1
|
Cerullo D, Mantzouratou P, Lavecchia AM, Balsamo M, Corna D, Brunelli L, Xinaris C. Triiodothyronine protects infarcted myocardium by reducing apoptosis and preserving mitochondria. Basic Res Cardiol 2025:10.1007/s00395-025-01106-z. [PMID: 40232385 DOI: 10.1007/s00395-025-01106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025]
Abstract
Myocardial infarction (MI) is a leading cause of heart failure, with thyroid hormone (TH) signaling playing a key role in heart function and postinfarct recovery. Despite evidence of TH administration's safety in cardiac patients, inconsistent therapeutic outcomes and limited understanding of its mechanisms hinder clinical translation. This study aims to investigate the long-term effect of acute triiodothyronine (T3) administration following MI and to elucidate the mechanisms of its cardioprotective actions. To this end, two doses (40 μg/kg) of T3 were administered immediately after injury and 24 h later in a cryoinjury mouse model of left ventricle (LV) infarction. Remarkably T3 administration significantly reduced scar expansion. Echocardiographic analysis conducted 28 days post-injury revealed that T3 administration improved LV remodeling and prevented LV hypertrophy. At molecular level, T3 administration strongly reduced apoptosis in the peri-infarcted area, without inducing cardiac cell proliferation. Furthermore, T3 prevented the accumulation of long-chain acylcarnitines and the subsequent mitochondrial damage. These findings demonstrate that acute T3 treatment following MI improves long-term LV function and reduces LV remodeling by limiting apoptosis in the peri-infarct region and by preserving mitochondrial function and structural integrity.
Collapse
Affiliation(s)
- Domenico Cerullo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Molecular Medicine, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Polyxeni Mantzouratou
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Molecular Medicine, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Angelo M Lavecchia
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Molecular Medicine, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Melissa Balsamo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Molecular Medicine, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Molecular Medicine, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Laura Brunelli
- Environmental Health Sciences Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Molecular Medicine, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy.
| |
Collapse
|
2
|
Farag A, Mandour AS, Hendawy H, Elhaieg A, Elfadadny A, Tanaka R. A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci 2023; 10:1103229. [PMID: 37051509 PMCID: PMC10083377 DOI: 10.3389/fvets.2023.1103229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Heart failure (HF) is a serious health and economic burden worldwide, and its prevalence is continuously increasing. Current medications effectively moderate the progression of symptoms, and there is a need for novel preventative and reparative treatments. The development of novel HF treatments requires the testing of potential therapeutic procedures in appropriate animal models of HF. During the past decades, murine models have been extensively used in fundamental and translational research studies to better understand the pathophysiological mechanisms of HF and develop more effective methods to prevent and control congestive HF. Proper surgical approaches and anesthetic protocols are the first steps in creating these models, and each successful approach requires a proper anesthetic protocol that maintains good recovery and high survival rates after surgery. However, each protocol may have shortcomings that limit the study's outcomes. In addition, the ethical regulations of animal welfare in certain countries prohibit the use of specific anesthetic agents, which are widely used to establish animal models. This review summarizes the most common and recent surgical models of HF and the anesthetic protocols used in rat models. We will highlight the surgical approach of each model, the use of anesthesia, and the limitations of the model in the study of the pathophysiology and therapeutic basis of common cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Ahmed S. Mandour
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Ryou Tanaka
| |
Collapse
|
3
|
Wilson AD, Richards MA, Curtis MK, Gunadasa-Rohling M, Monterisi S, Loonat AA, Miller JJ, Ball V, Lewis A, Tyler DJ, Moshnikova A, Andreev OA, Reshetnyak YK, Carr C, Swietach P. Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH. Cardiovasc Res 2022; 118:2946-2959. [PMID: 34897412 PMCID: PMC9648823 DOI: 10.1093/cvr/cvab364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal. METHODS AND RESULTS Following left ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl-/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinization when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate (to improve systemic buffering) had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) up-regulation and Slc4a2 (AE2) down-regulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had lower chloride, a solution manoeuvre that reduces the extent of pHi-decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterized as pH-sensors, ablated this pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities.
Collapse
Affiliation(s)
- Abigail D Wilson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mark A Richards
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Jack J Miller
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Vicky Ball
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Andrew Lewis
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Carolyn Carr
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
4
|
Hulikova A, Park KC, Loonat AA, Gunadasa-Rohling M, Curtis MK, Chung YJ, Wilson A, Carr CA, Trafford AW, Fournier M, Moshnikova A, Andreev OA, Reshetnyak YK, Riley PR, Smart N, Milne TA, Crump NT, Swietach P. Alkaline nucleoplasm facilitates contractile gene expression in the mammalian heart. Basic Res Cardiol 2022; 117:17. [PMID: 35357563 PMCID: PMC8971196 DOI: 10.1007/s00395-022-00924-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 01/31/2023]
Abstract
Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life. pH-responsive differentially expressed genes (pH-DEGs) were identified by transcriptomics of neonatal cardiomyocytes cultured over a range of pH. Enrichment analysis indicated "striated muscle contraction" as a pH-responsive biological process. Label-free proteomics verified fifty-four pH-responsive gene-products, including contractile elements and the adaptor protein CRIP2. Using transcriptional assays, acidity was found to reduce p300/CBP acetylase activity and, its a functional readout, inhibit myocardin, a co-activator of cardiac gene expression. In cultured myocytes, acid-inhibition of p300/CBP reduced H3K27 acetylation, as demonstrated by chromatin immunoprecipitation. H3K27ac levels were more strongly reduced at promoters of acid-downregulated DEGs, implicating an epigenetic mechanism of pH-sensitive gene expression. By tandem cytoplasmic/nuclear pH imaging, the cardiac nucleus was found to exercise a degree of control over its pH through Na+/H+ exchangers at the nuclear envelope. Thus, we describe how extracellular pH signals gain access to the nucleus and regulate the expression of a subset of cardiac genes, notably those coding for contractile proteins and CRIP2. Acting as a proxy of a well-perfused myocardium, alkaline conditions are permissive for expressing genes related to the contractile apparatus.
Collapse
Affiliation(s)
- Alzbeta Hulikova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Yu Jin Chung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Abigail Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Marjorie Fournier
- Department of Biochemistry, Advanced Proteomics Facility, University of Oxford, Oxford, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
5
|
Martin TP, MacDonald EA, Elbassioni AAM, O'Toole D, Zaeri AAI, Nicklin SA, Gray GA, Loughrey CM. Preclinical models of myocardial infarction: from mechanism to translation. Br J Pharmacol 2021; 179:770-791. [PMID: 34131903 DOI: 10.1111/bph.15595] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
Approximately 7 million people are affected by acute myocardial infarction (MI) each year, and despite significant therapeutic and diagnostic advancements, MI remains a leading cause of mortality worldwide. Preclinical animal models have significantly advanced our understanding of MI and have enabled the development of therapeutic strategies to combat this debilitating disease. Notably, some drugs currently used to treat MI and heart failure (HF) in patients had initially been studied in preclinical animal models. Despite this, preclinical models are limited in their ability to fully reproduce the complexity of MI in humans. The preclinical model must be carefully selected to maximise the translational potential of experimental findings. This review describes current experimental models of MI and considers how they have been used to understand drug mechanisms of action and support translational medicine development.
Collapse
Affiliation(s)
- Tamara P Martin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Eilidh A MacDonald
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ali Ali Mohamed Elbassioni
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK.,Suez Canal University, Arab Republic of Egypt
| | - Dylan O'Toole
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ali Abdullah I Zaeri
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Gillian A Gray
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Christopher M Loughrey
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
6
|
Alonzo M, Delgado M, Cleetus C, Kumar SA, Thakur V, Chattopadhyay M, Joddar B. Methods for histological characterization of cryo-induced myocardial infarction in a rat model. Acta Histochem 2020; 122:151624. [PMID: 33066844 PMCID: PMC7573203 DOI: 10.1016/j.acthis.2020.151624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Ligation of the left anterior descending (LAD) coronary artery has been commonly employed to induce myocardial infarction (MI) in animals; however, it is known to pose setbacks in the form of cardiac arrhythmias and unpredictable areas of necrotic damage. Cryo-infarction is an alternate method that has been adopted to create a reproducible model of a myocardial injury. In this study, Sprague-Dawley rats were subjected to thoracotomy followed by cryo-induced infarction of the heart, while the control-sham group was only subjected to thoracotomy following which the heart was collected from all animals. Tissue sections were stained with hematoxylin and eosin and analyzed to determine cardiac muscle density, fiber length, and fiber curvature. Observations revealed reduced muscle density, cardiac fiber length, and distorted fibers in infarcted tissue sections. Gomori's Trichrome staining was performed on tissue sections to study the effects of post MI on collagen, which showed enhanced intensity of collagen staining indicating fibrosis for the experimental models as compared to the sham models, an established consequence to myocardial injury. Immunohistochemical staining of the tissue sections with DAPI and connexin-43 (Cx-43) revealed that there was reduced DAPI staining and a less pronounced expression of Cx-43 in the experimental samples as compared to the sham samples. Results implied significant cell damage resulting from the cryo-infarction, subsequently disrupting and disaggregating the functional Cx-43 junction in cardiac myocytes, which is essential for normal and healthy cardiac physiology and function. This quantitative histological study of cryo-induced MI in a rat model can aid others attempting to optimize MI models in rats via cryo-injury, to study cardiac disease progression, and to aid in the construction of engineered cardiac tissues.
Collapse
Affiliation(s)
- Matthew Alonzo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Monica Delgado
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Carol Cleetus
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Shweta Anil Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX, 79968, USA
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX, 79968, USA
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA; Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA; Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
7
|
The microRNA in ventricular remodeling: the miR-30 family. Biosci Rep 2019; 39:BSR20190788. [PMID: 31320543 PMCID: PMC6680373 DOI: 10.1042/bsr20190788] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Ventricular remodeling (VR) is a complex pathological process of cardiomyocyte apoptosis, cardiac hypertrophy, and myocardial fibrosis, which is often caused by various cardiovascular diseases (CVDs) such as hypertension, acute myocardial infarction, heart failure (HF), etc. It is also an independent risk factor for a variety of CVDs, which will eventually to damage the heart function, promote cardiovascular events, and lead to an increase in mortality. MicroRNAs (miRNAs) can participate in a variety of CVDs through post-transcriptional regulation of target gene proteins. Among them, microRNA-30 (miR-30) is one of the most abundant miRNAs in the heart. In recent years, the study found that the miR-30 family can participate in VR through a variety of mechanisms, including autophagy, apoptosis, oxidative stress, and inflammation. VR is commonly found in ischemic heart disease (IHD), hypertensive heart disease (HHD), diabetic cardiomyopathy (DCM), antineoplastic drug cardiotoxicity (CTX), and other CVDs. Therefore, we will review the relevant mechanisms of the miR-30 in VR induced by various diseases.
Collapse
|
8
|
Tomek J, Hao G, Tomková M, Lewis A, Carr C, Paterson DJ, Rodriguez B, Bub G, Herring N. β-Adrenergic Receptor Stimulation and Alternans in the Border Zone of a Healed Infarct: An ex vivo Study and Computational Investigation of Arrhythmogenesis. Front Physiol 2019; 10:350. [PMID: 30984029 PMCID: PMC6450465 DOI: 10.3389/fphys.2019.00350] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Following myocardial infarction (MI), the myocardium is prone to calcium-driven alternans, which typically precedes ventricular tachycardia and fibrillation. MI is also associated with remodeling of the sympathetic innervation in the infarct border zone, although how this influences arrhythmogenesis is controversial. We hypothesize that the border zone is most vulnerable to alternans, that β-adrenergic receptor stimulation can suppresses this, and investigate the consequences in terms of arrhythmogenic mechanisms. Methods and Results: Anterior MI was induced in Sprague-Dawley rats (n = 8) and allowed to heal over 2 months. This resulted in scar formation, significant (p < 0.05) dilation of the left ventricle, and reduction in ejection fraction compared to sham operated rats (n = 4) on 7 T cardiac magnetic resonance imaging. Dual voltage/calcium optical mapping of post-MI Langendorff perfused hearts (using RH-237 and Rhod2) demonstrated that the border zone was significantly more prone to alternans than the surrounding myocardium at longer cycle lengths, predisposing to spatially heterogeneous alternans. β-Adrenergic receptor stimulation with norepinephrine (1 μmol/L) attenuated alternans by 60 [52–65]% [interquartile range] and this was reversed with metoprolol (10 μmol/L, p = 0.008). These results could be reproduced by computer modeling of the border zone based on our knowledge of β-adrenergic receptor signaling pathways and their influence on intracellular calcium handling and ion channels. Simulations also demonstrated that β-adrenergic receptor stimulation in this specific region reduced the formation of conduction block and the probability of premature ventricular activation propagation. Conclusion: While high levels of overall cardiac sympathetic drive are a negative prognostic indicator of mortality following MI and during heart failure, β-adrenergic receptor stimulation in the infarct border zone reduced spatially heterogeneous alternans, and prevented conduction block and propagation of extrasystoles. This may help explain recent clinical imaging studies using meta-iodobenzylguanidine (MIBG) and 11C-meta-hydroxyephedrine positron emission tomography (PET) which demonstrate that border zone denervation is strongly associated with a high risk of future arrhythmia.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Guoliang Hao
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Markéta Tomková
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew Lewis
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|
10
|
Voges HK, Mills RJ, Elliott DA, Parton RG, Porrello ER, Hudson JE. Development of a human cardiac organoid injury model reveals innate regenerative potential. Development 2017; 144:1118-1127. [PMID: 28174241 DOI: 10.1242/dev.143966] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
The adult human heart possesses a limited regenerative potential following an ischemic event, and undergoes a number of pathological changes in response to injury. Although cardiac regeneration has been documented in zebrafish and neonatal mouse hearts, it is currently unknown whether the immature human heart is capable of undergoing complete regeneration. Combined progress in pluripotent stem cell differentiation and tissue engineering has facilitated the development of human cardiac organoids (hCOs), which resemble fetal heart tissue and can be used to address this important knowledge gap. This study aimed to characterize the regenerative capacity of immature human heart tissue in response to injury. Following cryoinjury with a dry ice probe, hCOs exhibited an endogenous regenerative response with full functional recovery 2 weeks after acute injury. Cardiac functional recovery occurred in the absence of pathological fibrosis or cardiomyocyte hypertrophy. Consistent with regenerative organisms and neonatal human hearts, there was a high basal level of cardiomyocyte proliferation, which may be responsible for the regenerative capacity of the hCOs. This study suggests that immature human heart tissue has an intrinsic capacity to regenerate.
Collapse
Affiliation(s)
- Holly K Voges
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Richard J Mills
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, Royal Children's Hospital, School of Biosciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
A chick embryo cryoinjury model for the study of embryonic organ development and repair. Differentiation 2016; 91:72-7. [DOI: 10.1016/j.diff.2015.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/17/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022]
|
12
|
Jewhurst K, McLaughlin KA. Beyond the Mammalian Heart: Fish and Amphibians as a Model for Cardiac Repair and Regeneration. J Dev Biol 2015; 4:jdb4010001. [PMID: 29615574 PMCID: PMC5831815 DOI: 10.3390/jdb4010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/04/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022] Open
Abstract
The epidemic of heart disease, the leading cause of death worldwide, is made worse by the fact that the adult mammalian heart is especially poor at repair. Damage to the mammal heart-such as that caused by myocardial infarction-leads to scarring, resulting in cardiac dysfunction and heart failure. In contrast, the hearts of fish and urodele amphibians are capable of complete regeneration of cardiac tissue from multiple types of damage, with full restoration of functionality. In the last decades, research has revealed a wealth of information on how these animals are able to perform this remarkable feat, and non-mammalian models of heart repair have become a burgeoning new source of data on the morphological, cellular, and molecular processes necessary to heal cardiac damage. In this review we present the major findings from recent research on the underlying mechanisms of fish and amphibian heart regeneration. We also discuss the tools and techniques that have been developed to answer these important questions.
Collapse
Affiliation(s)
- Kyle Jewhurst
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | | |
Collapse
|
13
|
Abdulmahdi W, Zullo J, Nesi L, Goligorksy MS, Ratliff BB. Charting the course of renal cryoinjury. Physiol Rep 2015; 3:3/4/e12357. [PMID: 25896979 PMCID: PMC4425963 DOI: 10.14814/phy2.12357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We sought to characterize a minor renal cryoinjury that allows investigation into renal damage processes and subsequent endogenous repair mechanisms. To achieve this, we induced a small cryoinjury to mice, in which the transient superficial application of a liquid nitrogen-cooled cryoprobe to the exposed kidney induces a localized lesion that did not impair renal function. The resulting cryoinjury was examined by immunohistochemistry and Laser-Doppler flowmetry. Within hours of cryoinjury induction, tubular and vascular necrotic damage was observed, while blood flow in the directly injured area was reduced by 65%. The injured area demonstrated a peak in tubular and perivascular cell proliferation at 4 days postinjury, while apoptosis and fibrosis peaked at day 7. Infiltration of macrophages into the injury was first observed at day 4, and peaked at day 7. Vascular density in the direct injured area was lowest at day 7. As compared to the direct injured area, the (peripheral) penumbral region surrounding the directly injured area demonstrated enhanced cellular proliferation (2.5-6-fold greater), vascular density (1.6-2.9 fold greater) and blood perfusion (twofold greater). After 4 weeks, the area of damage was reduced by 73%, fibrosis decreased by 50% and blood flow in the direct injured area was reestablished by 63% with almost complete perfusion restoration in the injury's penumbral region. In conclusion, kidney cryoinjury provides a flexible facile model for the study of renal damage and associated endogenous repair processes.
Collapse
Affiliation(s)
- Wasan Abdulmahdi
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA Department of Pathology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Joseph Zullo
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Lauren Nesi
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Michael S Goligorksy
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Brian B Ratliff
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
14
|
Shiba Y, Filice D, Fernandes S, Minami E, Dupras SK, Biber BV, Trinh P, Hirota Y, Gold JD, Viswanathan M, Laflamme MA. Electrical Integration of Human Embryonic Stem Cell-Derived Cardiomyocytes in a Guinea Pig Chronic Infarct Model. J Cardiovasc Pharmacol Ther 2014; 19:368-381. [PMID: 24516260 DOI: 10.1177/1074248413520344] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were recently shown to be capable of electromechanical integration following direct injection into intact or recently injured guinea pig hearts, and hESC-CM transplantation in recently injured hearts correlated with improvements in contractile function and a reduction in the incidence of arrhythmias. The present study was aimed at determining the ability of hESC-CMs to integrate and modulate electrical stability following transplantation in a chronic model of cardiac injury. METHODS AND RESULTS At 28 days following cardiac cryoinjury, guinea pigs underwent intracardiac injection of hESC-CMs, noncardiac hESC derivatives (non-CMs), or vehicle. Histology confirmed partial remuscularization of the infarct zone in hESC-CM recipients while non-CM recipients showed heterogeneous xenografts. The 3 experimental groups showed no significant difference in the left ventricular dimensions or fractional shortening by echocardiography or in the incidence of spontaneous arrhythmias by telemetric monitoring. Although recipients of hESC-CMs and vehicle showed a similar incidence of arrhythmias induced by programmed electrical stimulation at 4 weeks posttransplantation, non-CM recipients proved to be highly inducible, with a ∼3-fold greater incidence of induced arrhythmias. In parallel studies, we investigated the ability of hESC-CMs to couple with host myocardium in chronically injured hearts by the intravital imaging of hESC-CM grafts that stably expressed a fluorescent reporter of graft activation, the genetically encoded calcium sensor GCaMP3. In this work, we found that only ∼38% (5 of 13) of recipients of GCaMP3+ hESC-CMs showed fluorescent transients that were coupled to the host electrocardiogram. CONCLUSIONS Human embryonic stem cell-derived cardiomyocytes engraft in chronically injured hearts without increasing the incidence of arrhythmias, but their electromechanical integration is more limited than previously reported following their transplantation in a subacute injury model. Moreover, non-CM grafts may promote arrhythmias under certain conditions, a finding that underscores the need for input preparations of high cardiac purity.
Collapse
Affiliation(s)
- Yuji Shiba
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Dominic Filice
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Department of Bioengineering, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Sarah Fernandes
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Gilead Sciences, Fremont, CA, USA
| | - Elina Minami
- Department of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Sarah K Dupras
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Benjamin Van Biber
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Peter Trinh
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Yusuke Hirota
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Joseph D Gold
- Geron Corporation, Menlo Park, CA, USA Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Mohan Viswanathan
- Department of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Michael A Laflamme
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Ciulla MM, De Marco F, Montelatici E, Lazzari L, Perrucci GL, Magrini F. Assessing cytokines' talking patterns following experimental myocardial damage by applying Shannon's information theory. J Theor Biol 2013; 343:25-31. [PMID: 24211523 DOI: 10.1016/j.jtbi.2013.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND The simultaneous measurement of multiple cytokines in parallel by using multiplex proteome arrays (MPA) is of great interest to understanding the inflammatory response following myocardial infarction; however, since cytokines are pleiotropic and redundant, increase of information throughput (IT) attained by measuring multiple cytokines remain to be determined. We aimed this study to assess the IT of an MPA system designed to assess 8 cytokines - commercially available at the time of the study - serum levels, before (control state) and after experimental myocardial cryoinjury (activated state) in rats. METHODS By assuming that redundant information do not generally increase the IT, we derived Entropy (H) and Redundancy (R) of information by using formulas of Shannon modified accordingly, where a high IT (high H and low R) corresponds to a low level of correlation between cytokines and vice versa for a low IT. The maximum theoretical level of IT and the contribution of each cytokine were also estimated. RESULTS In control state, no significant correlations were found between cytokines showing high IT; on the contrary, in activated state, several significant correlations were found supporting a complex cross-talk pattern between cytokines with low IT. Using as reference the maximum theoretical level of IT, in activated state, H was reduced of 67.0% and R was increased of 77.4% supporting a reduction of IT. Furthermore, the contribution of individual cytokines to H value of MPA was variable: in control state, IL-2 gave the most contribution to H value, conversely during activated state IL-10 gave most contribution. Finally during activated state, IL-1β was the only cytokine strongly correlated with values of all other cytokines, suggesting a crucial role in the inflammatory cascade. CONCLUSIONS Paradoxically, by analyzing an MPA system designed for redundant analytes such as cytokines, translating the Shannon's information theory from the field of communication to biology, the IT system in our model deteriorates during the activation state by increasing its redundancy, showing maximum value of entropy in the control conditions. Finally, the study of the mutual interdependence between cytokines by the contribution to the IT may allow formulating alternative models to describe the inflammatory cascade after myocardial infarction.
Collapse
Affiliation(s)
- Michele M Ciulla
- Department of Clinical Science and Community Health, Laboratory of Clinical Informatics and Cardiovascular Imaging, University of Milan, 20122 Milan, Italy.
| | - Federico De Marco
- Cardiology 1, Emodinamica, Ospedale Niguarda Ca' Granda, Milan, Italy.
| | - Elisa Montelatici
- Cell Factory "Franco Calori", Milan, Italy; Foundation I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Lorenza Lazzari
- Cell Factory "Franco Calori", Milan, Italy; Foundation I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Gianluca L Perrucci
- Department of Clinical Science and Community Health, Laboratory of Clinical Informatics and Cardiovascular Imaging, University of Milan, 20122 Milan, Italy.
| | - Fabio Magrini
- Department of Clinical Science and Community Health, Laboratory of Clinical Informatics and Cardiovascular Imaging, University of Milan, 20122 Milan, Italy; Foundation I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| |
Collapse
|
16
|
Uchinaka A, Kawaguchi N, Hamada Y, Mori S, Miyagawa S, Saito A, Sawa Y, Matsuura N. Transplantation of myoblast sheets that secrete the novel peptide SVVYGLR improves cardiac function in failing hearts. Cardiovasc Res 2013; 99:102-10. [PMID: 23615564 DOI: 10.1093/cvr/cvt088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Transplantation of myoblast sheets is a promising therapy for enhancing cardiac function after heart failure. We have previously demonstrated that a 7-amino-acid sequence (Ser-Val-Val-Tyr-Gly-Leu-Arg) derived from osteopontin (SV peptide) induces angiogenesis. In this study, we evaluated the long-term therapeutic effects of myoblast sheets secreting SV in a rat infarction model. METHODS AND RESULTS Two weeks after ligation of the left anterior descending coronary artery, the animals were divided into the following three groups: a group transplanted with wild-type rat skeletal myoblast sheets (WT-rSkMs); a group transplanted with SV-secreting myoblast sheets (SV-rSkMs); and a control group (ligation only). We evaluated cardiac function, histological changes, and smooth muscle actin (SMA) expression through transforming growth factor-β (TGF-β) signalling. The ejection fraction and fractional shortening were significantly better, and the enlargement of end-systolic volume was also significantly attenuated in the SV-rSkM group. Left ventricular remodelling, including fibrosis and hypertrophy, was significantly attenuated in the SV-rSkM group, and SV secreted by the myoblast sheets promoted angiogenesis in the infarcted border area. Furthermore, many clusters of SMA-positive cells were observed in the infarcted areas in the SV-rSkM group. In vitro SMA expression was increased when SV was added to the isolated myocardial fibroblasts. Moreover, SV bound to the TGF-β receptor, and SV treatment activated TGF-β receptor-Smad signalling. CONCLUSION The SV-secreting myoblast sheets facilitate a long-term improvement in cardiac function. The SV can induce differentiation of fibroblasts to myofibroblasts via TGF-β-Smad signalling. This peptide could possibly be used as a bridge to heart transplantation or as an ideal peptide drug for cardiac regeneration therapy.
Collapse
Affiliation(s)
- Ayako Uchinaka
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Transauricular embolization of the rabbit coronary artery for experimental myocardial infarction: comparison of a minimally invasive closed-chest model with open-chest surgery. J Cardiothorac Surg 2012; 7:16. [PMID: 22330077 PMCID: PMC3307024 DOI: 10.1186/1749-8090-7-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/13/2012] [Indexed: 11/10/2022] Open
Abstract
Introduction To date, most animal studies of myocardial ischemia have used open-chest models with direct surgical coronary artery ligation. We aimed to develop a novel, percutaneous, minimally-invasive, closed-chest model of experimental myocardial infarction (EMI) in the New Zealand White rabbit and compare it with the standard open-chest surgical model in order to minimize local and systemic side-effects of major surgery. Methods New Zealand White rabbits were handled in conformity with the "Guide for the Care and Use of Laboratory Animals" and underwent EMI under intravenous anesthesia. Group A underwent EMI with an open-chest method involving surgical tracheostomy, a mini median sternotomy incision and left anterior descending (LAD) coronary artery ligation with a plain suture, whereas Group B underwent EMI with a closed-chest method involving fluoroscopy-guided percutaneous transauricular intra-arterial access, superselective LAD catheterization and distal coronary embolization with a micro-coil. Electrocardiography (ECG), cardiac enzymes and transcatheter left ventricular end-diastolic pressure (LVEDP) measurements were recorded. Surviving animals were euthanized after 4 weeks and the hearts were harvested for Hematoxylin-eosin and Masson-trichrome staining. Results In total, 38 subjects underwent EMI with a surgical (n = 17) or endovascular (n = 21) approach. ST-segment elevation (1.90 ± 0.71 mm) occurred sharply after surgical LAD ligation compared to progressive ST elevation (2.01 ± 0.84 mm;p = 0.68) within 15-20 min after LAD micro-coil embolization. Increase of troponin and other cardiac enzymes, abnormal ischemic Q waves and LVEDP changes were recorded in both groups without any significant differences (p > 0.05). Infarct area was similar in both models (0.86 ± 0.35 cm in the surgical group vs. 0.92 ± 0.54 cm in the percutaneous group;p = 0.68). Conclusion The proposed model of transauricular coronary coil embolization avoids thoracotomy and major surgery and may be an equally reliable and reproducible platform for the experimental study of myocardial ischemia.
Collapse
|
18
|
Yang Y, Sun J, Gervai P, Gruwel ML, Jilkina O, Gussakovsky E, Yang X, Kupriyanov V. Characterization of cryoinjury-induced infarction with manganese-and gadolinium-enhanced MRI and optical spectroscopy in pig hearts. Magn Reson Imaging 2010; 28:753-66. [DOI: 10.1016/j.mri.2010.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/29/2009] [Accepted: 02/08/2010] [Indexed: 01/16/2023]
|
19
|
Mitsos S, Katsanos K, Dougeni E, Koletsis EN, Dougenis D. A critical appraisal of open- and closed-chest models of experimental myocardial ischemia. Lab Anim (NY) 2009; 38:167-77. [DOI: 10.1038/laban0509-167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Antonio EL, Dos Santos AA, Araujo SRR, Bocalini DS, Dos Santos L, Fenelon G, Franco MF, Tucci PJF. Left ventricle radio-frequency ablation in the rat: a new model of heart failure due to myocardial infarction homogeneous in size and low in mortality. J Card Fail 2009; 15:540-8. [PMID: 19643366 DOI: 10.1016/j.cardfail.2009.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND The purpose of the current study was to create a model of myocardial infarction (MI) that is homogeneous in size with a low immediate (24 hours) mortality. METHODS AND RESULTS Male and female rats (n = 256) underwent left ventricle (LV) ablation (Ab) by a radiofrequency current (1000 kHz; 12 watts for 12 seconds) to promote a MI. A transmural MI occurred in all rats. Post-Ab complex arrhythmias were frequent (atrioventricular block, ventricular tachycardia, and fibrillation), which rapidly and spontaneously reverted to sinus rhythm. Among 66 male rats, immediate mortality occurred in 7.5%. Small MI size dispersion was characterized by smaller variability following Ab (x +/- SD: 45 +/- 8%) when compared with coronary occlusion (Oc; 40 +/- 19%). The histopathologic evaluations identified lesions similar to those which occurred following Oc, with scarring complete at 4 weeks. The hemodynamic and Doppler echocardiograms showed comparable increases in LV dimension, end-diastolic pressure, and pulmonary water content 1 and 4 weeks post-MI. Papillary muscle mechanics 6 weeks post-MI had matched inotropic and lusitropic dysfunction. CONCLUSIONS LV Ab gave rise to a MI within a narrow size limit and with a low immediate mortality. LV Ab resulted in histopathologic evolution, ventricular dilation, and dysfunction, impairment in myocardial mechanics, and congestive outcome that reproduced a MI from Oc.
Collapse
Affiliation(s)
- Ednei L Antonio
- Department of Physiology, Cardiovascular Division, Federal University of São Paulo (UNIFESP), Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim YJ, Huh YM, Choe KO, Choi BW, Choi EJ, Jang Y, Lee JM, Suh JS. In vivo magnetic resonance imaging of injected mesenchymal stem cells in rat myocardial infarction; simultaneous cell tracking and left ventricular function measurement. Int J Cardiovasc Imaging 2009; 25 Suppl 1:99-109. [PMID: 19132547 DOI: 10.1007/s10554-008-9407-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 02/06/2023]
Abstract
To determine whether magnetic resonance imaging (MRI) can enable magnetically labeled mesenchymal stem cell (MSC) tracking and simultaneous in vivo functional data acquisition in rat models of myocardial infarction. Superparamagnetic iron oxide-laden human MSCs were injected into rat myocardium infarcted by cryoinjury 3 weeks after myocardial infarction. The control group received cell-free media injection. Before injection and for 3 months after, in vivo serial MRI was performed. Electrocardiography-gated gradient echo sequence MRI and cine MRI were performed for in vivo cell tracking and assessing cardiac function using left ventricular ejection fraction (LVEF), respectively. MRI revealed a persistent signal-void representing iron-laden MSCs until ten post-injection weeks. Serial follow-up MRI revealed that LVEF was significantly higher in the MSC injection group than in the control group. We conclude that MRI enables in vivo tracking of injected cells and evaluation of the long-term therapeutic potential of MSCs for myocardial infarction.
Collapse
Affiliation(s)
- Young Jin Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, 120-752 Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Iop L, Chiavegato A, Callegari A, Bollini S, Piccoli M, Pozzobon M, Rossi CA, Calamelli S, Chiavegato D, Gerosa G, De Coppi P, Sartore S. Different cardiovascular potential of adult- and fetal-type mesenchymal stem cells in a rat model of heart cryoinjury. Cell Transplant 2008; 17:679-94. [PMID: 18819256 DOI: 10.3727/096368908786092739] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Efficacy of adult (bone marrow, BM) versus fetal (amniotic fluid, AF) mesenchymal stem cells (MSCs) to replenish damaged rat heart tissues with new cardiovascular cells has not yet been established. We investigated on the differentiation potential of these two rat MSC populations in vitro and in a model of acute necrotizing injury (ANI) induced by cryoinjury. Isolated BM-MSCs and AF-MSCs were characterized by flow cytometry and cytocentrifugation and their potential for osteogenic, adipogenic, and cardiovascular differentiation assayed in vitro using specific induction media. The left anterior ventricular wall of syngeneic Fisher 344 (n = 48) and athymic nude (rNu) rats (n = 6) was subjected to a limited, nontransmural epicardial ANI in the approximately one third of wall thickness without significant hemodynamic effects. The time window for in situ stem cell transplantation was established at day 7 postinjury. Fluorochrome (CMTMR)-labeled BM-MSCs (2 x 10(6)) or AF-MSCs (2 x 10(6)) were injected in syngeneic animals (n = 26) around the myocardial lesion via echocardiographic guidance. Reliability of CMTMR cell tracking in this context was ascertained by transplanting genetically labeled BM-MSCs or AF-MSCs, expressing the green fluorescent protein (GFP), in rNu rats with ANI. Comparison between the two methods of cell tracking 30 days after cell transplantation gave slightly different values (1420,58 +/- 129,65 cells/mm2 for CMTMR labeling and 1613.18 +/- 643.84 cells/mm2 for genetic labeling; p = NS). One day after transplantation about one half CMTMR-labeled AF-MSCs engrafted to the injured heart (778.61 +/- 156.28 cells/mm2) in comparison with BM-MSCs (1434.50 +/- 173.80 cells/mm2, p < 0.01). Conversely, 30 days after cell transplantation survived MSCs were similar: 1275.26 +/- 74.51/mm2 (AF-MSCs) versus 1420.58 +/- 129.65/mm2 for BM-MSCs (p = NS). Apparent survival gain of AF-MSCs between the two time periods was motivated by the cell proliferation rate calculated at day 30, which was lower for BM-MSCs (6.79 +/- 0.48) than AF-MSCs (10.83 +/- 3.50; p < 0.01), in the face of a similar apoptotic index (4.68 +/- 0.20 for BM-MSCs and 4.16 +/- 0.58 for AF-MSCs; p = NS). These cells were also studied for their expression of markers specific for endothelial cells (ECs), smooth muscle cells (SMCs), and cardiomyocytes (CMs) using von Willebrand factor (vWf), smooth muscle (SM) alpha-actin, and cardiac troponin T, respectively. Grafted BM-MSCs or AF-MSCs were found as single cell/small cell clusters or incorporated in the wall of microvessels. A larger number of ECs (227.27 +/- 18.91 vs. 150.36 +/- 24.08 cells/mm2, p < 0.01) and CMs (417.91 +/- 100.95 vs. 237.43 +/- 79.99 cells/mm2, p < 0.01) originated from AF-MSCs than from BM-MSCs. Almost no SMCs were seen with AF-MSCs, in comparison to BM-MSCs (98.03 +/- 40.84 cells/mm2), in concordance with lacking of arterioles, which, instead, were well expressed with BM-MSCs (71.30 +/- 55.66 blood vessels/mm2). The number of structurally organized capillaries was slightly different with the two MSCs (122.49 +/- 17.37/mm2 for AF-MSCs vs. 148.69 +/- 54.41/mm2 for BM-MSCs; p = NS). Collectively, these results suggest that, in the presence of the same postinjury microenvironment, the two MSC populations from different sources are able to activate distinct differentiation programs that potentially can bring about a myocardial-capillary or myocardial-capillary-arteriole reconstitution.
Collapse
Affiliation(s)
- Laura Iop
- Department of Biomedical Sciences, University of Padua School of Medicine, Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee EJ, Kim DE, Azeloglu EU, Costa KD. Engineered cardiac organoid chambers: toward a functional biological model ventricle. Tissue Eng Part A 2008; 14:215-25. [PMID: 18333774 DOI: 10.1089/tea.2007.0351] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A growing area in the field of tissue engineering is the development of tissue equivalents as model systems for in vitro experimentation and high-throughput screening applications. Although a variety of strategies have been developed to enhance the structure and function of engineered cardiac tissues, an inherent limitation with traditional myocardial patches is that they do not permit evaluation of the fundamental relationships between pressure and volume that characterize global contractile function of the heart. Therefore, in the following study we introduce fully biological, living engineered cardiac organoids, or simplified heart chambers, that beat spontaneously, develop pressure, eject fluid, contain residual stress, exhibit a functional Frank-Starling mechanism, and generate positive stroke work. We also demonstrate regional variations in pump function following local cryoinjury, yielding a novel engineered tissue model of myocardial infarction. With the unique ability to directly evaluate relevant pressure-volume characteristics and regulate wall stress, this organoid chamber culture system provides a flexible platform for developing a controllable biomimetic cardiac niche environment that can be adapted for a variety of high-throughput and long-term investigations of cardiac pump function.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
24
|
Ciulla MM, Montelatici E, Ferrero S, Braidotti P, Paliotti R, Annoni G, De Camilli E, Busca G, Chiappa L, Rebulla P, Magrini F, Lazzari L. Potential advantages of cell administration on the inflammatory response compared to standard ACE inhibitor treatment in experimental myocardial infarction. J Transl Med 2008; 6:30. [PMID: 18549470 PMCID: PMC2435101 DOI: 10.1186/1479-5876-6-30] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/12/2008] [Indexed: 01/13/2023] Open
Abstract
Background Bone Marrow (BM) progenitor cells can target the site of myocardial injury, contributing to tissue repair by neovascolarization and/or by a possible direct paracrine effect on the inflammatory cascade. Angiotensin Converting Enzyme inhibitors (ACE-I) are effective in reducing mortality and preventing left ventricular (LV) function deterioration after myocardial infarction. Methods We investigated the short term effects of BM mononuclear cells (BMMNCs) therapy on the pro-inflammatory cytokines (pro-CKs) and on LV remodelling and compared these effects over a standard ACE-I therapy in a rat model of myocardial cryodamage. Forty two adult inbread Fisher-F344 rats were randomized into three groups: untreated (UT; n = 12), pharmacological therapy (ACE-I; n = 14, receiving quinapril), and cellular therapy (BMMNCs; n = 16, receiving BMMNCs infusion). Rats underwent to a standard echocardiogram in the acute setting and 14 days after the damage, before the sacrifice. Pro-CKs analysis (interleukin (IL)1β, IL-6, tumor necrosis factor (TNF)α was performed (multiplex proteome arrays) on blood samples obtained by direct aorta puncture before the sacrifice; a control group of 6 rats was considered as reference. Results Concerning the extension of the infarcted area as well as the LV dimensions, no differences were observed among the animal groups; treated rats had lower left atrial diameters and higher indexes of LV function. Pro-Cks were increased in infarcted-UT rats if compared with controls, and significantly reduced by BMMNCs and ACE-I ; TNFα inversely correlated with LV fractional shortening. Conclusion After myocardial infarction, both BMMNCs and ACE-I reduce the pattern of pro-Ck response, probably contributing to prevent the deterioration of LV function observed in UT rats.
Collapse
Affiliation(s)
- Michele M Ciulla
- Istituto di Medicina Cardiovascolare, Centro di Fisiologia Clinica e Ipertensione, University of Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Baudino TA, McFadden A, Fix C, Hastings J, Price R, Borg TK. Cell patterning: interaction of cardiac myocytes and fibroblasts in three-dimensional culture. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:117-125. [PMID: 18312716 DOI: 10.1017/s1431927608080021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/21/2007] [Indexed: 05/26/2023]
Abstract
Patterning of cells is critical to the formation and function of the normal organ, and it appears to be dependent upon internal and external signals. Additionally, the formation of most tissues requires the interaction of several cell types. Indeed, both extracellular matrix (ECM) components and cellular components are necessary for three-dimensional (3-D) tissue formation in vitro. Using 3-D cultures we demonstrate that ECM arranged in an aligned fashion is necessary for the rod-shaped phenotype of the myocyte, and once this pattern is established, the myocytes were responsible for the alignment of any subsequent cell layers. This is analogous to the in vivo pattern that is observed, where there appears to be minimal ECM signaling, rather formation of multicellular patterns is dependent upon cell-cell interactions. Our 3-D culture of myocytes and fibroblasts is significant in that it models in vivo organization of cardiac tissue and can be used to investigate interactions between fibroblasts and myocytes. Furthermore, we used rotational cultures to examine cellular interactions. Using these systems, we demonstrate that specific connexins and cadherins are critical for cell-cell interactions. The data presented here document the feasibility of using these systems to investigate cellular interactions during normal growth and injury.
Collapse
Affiliation(s)
- Troy A Baudino
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29209, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Kim DE, Lee EJ, Martens TP, Kara R, Chaudhry HW, Itescu S, Costa KD. Engineered cardiac tissues for in vitro assessment of contractile function and repair mechanisms. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:849-52. [PMID: 17946863 DOI: 10.1109/iembs.2006.259753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
For efficiently assessing the potential for grafted cells to repair infarcted myocardium, a simplified surrogate heart muscle system would offer numerous advantages. Using neonatal rat cardiac myocytes in a collagen matrix, we created thin cylindrical engineered cardiac tissues (ECTs) that exhibit essential aspects of physiologic cardiac muscle function. Furthermore, a novel cryo-injured ECT model of myocardial infarction offers the potential for the longitudinal study of mechanisms of cell-based cardiac repair in vitro.
Collapse
Affiliation(s)
- Do Eun Kim
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Pleger ST, Remppis A, Heidt B, Völkers M, Chuprun JK, Kuhn M, Zhou RH, Gao E, Szabo G, Weichenhan D, Müller OJ, Eckhart AD, Katus HA, Koch WJ, Most P. S100A1 Gene Therapy Preserves in Vivo Cardiac Function after Myocardial Infarction. Mol Ther 2005; 12:1120-9. [PMID: 16168714 DOI: 10.1016/j.ymthe.2005.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 08/05/2005] [Accepted: 08/07/2005] [Indexed: 01/08/2023] Open
Abstract
Myocardial infarction (MI) represents an enormous clinical challenge as loss of myocardium due to ischemic injury is associated with compromised left ventricular (LV) function often leading to acute cardiac decompensation or chronic heart failure. S100A1 was recently identified as a positive inotropic regulator of myocardial contractility in vitro and in vivo. Here, we explore the strategy of myocardial S100A1 gene therapy either at the time of, or 2 h after, MI to preserve global heart function. Rats underwent cryothermia-induced MI and in vivo intracoronary delivery of adenoviral transgenes (4 x 10(10) pfu). Animals received saline (MI), the S100A1 adenovirus (MI/AdS100A1), a control adenovirus (MI/AdGFP), or a sham operation. S100A1 gene delivery preserved global in vivo LV function 1 week after MI. Preservation of LV function was due mainly to S100A1-mediated gain of contractility of the remaining, viable myocardium since contractile parameters and Ca(2+) transients of isolated MI/AdS100A1 myocytes were significantly enhanced compared to myocytes isolated from both MI/AdGFP and sham groups. Moreover, S100A1 gene therapy preserved the cardiac beta-adrenergic inotropic reserve, which was associated with the attenuation of GRK2 up-regulation. Also, S100A1 overexpression reduced cardiac hypertrophy 1 week post-MI. Overall, our data indicate that S100A1 gene therapy provides a potential novel treatment strategy to maintain contractile performance of the post-MI heart.
Collapse
Affiliation(s)
- Sven T Pleger
- Medizinische Universitätsklinik und Poliklinik III, Otto Meyerhof Zentrum, Universität zu Heidelberg, INF 350, 69115 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
van den Bos EJ, Mees BME, de Waard MC, de Crom R, Duncker DJ. A novel model of cryoinjury-induced myocardial infarction in the mouse: a comparison with coronary artery ligation. Am J Physiol Heart Circ Physiol 2005; 289:H1291-300. [PMID: 15863462 DOI: 10.1152/ajpheart.00111.2005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse myocardial infarction (MI) models are frequently used research tools. The most commonly applied model is coronary artery ligation. However, coronary ligation often gives rise to apical aneurysmatic infarcts of variable size. Other infarct models include cryoinfarction, which produces reproducible infarcts of the anterior wall. Thus far, this model has not been extensively described in mice. Therefore, we developed a murine cryoinfarction model and compared it with coronary ligation. Studies were performed under isoflurane anesthesia with a follow-up of 4 and 8 wk. Cryoinfarction was induced using a 2- or 3-mm cryoprobe. Two-dimensional guided M-mode echocardiography was used to assess fractional shortening and left ventricular (LV) dimensions at baseline and end point. At end point, hemodynamics were assessed using a 1.4-Fr Millar catheter. Pressure-diameter relations were constructed by combining echocardiography and hemodynamic data. Histological and morphometric analyses of infarct and remote areas were performed. At 4 wk, 3-mm cryoinfarction resulted in decreased LV fractional shortening as well as decreased global LV contractility and relaxation, which was comparable with coronary ligation. No adverse remodeling was observed at this time point, in contrast with the ligation model. However, progressive LV remodeling occured between 4 and 8 wk after cryoinfarction with a further decline in hemodynamic parameters and LV pump function. Histologically, cryoinfarction resulted in highly reproducible, transmural, cone-shaped infarcts with reperfusion at the macrovascular level. These results indicate that the cryoinfarction model represents the anterior myocardial infarct with modest adverse remodeling and may thus be representative for infarcts encountered in clinical practice.
Collapse
Affiliation(s)
- Ewout J van den Bos
- Experimental Cardiology, Thoraxcenter, Erasmus MC, Univ. Medical Center, Rm. Ee 2355, PO Box 1738, Rotterdam 3000 DR, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Paolo Rebulla
- Centro Trasfusionale e di Immunologia dei Trapianti, Cell Factory "Franco Calori", IRCCS Ospedale Maggiore, Milano, Italy
| | | |
Collapse
|
30
|
Ciulla MM, Ferrero S, Lazzari L, Pacchiana R, Paliotti R, Gianelli U, Busca G, Esposito A, Bosari S, Magrini F, Rebulla P. The translocation of marrow MNCs after experimental myocardial cryoinjury is proportional to the infarcted area. Transfusion 2004; 44:239-44. [PMID: 14962315 DOI: 10.1111/j.1537-2995.2004.00667.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The selective homing of peripherally injected marrow MNCs (MMNCs) has recently been demonstrated in a model of cryodamaged heart. However, the mechanism underlying this phenomenon is still unknown. In the hypothesis that this process is related to the necrotic area extension, the infarcted area was correlated with the number of homed MMNCs in a model of experimental cryodamaged heart. STUDY DESIGN AND METHODS A total of 12 donor and 12 recipient inbred isogenic adult (4 weeks old) Fisher rats were used to mimic autologous transplantation. Myocardial damage was obtained in recipient rats by cryoinjury. MMNCs were purified, labeled with PKH26 (a red fluorescent cell dye), and infused 7 days after the injury through the femoral vein of recipient rats. One week after peripheral administration, the number of homed MMNCs was assessed and the infarct size was correlated with the number of cells present in the target. RESULTS Labeled cells were found only in the injured myocardium of the treated animals (n = 6), where a mean of 12 +/- 3 PKH26+ cells per section examined were found; a significant correlation was found between the infarct size and the estimated number of cells (p = 0.008) CONCLUSION These data indicate that the homing of MMNCs is related to the extent of the myocardial injury, suggesting that cellular therapy for regeneration of damaged myocardium should be individualized by taking into consideration the extension of the area to repair.
Collapse
Affiliation(s)
- Michele M Ciulla
- Istituto di Medicina Cardiovascolare, Centro di Fisiologia Clinica e Ipertensione, University of Milan, IRCCS Ospedale Maggiore di Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|