1
|
Namazi NI, Alrbyawi H, Alanezi AA, Almuqati AF, Shams A, Ali HSM. Nanoparticles of Thiolated Xanthan Gum for the Oral Delivery of Miconazole Nitrate: In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:225. [PMID: 38399279 PMCID: PMC10892260 DOI: 10.3390/pharmaceutics16020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this research was to develop a mucoadhesive delivery system that improves permeation for the administration of poorly absorbed oral medications. Thiolation of xanthan gum (XGM) was carried out by esterification with mercaptobutyric acid. Fourier-transformed infrared spectroscopy was used to confirm thiol-derivatization. Using Ellman's technique, it was revealed that the xanthan-mercaptobutyric acid conjugate had 4.7 mM of thiol groups in 2 mg/mL of polymeric solution. Using mucosa of sheep intestine, the mucoadhesive properties of XGM and thiolated xanthan gum (TXGM) nanoparticles were investigated and we found that TXGM had a longer bioadhesion time than XGM. The disulfide link that forms between mucus and thiolated XGM explains why it has better mucoadhesive properties than XGM. A study on in vitro miconazole (MCZ) release using phosphate buffer (pH 6.8) found that TXGM nanoparticles released MCZ more steadily than MCZ dispersion did. A 1-fold increase in the permeation of MCZ was observed from nanoparticles using albino rat intestine compared to MCZ. Albino rats were used to test the pharmacokinetics of MCZ, and the results showed a 4.5-fold increase in bioavailability. In conclusion, the thiolation of XGM enhances its bioavailability, controlled release of MCZ for a long period of time, and mucoadhesive activity.
Collapse
Affiliation(s)
- Nader I. Namazi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia; (H.A.); (H.S.M.A.)
| | - Hamad Alrbyawi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia; (H.A.); (H.S.M.A.)
| | - Abdulkareem Ali Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
| | - Afaf F Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Taif 21944, Saudi Arabia;
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21974, Saudi Arabia
- High Altitude Research Center, Taif University, Taif 21944, Saudi Arabia
| | - Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia; (H.A.); (H.S.M.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
2
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
3
|
Shahid M, Alrumayyan BF, Ramzan M, Jalees Ahmed F, Malik A, Khuroo T, Alaofi AL. Impact of miconazole nitrate ferrying cationic and anionic nanoemulsion and gels on permeation profiles of across EpiDerm, artificial membrane, and skin: Instrumental evidences. Int J Pharm 2023; 648:123593. [PMID: 37956722 DOI: 10.1016/j.ijpharm.2023.123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Based on our previous report, the study was extended to investigate the impact of miconazole nitrate (MCN) loaded cationic/anionic nanoemulsions and nanoemulsion gels on permeation behaviour across artificial-membrane, EpiDerm, and rat skin. Nanoemulsions and gels were evaluated for size, charge, viscosity, size-distribution, pH, and percent entrapment efficiency (%EE). In vitro drug diffusion across artificial membrane and EpiDerm were conducted to get diffusion coefficients. Permeation profiles were studied using rat skin to investigate mechanistic insight of formulated mediated permeation followed by CLSM (confocal laser scanning microscopy), SEM (scanning electron microscopy), AFM (atomic force microscopy), and irritation studies. Results showed that MCNE11-Rh (probed cationic nanoemulsion at pH ∼ 7.2) and MNE11-Rh (probed anionic nanoemulsion at pH ∼ 7.2) showed size values of 158 nm and 145 nm, respectively whereas MCNE11-GR (probed cationic nanoemulsion gel at pH ∼ 6.8) and MNE11-GR (probed anionic nanoemulsion gel at pH ∼ 6.8) exhibited size values 257 nm and 243 nm, respectively. The %EE values were found to be as 91.5 % and 89.6 % for MCNE11-Rh and MNE11-Rh, respectively. The gels (∼6000 cP) elicited relatively high viscosity than nanoemulsions (∼3300 - 3500 cP). MCNE11-GR showed the highest values of permeation flux, diffusion rate, diffusion coefficient (D), and permeation coefficient (P) across artificial membrane, EpiDerm, and rat skin which may be attributed to three potential factors (cationic charge, composition, and hydration by the hydrophilic gel) working in tandem. Transepidermal water loss (TEWL) by the MCNE11-GR was maximum (14.4 g/m2h) than control (6.1 g/m2h) indicating augmented interaction of MCNE11-Rh with skin components. Conclusively, cationic nanoemulsion gel was promising carrier for enhanced permeation and the drug access to the dermal region to treat deep seated fungal infections.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | | | - Mohhammad Ramzan
- Department of Pharmaceutics, UIPS, Panjab University, Chandigarh, Punjab, India.
| | - Farhan Jalees Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahir Khuroo
- Department of Pharmaceutics, PGx Global Foundation, 5600 S Willow Dr Houston, Duarte, TX 77035, USA.
| | - Ahmed L Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Maciel AAM, Cunha FA, Freire TM, de Menezes FL, Fechine LMUD, Rocha JS, de Cássia Carvalho Barbosa R, Martins RT, da Conceição dos Santos Oliveira Cunha M, Santos-Oliveira R, Queiroz MVO, Fechine PBA. Development and evaluation of an anti-candida cream based on silver nanoparticles. 3 Biotech 2023; 13:352. [PMID: 37810191 PMCID: PMC10550885 DOI: 10.1007/s13205-023-03776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023] Open
Abstract
The ineffectiveness of azole drugs in treating Vulvovaginal Candidiasis (VVC) and Recurrent Vulvovaginal Candidiasis (RVVC) due to antifungal resistance of non-albicans Candida has led to the investigation of inorganic nanoparticles with biological activity. Silver nanoparticles (AgNPs) are important in nanomedicine and have been used in various products and technologies. This study aimed to develop a vaginal cream and assess its in vitro antimicrobial activity against Candida parapsilosis strains, specifically focusing on the synergy between AgNPs and miconazole. AgNPs were synthesized using glucose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer in varying amounts (0.50, 0.25, and 0.10 g). The AgNPs were characterized using UV-Visible (UV-Vis) and Fourier-Transform Infrared (FT-IR) spectroscopies, X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX). Fifty strains of Candida parapsilosis were used to evaluate the synergistic activity. AgNPs synthesized with 0.5 g SDS had an average size of 77.58 nm and a zeta potential of -49.2 mV, while AgNPs with 0.25 g showed 91.22 nm and -47.2 mV, respectively. AgNPs stabilized with 0.1 g of SDS were not effective. When combined with miconazole, AgNPs exhibited significant antifungal activity, resulting in an average increase of 80% in inhibition zones. The cream developed in this study, containing half the miconazole concentration of commercially available medication, demonstrated larger inhibition zones compared to the commercial samples.
Collapse
Affiliation(s)
- Antônio Auberson Martins Maciel
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará (UFC), Pici Campus, 12100, Fortaleza, CE 60451-970 Brazil
- Departament of Clinical and Toxicological Analysis, Federal University of Ceará (UFC), Capitão Francisco Pedro Street, 1210, Rodolfo Teófilo, Fortaleza, CE 60270-430 Brazil
| | - Francisco Afrânio Cunha
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará (UFC), Pici Campus, 12100, Fortaleza, CE 60451-970 Brazil
- Departament of Clinical and Toxicological Analysis, Federal University of Ceará (UFC), Capitão Francisco Pedro Street, 1210, Rodolfo Teófilo, Fortaleza, CE 60270-430 Brazil
| | - Tiago Melo Freire
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará (UFC), Pici Campus, 12100, Fortaleza, CE 60451-970 Brazil
| | - Fernando Lima de Menezes
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará (UFC), Pici Campus, 12100, Fortaleza, CE 60451-970 Brazil
| | - Lillian Maria Uchoa Dutra Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará (UFC), Pici Campus, 12100, Fortaleza, CE 60451-970 Brazil
| | - Janaina Sobreira Rocha
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará (UFC), Pici Campus, 12100, Fortaleza, CE 60451-970 Brazil
| | - Rita de Cássia Carvalho Barbosa
- Departament of Clinical and Toxicological Analysis, Federal University of Ceará (UFC), Capitão Francisco Pedro Street, 1210, Rodolfo Teófilo, Fortaleza, CE 60270-430 Brazil
| | - Roxeane Teles Martins
- Departament of Clinical and Toxicological Analysis, Federal University of Ceará (UFC), Capitão Francisco Pedro Street, 1210, Rodolfo Teófilo, Fortaleza, CE 60270-430 Brazil
| | | | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, RJ 21941906 Brazil
- Laboratory of Nanoradiopharmacy and Strategic Biomaterials, Zona Oeste State University, Rio de Janeiro, RJ 220000 Brazil
| | | | - Pierre Basílio Almeida Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará (UFC), Pici Campus, 12100, Fortaleza, CE 60451-970 Brazil
| |
Collapse
|
5
|
Soe HMSH, Junthip J, Chamni S, Chansriniyom C, Limpikirati P, Thanusuwannasak T, Asasutjarit R, Pruksakorn P, Autthateinchai R, Wet-Osot S, Loftsson T, Jansook P. A promising synthetic citric crosslinked β-cyclodextrin derivative for antifungal drugs: Solubilization, cytotoxicity, and antifungal activity. Int J Pharm 2023; 645:123394. [PMID: 37689255 DOI: 10.1016/j.ijpharm.2023.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Effective antifungal therapy for the treatment of fungal keratitis requires a high drug concentration at the corneal surface. However, the use of natural β-cyclodextrin (βCD) in the preparation of aqueous eye drop formulations for treating fungal keratitis is limited by its low aqueous solubility. Here, we synthesized water-soluble anionic βCD derivatives capable of forming water-soluble complexes and evaluated the solubility, cytotoxicity, and antifungal efficacy of drug prepared using the βCD derivative. To achieve this, a citric acid crosslinked βCD (polyCTR-βCD) was successfully synthesized, and the aqueous solubilities of selected antifungal drugs, including voriconazole, miconazole (MCZ), itraconazole, and amphotericin B, in polyCTR-βCD and analogous βCD solutions were evaluated. Among the drugs tested, complexation of MCZ with polyCTR-βCD (MCZ/polyCTR-βCD) increased MCZ aqueous solubility by 95-fold compared with that of MCZ/βCD. The inclusion complex formation of MCZ/βCD and MCZ/polyCTR-βCD was confirmed by spectroscopic techniques. Additionally, the nanoaggregates of saturated MCZ/polyCTR-βCD and MCZ/βCD solutions were observed using dynamic light scattering and transmission electron microscopy. Moreover, MCZ/polyCTR-βCD solution exhibited good mucoadhesion, sustained drug release, and high drug permeation of porcine cornea ex vivo. Hen's Egg test-chorioallantoic membrane assay and cell viability study using Statens Seruminstitut Rabbit Cornea cell line showed that both MCZ/polyCTR-βCD and MCZ/βCD exhibited no sign of irritation and non-toxic to cell line. Additionally, antifungal activity evaluation demonstrated that all isolated fungi, including Candida albicans, Aspergillus flavus, and Fusarium solani, were susceptible to MCZ/polyCTR-βCD. Overall, the results showed that polyCTR-βCD could be a promising nanocarrier for the ocular delivery of MCZ.
Collapse
Affiliation(s)
- Hay Man Saung Hnin Soe
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Supakarn Chamni
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaisak Chansriniyom
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patanachai Limpikirati
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Rathapon Asasutjarit
- Faculty of Pharmacy, Thammasat University, Klong Luang, Rangsit, Pathum Thani 12120, Thailand
| | - Patamaporn Pruksakorn
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Rinrapas Autthateinchai
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Sirawit Wet-Osot
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Keshwania P, Kaur N, Chauhan J, Sharma G, Afzal O, Alfawaz Altamimi AS, Almalki WH. Superficial Dermatophytosis across the World's Populations: Potential Benefits from Nanocarrier-Based Therapies and Rising Challenges. ACS OMEGA 2023; 8:31575-31599. [PMID: 37692246 PMCID: PMC10483660 DOI: 10.1021/acsomega.3c01988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
The most prevalent infection in the world is dermatophytosis, which is a major issue with high recurrence and can affect the entire body including the skin, hair, and nails. The major goal of this Review is to acquire knowledge about cutting-edge approaches for treating dermatophytosis efficiently by adding antifungals to formulations based on nanocarriers in order to overcome the shortcomings of standard treatment methods. Updates on nanosystems and research developments on animal and clinical investigations are also presented. Along with the currently licensed formulations, the investigation also emphasizes novel therapies and existing therapeutic alternatives that can be used to control dermatophytosis. The Review also summarizes recent developments on the prevalence, management approaches, and disadvantages of standard dosage types. There are a number of therapeutic strategies for the treatment of dermatophytosis that have good clinical cure rates but also drawbacks such as antifungal drug resistance and unfavorable side effects. To improve therapeutic activity and get around the drawbacks of the traditional therapy approaches for dermatophytosis, efforts have been described in recent years to combine several antifungal drugs into new carriers. These formulations have been successful in providing improved antifungal activity, longer drug retention, improved effectiveness, higher skin penetration, and sustained drug release.
Collapse
Affiliation(s)
- Puja Keshwania
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Narinder Kaur
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Jyoti Chauhan
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Gajanand Sharma
- University
Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Waleed H. Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21961, Saudi Arabia
| |
Collapse
|