, Shradha Park, Hingna-Wadi Link Road, Nagpur, 440016, Maharashtra, India.
| |
Collapse
|
4
|
Markeev VB, Blynskaya EV, Tishkov SV, Alekseev KV, Marakhova AI, Vetcher AA, Shishonin AY. Composites of N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide with Polymers: Effect of Crystallinity on Solubility and Stability. Int J Mol Sci 2023; 24:12215. [PMID: 37569589 PMCID: PMC10418436 DOI: 10.3390/ijms241512215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
This work aimed to develop and characterize a water-soluble, high-release active pharmaceutical ingredient (API) composite based on the practically water-insoluble API N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide (GML-3), a substance with antidepressant and anxiolytic action. This allows to ensure the bioavailability of the medicinal product of combined action. Composites obtained by the method of creating amorphous solid dispersions, where polyvinylpyrrolidone (PVP) or Soluplus® was used as a polymer, were studied for crystallinity, stability and the release of API from the composite into purified water. The resulting differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and dissolution test data indicate that the resulting composites are amorphous at 1:15 API: polymer ratios for PVP and 1:5 for Soluplus®, which ensures the solubility of GML-3 in purified water and maintaining the supercritical state in solution.
Collapse
Affiliation(s)
- Vladimir B. Markeev
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
| | - Evgenia V. Blynskaya
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Sergey V. Tishkov
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
| | - Konstantin V. Alekseev
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
| | - Anna I. Marakhova
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya St., 117588 Moscow, Russia;
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya St., 117588 Moscow, Russia;
| |
Collapse
|
5
|
Muruganantham S, Krishnaswami V, Kandasamy R, Alagarsamy S. Potentiating the solubility of BCS class II drug zaltoprofen using nanodispersion technology. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2173224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Selvakumar Muruganantham
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | | | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
6
|
Agrawal YO, Patil KD, More KR, Mohd Siddique MU, Alkahtani S, Aljarba NH, Hasnain MS. Amelioration of bioavailability through formulating and optimizing Azilsartan Entrapped nanostructured lipid carriers and its pharmacokinetic assessment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Liu X, Zhang J, Cheng X, Liu P, Feng Q, Wang S, Li Y, Gu H, Zhong L, Chen M, Zhou L. Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury. Regen Biomater 2022; 10:rbac085. [PMID: 36683754 PMCID: PMC9847532 DOI: 10.1093/rb/rbac085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
The restoration of nerve dysfunction after traumatic brain injury (TBI) faces huge challenges due to the limited self-regenerative abilities of nerve tissues. In situ inductive recovery can be achieved utilizing biological scaffolds combined with endogenous human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomes (MExos). In this study, brain-derived neurotrophic factor-stimulated HUCMSCs-derived exosomes (BMExos) were composited with collagen/chitosan by 3D printing technology. 3D-printed collagen/chitosan/BMExos (3D-CC-BMExos) scaffolds have excellent mechanical properties and biocompatibility. Subsequently, in vivo experiments showed that 3D-CC-BMExos therapy could improve the recovery of neuromotor function and cognitive function in a TBI model in rats. Consistent with the behavioural recovery, the results of histomorphological tests showed that 3D-CC-BMExos therapy could facilitate the remodelling of neural networks, such as improving the regeneration of nerve fibres, synaptic connections and myelin sheaths, in lesions after TBI.
Collapse
Affiliation(s)
- Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingbo Feng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shan Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanyou Li
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoran Gu
- The 947th Hospital of Chinese People’s Liberation Army, Xinjiang Uygur Autonomous Region, Kashgar 844000, China
| | - Lin Zhong
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Miao Chen
- Intensive Care Unit, Traditional Chinese Medicine Hospital of Xinjiang Uyghur Autonomous Region and Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Jeliński T, Cysewski P. Quantification of Caffeine Interactions in Choline Chloride Natural Deep Eutectic Solvents: Solubility Measurements and COSMO-RS-DARE Interpretation. Int J Mol Sci 2022; 23:ijms23147832. [PMID: 35887182 PMCID: PMC9323268 DOI: 10.3390/ijms23147832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Solubility of active pharmaceutical ingredients is an important aspect of drug processing and formulation. Although caffeine was a subject of many studies aiming to quantify saturated solutions, many applied solvents suffer from not being environmentally friendly. This work fills this gap by presenting the results of solubility measurements in choline chloride natural deep eutectic solvents, ccNADES, comprising one of seven of the following polyalcohols: glycerol, sorbitol, xylitol, glucose, sucrose, maltose and fructose. The ratio of ccNADES components was optimized for maximizing caffeine solubility at room temperature. Additionally, temperature dependent solubility was measured for the first four systems exhibiting the highest solubility potential, both in their neat forms and in mixtures with water. Results were used for intermolecular interactions assessments using the COSMO-RS-DARE approach, which led to a perfect match between experimental and computed solubility values. An important methodological discussion was provided for an appropriate definition of the systems. Surprising linear trends were observed between the values of fitting parameters and water-ccNADES composition. In addition, comments on selection of the values of the fusion thermodynamic parameters were provided, which led to the conclusion that COSMO-RS-DARE solubility computations can effectively compensate for the inaccuracies of these important physicochemical properties.
Collapse
|
9
|
Munir MU, Ikraam M, Nadeem M, Khalid SH, Asghar S, Khalid I, Irfan M, Islam N, Ajaz N, Khan IU. Fabrication, In Vitro and In Vivo Evaluation of Non-Ordered Mesoporous Silica-Based Ternary Solid Dispersions for Enhanced Solubility of Flurbiprofen. Pharmaceuticals (Basel) 2022; 15:ph15070856. [PMID: 35890153 PMCID: PMC9324605 DOI: 10.3390/ph15070856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to improve the solubility and prevent the ulcerogenic effect of flurbiprofen. Initially, binary and ternary solid dispersions (BSDs and TSDs) of flurbiprofen were prepared by using non-ordered mesoporous silica and gelucire. After preformulation testing (solubility, flow properties, % yield, and entrapment efficiency), four formulations were selected for further detailed studies. Solid-state characterization of optimized formulations (S1, S6, S7, and S12) showed successful drug incorporation in the solid dispersion at the molecular state without any noticeable interactions. The in vitro solubility and release study showed an increase in solubility and 98–100% of drug release in 30–45 min. The in vivo gastro-protective effect of the optimized formulations containing flurbiprofen and silica (1:1) with 25% w/w gelucire (S6 and S12) showed a reduction in the gastric lesion index (GLI) after four days of treatment. Moreover, histological images of the stomach lining (S6 and S12) illustrated normal epithelial cells and a partially protected mucosal membrane. Thus, TSD exhibited a significant increase in solubility and the dissolution rate and reduced the gastric ulceration. Therefore, TSDs are dubbed as efficacious carriers to enhance the bioavailability of flurbiprofen while simultaneously reducing its side effects.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka, Aljouf 72388, Saudi Arabia;
| | - Mahnoor Ikraam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.I.); (S.H.K.); (I.K.); (M.I.); (N.I.); (N.A.)
| | - Muhammad Nadeem
- Department of Medicine, Xi’an Jiaotong University, Xi’an 710000, China;
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.I.); (S.H.K.); (I.K.); (M.I.); (N.I.); (N.A.)
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.I.); (S.H.K.); (I.K.); (M.I.); (N.I.); (N.A.)
- Correspondence: (S.A.); (I.U.K.)
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.I.); (S.H.K.); (I.K.); (M.I.); (N.I.); (N.A.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.I.); (S.H.K.); (I.K.); (M.I.); (N.I.); (N.A.)
| | - Nayyer Islam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.I.); (S.H.K.); (I.K.); (M.I.); (N.I.); (N.A.)
| | - Nyla Ajaz
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.I.); (S.H.K.); (I.K.); (M.I.); (N.I.); (N.A.)
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.I.); (S.H.K.); (I.K.); (M.I.); (N.I.); (N.A.)
- Correspondence: (S.A.); (I.U.K.)
| |
Collapse
|