1
|
Al-Ghadban S, Walczak SG, Isern SU, Martin EC, Herbst KL, Bunnell BA. Enhanced Angiogenesis in HUVECs Preconditioned with Media from Adipocytes Differentiated from Lipedema Adipose Stem Cells In Vitro. Int J Mol Sci 2023; 24:13572. [PMID: 37686378 PMCID: PMC10487727 DOI: 10.3390/ijms241713572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Lipedema is a connective tissue disorder characterized by increased dilated blood vessels (angiogenesis), inflammation, and fibrosis of the subcutaneous adipose tissue. This project aims to gain insights into the angiogenic processes in lipedema using human umbilical vein endothelial cells (HUVECs) as an in vitro model. HUVECs were cultured in conditioned media (CM) collected from healthy (non-lipedema, AQH) and lipedema adipocytes (AQL). The impacts on the expression levels of multiple endothelial and angiogenic markers [CD31, von Willebrand Factor (vWF), angiopoietin 2 (ANG2), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMPs), NOTCH and its ligands] in HUVECs were investigated. The data demonstrate an increased expression of CD31 and ANG2 at both the gene and protein levels in HUVECs treated with AQL CM in 2D monolayer and 3D cultures compared to untreated cells. Furthermore, the expression of the vWF, NOTCH 4, and DELTA-4 genes decreased. In contrast, increased VEGF, MMP9, and HGF gene expression was detected in HUVECs treated with AQL CM cultured in a 2D monolayer. In addition, the results of a tube formation assay indicate that the number of formed tubes increased in lipedema-treated HUVECs cultured in a 2D monolayer. Together, the data indicate that lipedema adipocyte-CM promotes angiogenesis through paracrine-driven mechanisms.
Collapse
Affiliation(s)
- Sara Al-Ghadban
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.G.W.); (S.U.I.)
| | - Samantha G. Walczak
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.G.W.); (S.U.I.)
| | - Spencer U. Isern
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.G.W.); (S.U.I.)
| | - Elizabeth C. Martin
- Department of Medicine, Section of Hematology and Oncology, Tulane University, New Orleans, LA 70118, USA;
| | | | - Bruce A. Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.G.W.); (S.U.I.)
| |
Collapse
|
2
|
ter Ellen BM, Niewold J, Flikweert A, Muller Kobold AC, Heeringa P, van Meurs M, Smit JM, van der Voort PHJ, Rodenhuis-Zybert IA, Moser J. Mediators of Obesity Do Not Influence SARS-CoV-2 Infection or Activation of Primary Human Lung Microvascular Endothelial Cells In Vitro. Front Immunol 2022; 13:879033. [PMID: 35837388 PMCID: PMC9273911 DOI: 10.3389/fimmu.2022.879033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical observations have shown that obesity is associated with the severe outcome of SARS-CoV-2 infection hallmarked by microvascular dysfunction in the lungs and other organs. Excess visceral fat and high systemic levels of adipose tissue (AT) derived mediators such as leptin and other adipokines have also been linked to endothelial dysfunction. Consequently, we hypothesized that AT-derived mediators may exacerbate microvascular dysfunction during of SARS-CoV-2 infection and tested this in a primary human lung microvascular endothelial (HLMVEC) cell model. Our results indicate that HLMVEC are not susceptible to SARS-CoV-2 infection since no expression of viral proteins and no newly produced virus was detected. In addition, exposure to the virus did not induce endothelial activation as evidenced by a lack of adhesion molecule, E-selectin, VCAM-1, ICAM-1, and inflammatory cytokine IL-6 induction. Incubation of endothelial cells with the pro-inflammatory AT-derived mediator, leptin, prior to virus inoculation, did not alter the expression of endothelial SARS-CoV-2 entry receptors and did not alter their susceptibility to infection. Furthermore, it did not induce inflammatory activation of endothelial cells. To verify if the lack of activated phenotype in the presence of adipokines was not leptin-specific, we exposed endothelial cells to plasma obtained from critically ill obese COVID-19 patients. Plasma exposure did not result in E-selectin, VCAM-1, ICAM-1, or IL-6 induction. Together our results strongly suggest that aberrant inflammatory endothelial responses are not mounted by direct SARS-CoV-2 infection of endothelial cells, even in the presence of leptin and other mediators of obesity. Instead, endothelial activation associated with COVID-19 is likely a result of inflammatory responses initiated by other cells. Further studies are required to investigate the mechanisms regulating endothelial behavior in COVID-19 and the mechanisms driving severe disease in obese individuals.
Collapse
Affiliation(s)
- Bram M. ter Ellen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Niewold
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Antine Flikweert
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pulmonary Medicine, Amphia Hospital, Breda, Netherlands
| | - Anneke C. Muller Kobold
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter H. J. van der Voort
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Jill Moser,
| |
Collapse
|
3
|
The Treponema pallidum outer membrane protein Tp92 activates endothelial cells via the chemerin/CMKLR1 pathway. Int J Med Microbiol 2020; 310:151416. [PMID: 32173267 DOI: 10.1016/j.ijmm.2020.151416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 01/11/2023] Open
Abstract
Endothelium damage caused by Treponema pallidum is the key step in the systemic dissemination and pathophysiology of syphilis, particularly cardiovascular syphilis and neurosyphilis. However, the molecular mechanisms supporting endothelium damage of syphilis are undefined. The outer membrane proteins were thought to be involved. Tp92 was first identified as an outer membrane protein of T. pallidum. Homologous proteins to Tp92 play important roles in cell attachment, inflammation, and tissue destruction in other bacterial species. In this study, we investigated the effect of Tp92 on endothelial cells activation. The data showed that Tp92 induced chemerin production in activated endothelial cells. Endothelial cell-derived chemerin upregulated the expression of TNF-α and ICAM-1 in endothelial cells via CMKLR1. In addition, endothelial cell-derived chemerin promoted THP-1-derived macrophage migration towards endothelial cells. These findings suggest that Tp92 may play an important role in mediating endothelial cell activation by inducing the secretion of chemerin.
Collapse
|
4
|
Acquarone E, Monacelli F, Borghi R, Nencioni A, Odetti P. Resistin: A reappraisal. Mech Ageing Dev 2019; 178:46-63. [DOI: 10.1016/j.mad.2019.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
|
5
|
Zhang S, Guo S, Gao XB, Liu A, Jiang W, Chen X, Yang P, Liu LN, Shi L, Zhang Y. Matrine attenuates high-fat diet-induced in vivo and ox-LDL-induced in vitro vascular injury by regulating the PKCα/eNOS and PI3K/Akt/eNOS pathways. J Cell Mol Med 2019; 23:2731-2743. [PMID: 30770623 PMCID: PMC6433715 DOI: 10.1111/jcmm.14180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/15/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism disorders lead to vascular endothelial injury. Matrine is an alkaloid that has been used to improve obesity and diabetes and for the treatment of hepatitis B. However, its effect on lipid metabolism disorders and vascular injury is unclear. Here, we investigated the effect of matrine on high‐fat diet fed mice and oxidized low‐density lipoprotein (ox‐LDL)‐induced human umbilical vein endothelial cells (HUVECs). Computational virtual docking analyses, phosphoinositide 3‐kinase (PI3K) and protein kinase C‐α (PKCα) inhibitors were used to localize matrine in vascular injuries. The results showed that matrine‐treated mice were more resistant to abnormal lipid metabolism and inflammation than vehicle‐treated mice and exhibited significantly alleviated ox‐LDL‐stimulated dysfunction of HUVECs, restored diminished nitric oxide release, decreased reactive oxygen species generation and increased expression phosphorylation of AKT‐Ser473 and endothelial nitric oxide synthase (eNOS)‐Ser1177. Matrine not only up‐regulates eNOS‐Ser1177 but also down‐regulates eNOS‐Thr495, a PKCα‐controlled negative regulator of eNOS. Using computational virtual docking analyses and biochemical assays, matrine was also shown to influence eNOS/NO via PKCα inhibition. Moreover, the protective effects of matrine were significantly abolished by the simultaneous application of PKCα and the PI3K inhibitor. Matrine may thus be potentially employed as a novel therapeutic strategy against high‐fat diet‐induced vascular injury.
Collapse
Affiliation(s)
- Song Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, PR China
| | - Shun Guo
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, PR China
| | - Xiao-Bo Gao
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, PR China
| | - An Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, PR China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, PR China
| | - Xi Chen
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, PR China
| | - Peng Yang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, PR China
| | - Lin-Na Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, PR China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, PR China
| | - Yan Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, PR China
| |
Collapse
|
6
|
Resistin-Inhibited Neural Stem Cell-Derived Astrocyte Differentiation Contributes to Permeability Destruction of the Blood-Brain Barrier. Neurochem Res 2019; 44:905-916. [PMID: 30690681 DOI: 10.1007/s11064-019-02726-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is an important part of the development of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's and amyotrophic lateral sclerosis. Inflammatory factors destroy the balance of the microenvironment, which results in changes in neural stem cell differentiation and proliferation behaviour. However, the mechanism underlying inflammatory factor-induced NSC behavioural changes is not clear. Resistin is a proinflammatory and adipogenic factor and is involved in several human pathology processes. The neural stem cell microenvironment changes when the concentration of resistin in the brain during an inflammatory response disease increases. In the present study, we explored the effect and mechanism of resistin on the proliferation and differentiation of neural stem cells. We found that intracerebroventricular injection of resistin induced a decrease in GFAP-positive cells in mice by influencing NSC differentiation. Resistin significantly decreased TEER and increased permeability in an in vitro blood-brain barrier model, which is consistent with the results of an HBMEC-astrocyte coculture system. Resistin-inhibited astrocyte differentiation is mediated through TLR4 on neural stem cells. To our knowledge, this is the first study reporting the effect of resistin on neural stem cells. Our findings shed light on resistin-involved neural stem cell degeneration mechanisms.
Collapse
|
7
|
Metabolic Syndrome: Preventive Effects of Dietary Flavonoids. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64181-6.00001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Neves KB, Nguyen Dinh Cat A, Alves-Lopes R, Harvey KY, Costa RMD, Lobato NS, Montezano AC, Oliveira AMD, Touyz RM, Tostes RC. Chemerin receptor blockade improves vascular function in diabetic obese mice via redox-sensitive and Akt-dependent pathways. Am J Physiol Heart Circ Physiol 2018; 315:H1851-H1860. [PMID: 30216119 PMCID: PMC6336978 DOI: 10.1152/ajpheart.00285.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/20/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
Chemerin and its G protein-coupled receptor [chemerin receptor 23 (ChemR23)] have been associated with endothelial dysfunction, inflammation, and insulin resistance. However, the role of chemerin on insulin signaling in the vasculature is still unknown. We aimed to determine whether chemerin reduces vascular insulin signaling and whether there is interplay between chemerin/ChemR23, insulin resistance, and vascular complications associated with type 2 diabetes (T2D). Molecular and vascular mechanisms were probed in mesenteric arteries and cultured vascular smooth muscle cells (VSMCs) from C57BL/6J, nondiabetic lean db/m, and diabetic obese db/db mice as well as in human microvascular endothelial cells (HMECs). Chemerin decreased insulin-induced vasodilatation in C57BL/6J mice, an effect prevented by CCX832 (ChemR23 antagonist) treatment. In VSMCs, chemerin, via oxidative stress- and ChemR23-dependent mechanisms, decreased insulin-induced Akt phosphorylation, glucose transporter 4 translocation to the membrane, and glucose uptake. In HMECs, chemerin decreased insulin-activated nitric oxide signaling. AMP-activated protein kinase phosphorylation was reduced by chemerin in both HMECs and VSMCs. CCX832 treatment of db/db mice decreased body weight, insulin, and glucose levels as well as vascular oxidative stress. CCX832 also partially restored vascular insulin responses in db/db and high-fat diet-fed mice. Our novel in vivo findings highlight chemerin/ChemR23 as a promising therapeutic target to limit insulin resistance and vascular complications associated with obesity-related diabetes. NEW & NOTEWORTHY Our novel findings show that the chemerin/chemerin receptor 23 axis plays a critical role in diabetes-associated vascular oxidative stress and altered insulin signaling. Targeting chemerin/chemerin receptor 23 may be an attractive strategy to improve insulin signaling and vascular function in obesity-associated diabetes.
Collapse
Affiliation(s)
- Karla Bianca Neves
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo , Ribeirao Preto, São Paulo , Brazil
- Institute of Cardiovascular and Medical Sciences, University of Glasgow , United Kingdom
| | | | - Rheure Alves-Lopes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo , Ribeirao Preto, São Paulo , Brazil
- Institute of Cardiovascular and Medical Sciences, University of Glasgow , United Kingdom
| | - Katie Yates Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow , United Kingdom
| | - Rafael Menezes da Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo , Ribeirao Preto, São Paulo , Brazil
| | - Nubia Souza Lobato
- Department of Biological Sciences, Federal University of Goias, Jatai, Goiás, Brazil
| | | | - Ana Maria de Oliveira
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo , Ribeirao Preto, São Paulo , Brazil
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow , United Kingdom
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo , Ribeirao Preto, São Paulo , Brazil
| |
Collapse
|
9
|
Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence. Antioxidants (Basel) 2018; 7:antiox7020026. [PMID: 29401716 PMCID: PMC5836016 DOI: 10.3390/antiox7020026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome.
Collapse
|
10
|
Mitsides N, Cornelis T, Broers NJH, Diederen NMP, Brenchley P, van der Sande FM, Schalkwijk CG, Kooman JP, Mitra S. Extracellular overhydration linked with endothelial dysfunction in the context of inflammation in haemodialysis dependent chronic kidney disease. PLoS One 2017; 12:e0183281. [PMID: 28829810 PMCID: PMC5568741 DOI: 10.1371/journal.pone.0183281] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Haemodialysis (HD) patients are predisposed to dysregulated fluid balance leading to extracellular water (ECW) expansion. Fluid overload has been closely linked with outcome in these patients. This has mainly been attributed to cardiac volume overload, but the relation between abnormalities in fluid status with micro- and macrovascular dysfunction has not been studied in detail. We studied the interaction of macro- and microvascular factors in states of normal and over- hydration in HD-dependent CKD. METHODS Fluid compartments [total body water (TBW) and ECW] and overhydration index (OH) were measured with Multifrequency bio-impedance (BCM). Overhydration was defined as OH/ECW>7%. Overhydration was also assessed using the ECW/TBW ratio. Macrocirculation was assessed by pulse-wave velocity (PWV) and mean arterial pressure (MAP) measurements while microcirculation through sublingual capillaroscopy assessment of the Perfused Boundary Region of the endothelial glycocalyx (PBR 5-25mcg). A panel of pro-inflammatory and vascular serum biomarkers and growth factors was analysed. RESULTS Of 72 HD participants, 30 were in normohydration (N) range and 42 overhydrated according to the OH/ECW ratio. Average ECW/TBW was 0.48±0.03. Overhydrated patients had higher MAP (122.9±22.5 v 111.7±22.2mmHg, p = 0.04) and comorbidities (median Davies score 1.5 v 1.0, p = 0.03). PWV (p = 0.25) and PBR 5-25mcg (p = 0.97) did not differ between the 2 groups. However, Vascular Adhesion Molecule (VCAM)-1, Interleukin-6 and Thrombomodulin, and reduced Leptin were observed in the overhydrated group. Elevation in VCAM-1 levels (OR 1.03; 95% CI 1.01-1.06; p = 0.02) showed a strong independent association with OH/ECW>7% in an adjusted logistic regression analysis and exhibited a strong linear relationship with ECW/TBW (Bata = 0.210, p = 0.03) in an also adjusted model. CONCLUSION Extracellular fluid overload is significantly linked to microinflammation and markers of endothelial dysfunction. The study provides novel insight in the cardiovascular risk profile associated with overhydration in uraemia.
Collapse
Affiliation(s)
- Nicos Mitsides
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Nephrology Department, Central Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Devices for Dignity Healthcare Technology Co-operative, Royal Hallamshire Hospital, Sheffield, United Kingdom
- * E-mail:
| | | | - Natascha J. H. Broers
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Nanda M. P. Diederen
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Paul Brenchley
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Nephrology Department, Central Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Frank M. van der Sande
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Jeroen P. Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sandip Mitra
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Nephrology Department, Central Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- NIHR Devices for Dignity Healthcare Technology Co-operative, Royal Hallamshire Hospital, Sheffield, United Kingdom
| |
Collapse
|
11
|
Murkamilov IT, Aitbaev KA, Fomin VV. [Gender features of cardiovascular events in patients with chronic glomerulonephritis at the pre-dialysis stage of the disease]. TERAPEVT ARKH 2017; 89:56-61. [PMID: 28745690 DOI: 10.17116/terarkh201789656-61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIM To identify the gender differences of cardiovascular events in patients with chronic glomerulonephritis (CGN) at the pre-dialysis stage of chronic kidney disease (CKD). SUBJECTS AND METHODS A total of 170 patients (median age 40±11 years) with CGN who did not receive hemodialysis were examined. According to gender, all patients were divided into 2 groups: 1) 66 female patients with CGN; 2) 104 male patients with CGN. All the patients underwent general clinical examination and transthoracic echocardiography. RESULTS In the male group, body weight (70.2±12.3 vs 61.1±12.6 kg; p=0.000), daily proteinuria [2.286 (1.230-3.541) vs. 1.421 (0.703-2.408) g; p=0.021], aortic diameter (3.43±0.36 vs 3.15±0.32 cm; p=0.000), left atrial size (3.80±0.55 vs 3.52±0.49 cm; p=0.000), indexed left ventricular mass (LVM) (223.5±57.5 vs 205.5±54.6 g/m2, p=0.044) were significantly higher than those in the female group. Changes (atherocalcification) in the aortic valve structures were more common in the men than in the women (48% vs 22.7%; p=0.001), whereas the women were more frequently observed to have reverse blood flow along the right ventricle. CONCLUSION In the men with CGN at the pre-dialysis stage of CKD, the increment in LVM index is associated with proteinuria and increases in right ventricle size, frequency of atherosclerotic changes in the aortic valve, and left atrial longitudinal size.
Collapse
Affiliation(s)
- I T Murkamilov
- I.K. Akhunbaev Kyrghyz State Medical Academy, Bishkek, Kyrghyz Republic
| | - K A Aitbaev
- Research Institute of Molecular Biology and Medicine, Acad. Mirsaid Mirrakhimov National Center of Cardiology and Therapy, Bishkek, Kyrghyz Republic
| | - V V Fomin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Santos FA, Carvalho KMMB, Batista-Lima FJ, Nunes PIG, Viana AFSC, de Carvalho Almeida da Silva AA, da Cruz Fonseca SG, Chaves MH, Rao VS, Magalhães PJC, de Brito TS. The triterpenoid alpha, beta-amyrin prevents the impaired aortic vascular reactivity in high-fat diet-induced obese mice. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1029-1039. [PMID: 28717838 DOI: 10.1007/s00210-017-1404-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022]
Abstract
To characterize the protective effects of the triterpenoid mixture alpha, beta-amyrin (AMY, 20 mg/kg, during 15 days) on the reactivity of isolated aorta of high-fat diet (HFD)-induced obese mice. Male Swiss mice were fed with HFD or normal diet (ND) for 15 weeks. Contractions of thoracic aorta in response to KCl or phenylephrine (PHE) and relaxation by acetylcholine (ACh) or sodium nitroprusside (SNP) were analyzed. HFD-fed mice developed hyperglycemia, hyperlipidemia, and significant body weight gain, parameters prevented by AMY treatment. Whereas aortic contractility did not differ in response to KCl, contractions induced by PHE (1 μM) as well as relaxation induced by ACh (1-30 μM) or SNP (1 nM-0.1 mM) on PHE-contracted aorta were decreased (p < 0.05) in tissues of HFD compared to ND mice, phenomenon significantly (p < 0.05) diminished in HFD mice treated with AMY. The relaxant actions of ACh and SNP were inhibited (p < 0.05) by tetraethylammonium (TEA, 5 mM), apamin (0.1 μM), and 4-aminopyridine (4-AP; 3 mM) in aortae from ND group, but not from HFD. Treatment of HFD mice with AMY rescued the inhibitory effect of TEA (p < 0.05) on vasorelaxant actions of ACh and SNP. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) inhibited similarly the relaxant effects of SNP in all groups. 8-Br-cGMP relaxed with similar profile aortae of all groups. By preventing HFD-induced obesity in mice, AMY rescued the blunted contractile response to PHE, and the attenuated vasorelaxation and K+ channel activation (opening) induced by ACh and SNP in isolated aorta.
Collapse
Affiliation(s)
- Flávia Almeida Santos
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-270, Brazil.
| | | | - Francisco José Batista-Lima
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-270, Brazil
| | - Paulo Iury Gomes Nunes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-270, Brazil
| | | | | | | | - Mariana Helena Chaves
- Department of Organic Chemistry, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Vietla Satyanarayana Rao
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-270, Brazil
| | - Pedro Jorge Caldas Magalhães
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-270, Brazil
| | - Teresinha Silva de Brito
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-270, Brazil
| |
Collapse
|
13
|
Wang F, Han L, Qin RR, Zhang YY, Wang D, Wang ZH, Tang MX, Zhang Y, Zhong M, Zhang W. Overexpressing STAMP2 attenuates adipose tissue angiogenesis and insulin resistance in diabetic ApoE -/- /LDLR -/- mouse via a PPARγ/CD36 pathway. J Cell Mol Med 2017. [PMID: 28631352 PMCID: PMC5706521 DOI: 10.1111/jcmm.13233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to investigate whether overexpression of STAMP2 improves insulin resistance by regulating angiogenesis in adipose tissues. The characteristics of diabetic mice were measured by serial metabolite and pathology tests. Samples were obtained from epididymal, subcutaneous and brown adipose tissues. Histological and morphological analysis demonstrated that STAMP2 gene overexpression reduced adipocyte size, angiogenesis in epididymal and brown adipose tissues. On aortic ring assay, microvessels sprouting from aortas were significantly inhibited after STAMP2 gene overexpression. The cellular effect of STAMP2 on angiogenesis was explored in human umbilical vein endothelial cells (HUVECs) model. Correlation of STAMP2 and angiogenesis was validated by Ad‐STAMP2 transfection and STAMP2 siRNA inhibition. In vitro, overexpression of STAMP2 significantly inhibited endothelial cell migration, tube formation. The effects of Ad‐STAMP2 transfection on HUVECs were abolished by treatment with PPARγ antagonist GW9662 (2.5 μM), and the roles of STAMP2 siRNA on HUVECs were also reversed by treatment with PPARγ agonist rosiglitazone (RSG) (0.1 mM). RT‐PCR indicated that STAMP2 could regulate levels of adhesion molecules, vascular endothelial growth factor A and CD36. The expression of PPARγ and CD36 was decreased when STAMP2 was inhibited by siRNA, while PPARγ and CD36 were highly expressed after overexpression of STAMP2. Our results suggested that STAMP2 gene overexpression may improve insulin resistance via attenuating angiogenesis in epididymal and brown adipose tissues through the PPARγ/CD36 signalling pathway.
Collapse
Affiliation(s)
- Feng Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lu Han
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ran-Ran Qin
- Department of Geriatric Medicines, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yao-Yuan Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Di Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhi-Hao Wang
- Department of Geriatric Medicines, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng-Xiong Tang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Abstract
The anoxemia theory proposes that an imbalance between the demand for and supply of oxygen in the arterial wall is a key factor in the development of atherosclerosis. There is now substantial evidence that there are regions within the atherosclerotic plaque in which profound hypoxia exists; this may fundamentally change the function, metabolism, and responses of many of the cell types found within the developing plaque and whether the plaque will evolve into a stable or unstable phenotype. Hypoxia is characterized in molecular terms by the stabilization of hypoxia-inducible factor (HIF) 1α, a subunit of the heterodimeric nuclear transcriptional factor HIF-1 and a master regulator of oxygen homeostasis. The expression of HIF-1 is localized to perivascular tissues, inflammatory macrophages, and smooth muscle cells adjacent to the necrotic core of atherosclerotic lesions and regulates several genes that are important to vascular function including vascular endothelial growth factor, nitric oxide synthase, endothelin-1, and erythropoietin. This review summarizes the effects of hypoxia on the functions of cells involved in atherogenesis and the evidence for its potential importance from experimental models and clinical studies.
Collapse
Affiliation(s)
- Gordon A A Ferns
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Lamia Heikal
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
15
|
Shi KL, Qian JY, Qi L, Mao DB, Chen Y, Zhu Y, Guo XG. Atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-κB activation in HCAECs. Oncol Lett 2016; 12:1438-1444. [PMID: 27446449 PMCID: PMC4950623 DOI: 10.3892/ol.2016.4796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/07/2016] [Indexed: 12/30/2022] Open
Abstract
The present study investigated whether atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators in human coronary artery endothelial cells (HCAECs). Several analysis methods, such as reverse transcription-quantitative polymerase chain reaction, western blot analysis and H2DCFDA incubation, were used in the present study. The data showed that atorvastatin decreased the visfatin-induced expression of interleukin (IL)-6 and IL-8 in HCAECs. In addition, atorvastatin inhibited the visfatin-induced expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in HCAECs. In addition, the present study found that atorvastatin inhibited the visfatin-activated nuclear factor-κB (NF-κB) signal pathway by preventing extracellular signal-regulated kinase phosphorylation in HCAECs. Atorvastatin significantly inhibited visfatin-induced NF-κB activity via the upregulation of reactive oxygen species production. Atorvastatin, a visfatin antagonist (FK866) and an NF-κB inhibitor (BAY11-7082) decreased the visfatin-induced expression of inflammatory mediators via the upregulation of NF-κB activation in HCAECs. These results suggest that atorvastatin may inhibit the visfatin-induced upregulation of inflammatory mediators through blocking the NF-κB signal pathway. The findings of the present study provide a potential use for atorvastatin and visfatin in the pathogenesis of HCAEC dysfunction. This knowledge may contribute to the development of novel therapies for atherosclerosis.
Collapse
Affiliation(s)
- Kai-Lei Shi
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Ju-Ying Qian
- Department of Cardiology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated to Fudan Universtiy, Shanghai 200040, P.R. China
| | - Ding-Biao Mao
- Department of Radiology, Huadong Hospital Affiliated to Fudan Universtiy, Shanghai 200040, P.R. China
| | - Yang Chen
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Yi Zhu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Xin-Gui Guo
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
16
|
KRALOVA LESNA I, TONAR Z, MALEK I, MALUSKOVA J, NEDOROST L, PIRK J, PITHA J, LANSKA V, POLEDNE R. Is the Amount of Coronary Perivascular Fat Related to Atherosclerosis? Physiol Res 2015; 64:S435-43. [DOI: 10.33549/physiolres.933151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interesting and stimulating data about the effect of the perivascular adipose tissue size on atherogenesis are based mainly on CT findings. We studied this topic by directly analyzing perivascular adipose tissue in explanted hearts from patients undergoing transplantation. Ninety-six consecutive patients were included, including 58 with atherosclerotic coronary heart disease (CHD) and 38 with dilation cardiomyopathy (DCMP). The area of perivascular fat, area of the coronary artery wall, and ratio of CD68-positive macrophages within the perivascular fat and within the vascular wall were quantified by immunohistochemistry. There was no significant difference in the perivascular adipose tissue size between the two groups. Nevertheless, there was a significantly higher number of macrophages in the coronary arterial wall of CHD patients. In addition, we found a close relationship between the ratio of macrophages in the arterial wall and adjacent perivascular adipose tissue in the CHD group, but not in the DCMP group. According to our data interaction between macrophages in the arterial wall and macrophages in surrounding adipose tissue could be more important mechanism of atherogenesis than the size of this tissue itself.
Collapse
Affiliation(s)
- I. KRALOVA LESNA
- Centre for Experimental Medicine, Laboratory for Atheroslerosis Research, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kang HJ, Yoon S, Lyoo IK. Peripheral Biomarker Candidates of Posttraumatic Stress Disorder. Exp Neurobiol 2015; 24:186-96. [PMID: 26412967 PMCID: PMC4580745 DOI: 10.5607/en.2015.24.3.186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022] Open
Abstract
There is high variability in the manifestation of physical and mental health problems following exposure to trauma and disaster. Although most people may show a range of acute symptoms in the aftermath of traumatic events, chronic and persistent mental disorders may not be developed in all individuals who were exposed to traumatic events. The most common long-term pathological consequence after trauma exposure is posttraumatic stress disorder (PTSD). However, comorbid conditions including depression, anxiety disorder, substance use-related problems, and a variety of other symptoms may frequently be observed in individuals with trauma exposure. Post-traumatic syndrome (PTS) is defined collectively as vast psychosocial problems that could be experienced in response to traumatic events. It is important to predict who will continue to suffer from physical and mental health problems and who will recover following trauma exposure. However, given the heterogeneity and variability in symptom manifestations, it is difficult to find identify biomarkers which predict the development of PTSD. In this review, we will summarize the results of recent studies with regard to putative biomarkers of PTSD and suggest future research directions for biomarker discovery for PTSD.
Collapse
Affiliation(s)
- Hee Jin Kang
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea. ; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea. ; College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
18
|
Neves KB, Nguyen Dinh Cat A, Lopes RAM, Rios FJ, Anagnostopoulou A, Lobato NS, de Oliveira AM, Tostes RC, Montezano AC, Touyz RM. Chemerin Regulates Crosstalk Between Adipocytes and Vascular Cells Through Nox. Hypertension 2015; 66:657-66. [DOI: 10.1161/hypertensionaha.115.05616] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/05/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Karla Bianca Neves
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow (K.B.N., A.N.D.C., R.A.M.L., F.J.R., A.A., A.C.M., R.M.T.); Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N., A.M.d.O.) and Department of Pharmacology (R.A.M.L., R.C.T.), University of Sao Paulo, Ribeirao Preto, SP, Brazil; and Department of Biological Sciences, Federal
| | - Aurelie Nguyen Dinh Cat
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow (K.B.N., A.N.D.C., R.A.M.L., F.J.R., A.A., A.C.M., R.M.T.); Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N., A.M.d.O.) and Department of Pharmacology (R.A.M.L., R.C.T.), University of Sao Paulo, Ribeirao Preto, SP, Brazil; and Department of Biological Sciences, Federal
| | - Rheure Alves Moreira Lopes
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow (K.B.N., A.N.D.C., R.A.M.L., F.J.R., A.A., A.C.M., R.M.T.); Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N., A.M.d.O.) and Department of Pharmacology (R.A.M.L., R.C.T.), University of Sao Paulo, Ribeirao Preto, SP, Brazil; and Department of Biological Sciences, Federal
| | - Francisco Jose Rios
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow (K.B.N., A.N.D.C., R.A.M.L., F.J.R., A.A., A.C.M., R.M.T.); Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N., A.M.d.O.) and Department of Pharmacology (R.A.M.L., R.C.T.), University of Sao Paulo, Ribeirao Preto, SP, Brazil; and Department of Biological Sciences, Federal
| | - Aikaterini Anagnostopoulou
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow (K.B.N., A.N.D.C., R.A.M.L., F.J.R., A.A., A.C.M., R.M.T.); Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N., A.M.d.O.) and Department of Pharmacology (R.A.M.L., R.C.T.), University of Sao Paulo, Ribeirao Preto, SP, Brazil; and Department of Biological Sciences, Federal
| | - Nubia Souza Lobato
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow (K.B.N., A.N.D.C., R.A.M.L., F.J.R., A.A., A.C.M., R.M.T.); Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N., A.M.d.O.) and Department of Pharmacology (R.A.M.L., R.C.T.), University of Sao Paulo, Ribeirao Preto, SP, Brazil; and Department of Biological Sciences, Federal
| | - Ana Maria de Oliveira
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow (K.B.N., A.N.D.C., R.A.M.L., F.J.R., A.A., A.C.M., R.M.T.); Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N., A.M.d.O.) and Department of Pharmacology (R.A.M.L., R.C.T.), University of Sao Paulo, Ribeirao Preto, SP, Brazil; and Department of Biological Sciences, Federal
| | - Rita C. Tostes
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow (K.B.N., A.N.D.C., R.A.M.L., F.J.R., A.A., A.C.M., R.M.T.); Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N., A.M.d.O.) and Department of Pharmacology (R.A.M.L., R.C.T.), University of Sao Paulo, Ribeirao Preto, SP, Brazil; and Department of Biological Sciences, Federal
| | - Augusto C. Montezano
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow (K.B.N., A.N.D.C., R.A.M.L., F.J.R., A.A., A.C.M., R.M.T.); Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N., A.M.d.O.) and Department of Pharmacology (R.A.M.L., R.C.T.), University of Sao Paulo, Ribeirao Preto, SP, Brazil; and Department of Biological Sciences, Federal
| | - Rhian M. Touyz
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow (K.B.N., A.N.D.C., R.A.M.L., F.J.R., A.A., A.C.M., R.M.T.); Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto (K.B.N., A.M.d.O.) and Department of Pharmacology (R.A.M.L., R.C.T.), University of Sao Paulo, Ribeirao Preto, SP, Brazil; and Department of Biological Sciences, Federal
| |
Collapse
|
19
|
Abed E, Bouvard B, Martineau X, Jouzeau JY, Reboul P, Lajeunesse D. Elevated hepatocyte growth factor levels in osteoarthritis osteoblasts contribute to their altered response to bone morphogenetic protein-2 and reduced mineralization capacity. Bone 2015; 75:111-9. [PMID: 25667190 DOI: 10.1016/j.bone.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/24/2015] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE Clinical and in vitro studies suggest that subchondral bone sclerosis due to abnormal osteoblasts is involved in the progression of osteoarthritis (OA). Human osteoblasts isolated from sclerotic subchondral OA bone tissue show an altered phenotype, a decreased canonical Wnt/ß-catenin pathway, and a reduced mineralization in vitro as well as in vivo. These alterations were linked with an abnormal response to BMP-2. OA osteoblasts release factors such as the hepatocyte growth factor (HGF) that contribute to cartilage loss whereas chondrocytes do not express HGF. HGF can stimulate BMP-2 expression in human osteoblasts, however, the role of HGF and its effect in OA osteoblasts remains unknown. Here we investigated whether elevated endogenous HGF levels in OA osteoblasts are responsible for their altered response to BMP-2. METHODS We prepared primary human subchondral osteoblasts using the sclerotic medial portion of the tibial plateaus of OA patients undergoing total knee arthroplasty, or from tibial plateaus of normal individuals obtained at autopsy. The expression of HGF was evaluated by qRT-PCR and the protein production by western blot analysis. HGF expression was reduced with siRNA technique whereas its activity was inhibited using the selective inhibitor PHA665752. Alkaline phosphatase activity (ALPase) and osteocalcin release were measured by substrate hydrolysis and EIA respectively. Canonical Wnt/β-catenin signaling (cWnt) was evaluated both by target gene expression using the TOPflash TCF/lef luciferase reporter assay and western blot analysis of β-catenin levels in response to Wnt3a stimulation. Mineralization in response to BMP-2 was evaluated by alizarin red staining. RESULTS The expression of HGF was increased in OA osteoblasts compared to normal osteoblasts and was maintained during their in vitro differentiation. OA osteoblasts released more HGF than normal osteoblasts as assessed by western blot analysis. HGF stimulated the expression of TGF-β1. BMP-2 dose-dependently (1 to 100 ng/ml) stimulated both ALPase and osteocalcin in normal osteoblasts whereas, it inhibited them in OA osteoblasts. HGF-siRNA treatments reversed this response in OA osteoblasts and restored the BMP-2 response. cWnt is reduced in OA osteoblasts compared to normal, and HGF-siRNA treatments increased cWnt in OA osteoblasts almost to normal. Smad1/5/8 phosphorylation in response to BMP-2, which is reduced in OA osteoblasts, was corrected when these cells were treated with PHA665752. The BMP-2-dependent mineralization of OA osteoblasts, which is also reduced compared to normal, was only partially restored by PHA665752 treatment whereas 28 days treatment with HGF reduced the mineralization of normal osteoblasts. CONCLUSION OA osteoblasts expressed more HGF than normal osteoblasts. Increased endogenous HGF production in OA osteoblasts stimulated the expression of TGF-β1 and reduced their response to BMP-2. Inhibiting HGF expression or HGF signaling restored the response to BMP-2 and Smad1/5/8 signaling. In addition, decreased HGF signaling partly corrects the abnormal mineralization of OA osteoblasts while increased HGF prevents the normal mineralization of normal osteoblasts. In summary, we hypothesize that sustained elevated HGF levels in OA osteoblasts drive their abnormal phenotype and is implicated in OA pathophysiology.
Collapse
Affiliation(s)
- E Abed
- Unité de recherche en Arthrose, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - B Bouvard
- UMR7365 IMoPA, Université de Lorraine/CNRS, Vandœuvre lès Nancy, 54505, France; Service de Rhumatologie, Centre Hospitalier Universitaire (CHU), Angers 49933, France
| | - X Martineau
- Unité de recherche en Arthrose, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - J-Y Jouzeau
- UMR7365 IMoPA, Université de Lorraine/CNRS, Vandœuvre lès Nancy, 54505, France; Service de Pharmacologie Clinique et de Toxicologie, Centre Hospitalier Universitaire (CHU), Nancy 54023, France
| | - P Reboul
- UMR7365 IMoPA, Université de Lorraine/CNRS, Vandœuvre lès Nancy, 54505, France
| | - D Lajeunesse
- Unité de recherche en Arthrose, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.
| |
Collapse
|
20
|
Yu HR, Sung ML, Kuo HC, Lin CH, Chen CN. Shear Stress Modulates Resistin-Induced CC Chemokine Ligand 19 Expression in Human Aortic Endothelial Cells. J Cell Physiol 2015; 230:2120-7. [DOI: 10.1002/jcp.24940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Hong-Ren Yu
- Division of Allergy; Immunology and Rheumatology; Department of Pediatrics; Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Mao-Ling Sung
- Department of Cardiology; St. Martin De Porres Hospital; Chiayi Taiwan
| | - Hsing-Chun Kuo
- Institute of Nursing and Department of Nursing; Chang Gung University of Science and Technology; Chronic Diseases and Health Promotion Research Center, CGUST; Taoyuan Taiwan
| | - Chi-Hui Lin
- Department of Biochemical Science and Technology; National Chiayi University; Chiayi Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology; National Chiayi University; Chiayi Taiwan
| |
Collapse
|
21
|
Kaur K, Saxena A, Larsen B, Truman S, Biyani N, Fletcher E, Baliga MS, Ponemone V, Hegde S, Chanda A, Fayad R. Mucus mediated protection against acute colitis in adiponectin deficient mice. JOURNAL OF INFLAMMATION-LONDON 2015; 12:35. [PMID: 25949213 PMCID: PMC4422601 DOI: 10.1186/s12950-015-0079-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/15/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute ulcerative colitis is an inflammation-driven condition of the bowel. It hampers the general homeostasis of gut, resulting in decreased mucus production and epithelial cell renewal. Adiponectin (APN), an adipocytokine, is secreted by the adipose tissue and has been debated both as a pro-inflammatory or anti-inflammatory protein depending on the disease condition and microenvironment. The present study delineates the role of APN depletion in mucus modulation in a model of acute colitis. METHODS APNKO and C57BL/6 (WT) male mice were given 2% DSS ad libidum for 5 days in drinking water, followed by normal drinking water for the next 5 days. Hematoxyline-eosin and Alcian Blue staining was used to observe the general colonic morphology and goblet cell quantification respectively. Protein expression levels were quantified by Western blot for MATH1, Hes1, MUC2 and MUC4. ELISA was used to study the levels of TNF-α, IL-6 and IL-1β. RESULTS APNKO mice showed significantly higher goblet to epithelial cell ratios, lower pro-inflammatory cytokines and higher MUC2 levels as compared to the WT mice. The protein expression levels for the mucin MUC2 supported the histopathological findings. An increase in colon tissue-secreted levels of pro-inflammatory with a reduction in anti-inflammatory cytokines in presence of APN support the pro-inflammatory role of APN during acute inflammation. CONCLUSION Absence of APN is protective against DSS-induced acute colonic inflammation by means of reducing colon tissue-secreted pro-inflammatory cytokines, modulating goblet and epithelial cell expressions, and increasing the levels of secretory mucin MUC2.
Collapse
Affiliation(s)
- Kamaljeet Kaur
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208 USA.,Arnold School of Public Health, Applied Physiology Division, University of South Carolina, 921 Assembly St. room 303B, Columbia, SC 29208 USA
| | - Arpit Saxena
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208 USA
| | - Bianca Larsen
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208 USA
| | - Samantha Truman
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208 USA
| | - Nathan Biyani
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208 USA
| | - Emma Fletcher
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208 USA
| | | | | | - Shweta Hegde
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208 USA
| | - Anindya Chanda
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208 USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208 USA
| | - Raja Fayad
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208 USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208 USA
| |
Collapse
|
22
|
Burgazli K, Stein N, Mericliler M, Parahuleva M, Erdogan A. Influence of HMG-CoA Reductase Inhibitors on Leptin-Induced Endothelial Cell Proliferation, Migration, and Capillary-Like Tube Formation. Postgrad Med 2015; 126:231-8. [DOI: 10.3810/pgm.2014.05.2771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
|
24
|
Bays H. Phentermine, topiramate and their combination for the treatment of adiposopathy (‘sick fat’) and metabolic disease. Expert Rev Cardiovasc Ther 2014; 8:1777-801. [DOI: 10.1586/erc.10.125] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Sahebkar A. Head-to-head comparison of fibrates versus statins for elevation of circulating adiponectin concentrations: a systematic review and meta-analysis. Metabolism 2013; 62:1876-85. [PMID: 24095632 DOI: 10.1016/j.metabol.2013.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/13/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Elevation of adiponectin levels is a potential therapeutic tool against cardiovascular and metabolic diseases. Clinical evidence suggests differences between fibrates and statins in improving circulating concentrations of adiponectin. AIM To compare the efficacy of fibrates vs. statins on circulating concentrations of adiponectin by meta-analysis of randomized head-to-head trials. METHODS A systematic literature search of Medline was conducted to identify randomized head-to-head comparative trials investigating the efficacy of fibrates vs. statins on circulating levels of adiponectin. Inverse variance-weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated for net changes in adiponectin concentrations using a random-effects model. Random-effects meta-regression was performed to assess the effect of putative moderators on adiponectin levels. RESULTS Six trials with a total of 326 subjects (166 in the fibrate and 160 in the statin group) met the eligibility criteria and were selected for this meta-analysis. The estimated effect size for fibrate versus statin therapy was 0.42 μg/mL (95% CI: -0.34-1.17). This effect size was robust in the leave-one-out sensitivity analysis and not sensitive to any single study. Meta-regression indicated a borderline significant association between duration of treatment and the effect of fibrates vs. statins on adiponectin concentrations (slope: -0.20; 95% CI: -0.41-0.01; p=0.06). However, baseline body mass index, glucose and lipid levels did not predict the effect of fibrate vs. statin therapy on circulating adiponectin concentrations (p>0.05). CONCLUSIONS Monotherapy with either fibrates or statins has comparable effects on circulating concentrations of adiponectin. Thus, differential effects of statins and fibrates on the occurrence of cardiovascular events may not be attributed to the corresponding changes in adiponectin levels.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran; Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| |
Collapse
|
26
|
What is the role of apelin regarding cardiovascular risk and progression of renal disease in type 2 diabetic patients with diabetic nephropathy? BIOMED RESEARCH INTERNATIONAL 2013; 2013:247649. [PMID: 24089668 PMCID: PMC3781832 DOI: 10.1155/2013/247649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 11/18/2022]
Abstract
Aims. To evaluate the association of different apelin levels with cardiovascular mortality, hospitalization, renal function, and cardiovascular risk factors in type 2 diabetic patients with mild to moderate CKD. Methods. An observational, prospective study involving 150 patients divided into groups according to baseline apelin levels: 1 ≤ 98 pg/mL, 2 = 98–328 pg/mL, and 3 ≥ 329 pg/mL. Baseline characteristics were analyzed and compared. Multivariate Cox regression was used to find out predictors of cardiovascular mortality, and multivariate logistic regression was used to find out predictors of hospitalization and disease progression. Simple linear regressions and Pearson correlations were used to investigate correlations between apelin and renal disease and cardiovascular risk factors. Results. Patients' survival at 83 months in groups 1, 2, and 3 was 39%, 40%, and 71.2%, respectively (P = 0.046). Apelin, age, and eGFR were independent predictors of mortality, and apelin, creatinine, eGFR, resistin, and visfatin were independent predictors of hospitalization. Apelin levels were negatively correlated with cardiovascular risk factors and positively correlated with eGFR. Patients with lower apelin levels were more likely to start a depurative technique. Conclusions. Apelin levels might have a significant clinical use as a marker/predictor of cardiovascular mortality and hospitalization or even as a therapeutic agent for CKD patients with cardiovascular disease.
Collapse
|
27
|
Costagliola C, Daniele A, dell'Omo R, Romano MR, Aceto F, Agnifili L, Semeraro F, Porcellini A. Aqueous humor levels of vascular endothelial growth factor and adiponectin in patients with type 2 diabetes before and after intravitreal bevacizumab injection. Exp Eye Res 2013; 110:50-4. [DOI: 10.1016/j.exer.2013.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 12/25/2022]
|
28
|
Magge SN. Cardiovascular Risk in Children and Adolescents with Type 1 and Type 2 Diabetes Mellitus. CURRENT CARDIOVASCULAR RISK REPORTS 2012; 6:591-600. [PMID: 23293697 DOI: 10.1007/s12170-012-0274-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rising rates of both type 1 and type 2 diabetes mellitus in children have led to increased concern regarding cardiovascular disease (CVD) risk during childhood. Diabetic children face prolonged exposure to hyperglycemia, and have increased risk of both microvascular and macrovascular disease. These circumstances may result in a generation of young adults presenting with cardiovascular outcomes, a tremendous personal and public health toll. In this article, we review CVD risk in type 1 and type 2 diabetes, discuss aspects of pathophysiology, and review current methods of CVD risk assessment. We also identify crucial areas in need of future research in order to devise effective prevention and treatment of CVD risk in children.
Collapse
Affiliation(s)
- Sheela N Magge
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia; Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
29
|
Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway. Biochem Biophys Res Commun 2012; 425:401-6. [DOI: 10.1016/j.bbrc.2012.07.110] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/20/2022]
|
30
|
Aronis KN, Vamvini MT, Chamberland JP, Sweeney LL, Brennan AM, Magkos F, Mantzoros CS. Short-term walnut consumption increases circulating total adiponectin and apolipoprotein A concentrations, but does not affect markers of inflammation or vascular injury in obese humans with the metabolic syndrome: data from a double-blinded, randomized, placebo-controlled study. Metabolism 2012; 61:577-82. [PMID: 22075273 PMCID: PMC3645917 DOI: 10.1016/j.metabol.2011.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/16/2011] [Accepted: 09/10/2011] [Indexed: 12/18/2022]
Abstract
Long-term consumption of walnuts is associated with lower cardiovascular disease risk in epidemiological studies, possibly through improvements in lipid profile and endothelial function. It remains to be elucidated how soon after initiation of walnut consumption beneficial effects on lipid profile and biomarkers of inflammation or vascular injury can be observed. Fifteen obese subjects (9 men and 6 women; age, 58 ± 2.5 years; body mass index, 36.6 ± 1.7 kg/m(2)) with the metabolic syndrome participated as inpatients in a randomized, double-blinded, placebo-controlled crossover study involving short-term placebo or walnut-enriched diet (48 g/d for 4 days). Apolipoproteins and markers of inflammation and vascular injury were measured before and after consumption of the experimental diets. Consumption of walnuts was associated with a statistically significant increase in serum apolipoprotein A concentrations (P = .03), but did not affect circulating levels of fetuin A, resistin, C-reactive protein, serum amyloid A, soluble intercellular adhesion molecules 1 and 3, soluble vascular cell adhesion protein 1, interleukins 6 and 8, tumor necrosis factor α, E-selectin, P-selectin, and thrombomodulin. Four days of walnut consumption (48 g/d) leads to mild increases in apolipoprotein A concentrations, changes that may precede and lead to the beneficial effects of walnuts on lipid profile in obese subjects with the metabolic syndrome.
Collapse
Affiliation(s)
- Konstantinos N Aronis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kim SR, Jung YH, Park HJ, Kim MK, Jeong JW, Jang HO, Yun I, Bae SK, Bae MK. Upregulation of thromboxane synthase mediates visfatin-induced interleukin-8 expression and angiogenic activity in endothelial cells. Biochem Biophys Res Commun 2012; 418:662-8. [PMID: 22293189 DOI: 10.1016/j.bbrc.2012.01.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 01/17/2012] [Indexed: 12/21/2022]
Abstract
Thromboxane synthase (TXAS) is an enzyme that catalyzes the synthesis of thromboxane A(2) (TXA(2)). Overexpression of TXAS is associated with a variety of vascular diseases. Recently, we reported that visfatin, a novel adipokine, exhibits angiogenic actions. In this study, we showed that visfatin increased mRNA and protein levels of TXAS and stimulated TXA(2) biosynthesis in vascular endothelial cells. In addition, visfatin induced the expression and secretion of interleukin-8 (IL-8), which is blocked by a TXAS inhibitor and by the transfection of siRNA specific for TXAS. Furthermore, the inhibition of TXAS activity and blockade of the IL-8 receptor attenuated visfatin-induced endothelial angiogenesis. Together, these results showed that visfatin promoted IL-8 production by upregulation of TXAS, leading to angiogenic activation in endothelial cells.
Collapse
Affiliation(s)
- Su-Ryun Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 626-870, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Alvarez G, Visitación Bartolomé M, Miana M, Jurado-López R, Martín R, Zuluaga P, Martinez-Martinez E, Nieto ML, Alvarez-Sala LA, Millán J, Lahera V, Cachofeiro V. The effects of adiponectin and leptin on human endothelial cell proliferation: a live-cell study. J Vasc Res 2012; 49:111-22. [PMID: 22249107 DOI: 10.1159/000332332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022] Open
Abstract
The effect of adiponectin and leptin on the proliferation of the human microvascular endothelial cell line (HMEC-1) was studied in the absence or presence of fetal bovine serum (FBS). The participation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase/Akt (PI-3K/Akt) pathways in this effect were evaluated. We studied the effect of both adipokines on the motility, mitosis, proliferation and cell death processes of HMEC-1 cells using live-cell imaging techniques. Adiponectin but not leptin further increased the proliferative effect induced by FBS on HMEC-1. This effect seems to be the consequence of an increase in the mitotic index in adiponectin-treated cells when compared to untreated ones. The presence of either the mitogen-activated protein kinase (MAPK) inhibitor (PD98059), or PI-3K inhibitor (LY294002), reduced the effect of adiponectin in a dose-dependent manner. Neither adipokine was able to affect HMEC-1 proliferation in FBS-free conditions. Duration of mitosis, cell motility and the cell death process were similar in all conditions. These data suggest that adiponectin and leptin exert different effects on endothelial cell function. Adiponectin was able to potentiate proliferation of HMEC-1. This effect involves the activation of both PI3-K/Akt and ERK/MAPK pathways. However, it seems to exert minimal effects on HMEC-1 function in the case of leptin.
Collapse
Affiliation(s)
- Granada Alvarez
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Russo I. The prothrombotic tendency in metabolic syndrome: focus on the potential mechanisms involved in impaired haemostasis and fibrinolytic balance. SCIENTIFICA 2012; 2012:525374. [PMID: 24278711 PMCID: PMC3820496 DOI: 10.6064/2012/525374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/27/2012] [Indexed: 05/09/2023]
Abstract
The metabolic syndrome is a clinical disorder characterized by impairment of glucose metabolism, increased arterial blood pressure, and abdominal obesity. The presence of these clinical features exposes patients to a high risk of atherothrombotic cardiovascular events. The pathogenesis of atherothrombosis in the metabolic syndrome is multifactorial, requiring a close relationship among the main components of the metabolic syndrome, including insulin resistance, alterations of glycaemic and lipid pattern, haemodynamic impairment, and early appearance of endothelial dysfunction. Furthermore, haemostatic alterations involving coagulation balance, fibrinolysis, and platelet function play a relevant role both in the progression of the arterial wall damage and in acute vascular events. The mechanisms linking abdominal obesity with prothrombotic changes in the metabolic syndrome have been identified and partially elucidated on the basis of alterations of each haemostatic variable and defined through the evidence of peculiar dysfunctions in the endocrine activity of adipose tissue responsible of vascular impairment, prothrombotic tendency, and low-grade chronic inflammation. This paper will focus on the direct role of adipose tissue on prothrombotic tendency in patients affected by metabolic syndrome, with adipocytes being able to produce and/or release cytokines and adipokines which deeply influence haemostatic/fibrinolytic balance, platelet function, and proinflammatory state.
Collapse
Affiliation(s)
- Isabella Russo
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences of the Turin University, San Luigi Gonzaga Hospital, 10043 Orbassano, Italy
- *Isabella Russo:
| |
Collapse
|
34
|
Francescut L, Steiner T, Byrne S, Cianflone K, Francis S, Stover C. The role of complement in the development and manifestation of murine atherogenic inflammation: novel avenues. J Innate Immun 2011; 4:260-72. [PMID: 22116497 DOI: 10.1159/000332435] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/31/2011] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease which manifests in the arterial vascular tree. It is a major cause of cardiovascular morbidity and contributes significantly to mortality in the developed world. Triggers for this inflammatory process are elevated levels of cholesterol, bacterial infection and obesity. The immune response in atherosclerosis is essentially pro-atherogenic, leading to lipid accumulation and cellular changes within the arterial wall. Small-animal models of atherosclerosis are used to study the relevance of candidate factors (cells, genes, diets) in the development and progression of lesions. From a multidisciplinary viewpoint, there are challenges and limitations to this approach. Activation of complement determines or modifies the outcome of acute and chronic inflammation. This review dissects the role of complement in the early development as well as the progressive manifestation of murine atherosclerosis and the advances in knowledge provided by the use of specific mouse models. It gives a critical overview of existing models, analyses seemingly conflicting results obtained with complement-deficient mouse models, highlights the importance of interrelationships between pro-coagulpant activity, adipose tissue, macrophages and complement, and uncovers exciting avenues of topical research.
Collapse
Affiliation(s)
- Lorenza Francescut
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|
35
|
Kruger I, Huisman H, Schutte A. The relationship between adiponectin, ageing and renal function in a bi-ethnic sample. ACTA ACUST UNITED AC 2011; 169:58-63. [DOI: 10.1016/j.regpep.2011.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/09/2011] [Accepted: 04/16/2011] [Indexed: 12/20/2022]
|
36
|
|
37
|
Peti A, Juhasz A, Kenyeres P, Varga Z, Seres I, Kovacs GL, Paragh G, Bajnok L. Relationship of adipokines and non-esterified fatty acid to the insulin resistance in non-diabetic individuals. J Endocrinol Invest 2011; 34:21-5. [PMID: 20460954 DOI: 10.1007/bf03346690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Altered secretion of adipokines and non-esterified fatty acid (NEFA) seems to play a pivotal role in the abdominal obesity-related insulin resistance (IR). AIM To determine semi-quantitatively the impact of serum NEFA, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), leptin, adiponectin, and resistin levels on IR measured by homeostasis model assessment (HOMA-IR). MATERIAL/SUBJECTS: Seventy-four Caucasian subjects forming 3 age-, and sex-matched groups were included into the study [Group 1 and 2: non-diabetic obese patients, no.= 25, body mass index (BMI): 28-39.9 kg/m(2), no.=25, BMI≥40 kg/m(2), respectively, and Group 3: 24 healthy, normal weight control subjects]. METHODS Serum levels of NEFA and adipokines as well as other metabolic variables including HOMA-IR were measured. RESULTS HOMA-IR was associated positively with BMI, waist circumference, serum NEFA, leptin, IL-6, and TNF-α levels, negatively with adiponectin, with no significant relation to resistin. In multiple regression analyses, of these factors leptin was a strong, IL-6 and adiponectin were weak independent predictors of HOMA-IR, while the others were not significant determinants of HOMA-IR. However, even together, they explained only 35-36% of variance of HOMAIR. CONCLUSIONS Although IR has associations with many of the investigated parameters, of these, only serum level of leptin, and in lesser degree IL-6 and adiponectin are independent determinants of the severity of IR. Moreover, even together they explain only a minority of variance IR.
Collapse
Affiliation(s)
- A Peti
- Institute of Laboratory Medicine, School of Medicine, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Metabolic syndrome, a growing issue in women's health, is a cluster of health findings that increase the risk of cardiovascular events. The prevalence of metabolic syndrome is higher in women and is linked to several conditions unique to women's health, including polycystic ovary syndrome, gestational diabetes, pregnancy-induced hypertension, and female sexual dysfunction. Risk factors, screening strategies, and therapeutic management of metabolic syndrome in women are discussed.
Collapse
|
39
|
Is leptin involved in phagocytic NADPH oxidase overactivity in obesity? Potential clinical implications. J Hypertens 2010; 28:1944-50. [DOI: 10.1097/hjh.0b013e32833c21af] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Zhang J, Defelice AF, Hanig JP, Colatsky T. Biomarkers of endothelial cell activation serve as potential surrogate markers for drug-induced vascular injury. Toxicol Pathol 2010; 38:856-71. [PMID: 20716788 DOI: 10.1177/0192623310378866] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug-induced vascular injury (DIVI) is a nonclinical finding that often confounds the toxicological evaluation of investigational drugs, but there is an absence of qualified biomarkers that can be used to detect and monitor its appearance in animals and patients during drug development and clinical use. It is well known that endothelial cell (EC) activation plays a key role in the expression and evolution of DIVI, and the various immunological and inflammatory factors involved in its expression may serve as potential biomarker candidates. Activated ECs change their morphology and gene expression, generating endothelial adhesion molecules, pro-coagulant molecules, cytokines, chemokines, vasodilators, nitric oxide, and acute-phase reactants. This review provides a brief historical background of EC activation and the search for biomarkers of early EC activation for monitoring DIVI. At present, no biomarkers of EC activation have been qualified to predict DIVI in the nonclinical or clinical context, and a robust pathologic foundation for their use is still lacking. We propose three categories of EC activation biomarkers: recommended surrogate markers, potentially useful markers, and emerging candidate markers. This review alerts pharmaceutical companies, research institutions, and regulatory agencies to the continuing need for reliable biomarkers of EC activation in drug development.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Applied Pharmacology Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | | | | | | |
Collapse
|
41
|
Gupta AK, Johnson WD. Prediabetes and prehypertension in disease free obese adults correlate with an exacerbated systemic proinflammatory milieu. JOURNAL OF INFLAMMATION-LONDON 2010; 7:36. [PMID: 20659335 PMCID: PMC2920244 DOI: 10.1186/1476-9255-7-36] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 07/26/2010] [Indexed: 11/10/2022]
Abstract
Background Obesity is a pro-inflammatory state frequently associated with widespread metabolic alterations that include insulin resistance and deregulation of blood pressure (BP). This cascade of events in some measure explains the susceptibility of obese adults for co-morbid conditions like diabetes mellitus and hypertension. Hypothesis We hypothesized that an elevated systemic proinflammatory burden correlates with dysglycemia and deregulated blood pressure. Methods We analyzed the screening anthropometric and laboratory measures from healthy disease free obese adults (n = 35; women (W) 27, men (M) 8) in a weight loss study. Results Healthy obese normoglycemic (fasting serum glucose: FSG <100 mg/dL) women and men compared with healthy obese with prediabetes (FSG 100-125 mg/dL) had no significant differences for age (Mean ± SD: 52 ± 12 vs. 56 ± 9 y), weight (95 ± 11 vs. 99 ± 13 kg), or waist circumference (108 ± 10 vs. 108 ± 11 cm). Normoglycemic group (n = 24; W = 19, M = 5) had normal FSG 92 ± 4 mg/dL, HbA1c 5.4 ± 0.3%, BP 118/75 mm Hg, but had elevated high sensitivity C-reactive protein (hs CRP) 3.7 ± 3 mg/L and fibrinogen 472 ± 76 mg/dL. The group with prediabetes (n = 11; W = 8, M = 3) with significantly higher FSG (106 ± 3 mg/dL; p < 0.0001), HbA1c (5.9 ± 0.5%; p < 0.002), had prehypertension (BP: 127/80 mm Hg) and significantly higher hs CRP (16.9 ± 9 mg/; p < 0.0001) and fibrinogen (599 ± 95 mg/dL; p < 0.0002). Conclusions In otherwise healthy disease free obese adults, a higher degree of systemic inflammation is associated with prediabetes and prehypertension.
Collapse
Affiliation(s)
- Alok K Gupta
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
| | | |
Collapse
|
42
|
Adipocytokines in atherothrombosis: focus on platelets and vascular smooth muscle cells. Mediators Inflamm 2010; 2010:174341. [PMID: 20652043 PMCID: PMC2905911 DOI: 10.1155/2010/174341] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/14/2010] [Accepted: 04/29/2010] [Indexed: 12/11/2022] Open
Abstract
Visceral obesity is a relevant pathological condition closely associated with high risk of atherosclerotic vascular disease including myocardial infarction and stroke. The increased vascular risk is related also to peculiar dysfunction in the endocrine activity of adipose tissue responsible of vascular impairment (including endothelial dysfunction), prothrombotic tendency, and low-grade chronic inflammation. In particular, increased synthesis and release of different cytokines, including interleukins and tumor necrosis factor-α (TNF-α), and adipokines—such as leptin—have been reported as associated with future cardiovascular events. Since vascular cell dysfunction plays a major role in the atherothrombotic complications in central obesity, this paper aims at focusing, in particular, on the relationship between platelets and vascular smooth muscle cells, and the impaired secretory pattern of adipose tissue.
Collapse
|
43
|
Rivera CA, Gaskin L, Allman M, Pang J, Brady K, Adegboyega P, Pruitt K. Toll-like receptor-2 deficiency enhances non-alcoholic steatohepatitis. BMC Gastroenterol 2010; 10:52. [PMID: 20509914 PMCID: PMC2891617 DOI: 10.1186/1471-230x-10-52] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 05/28/2010] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previously we reported that mice deficient in toll-like receptor 4 (TLR-4) signalling were protected from diet-induced non-alcoholic steatohepatitis (NASH). Another member of the toll-like receptor family, TLR-2, has been shown to play a role in lipid trafficking via uptake of diacylated lipoproteins. However, a role for TLR-2 in NASH has not been elucidated. The objectives of the current study were to examine the influence of dietary fat quality and TLR-2 on NASH pathogenesis. METHODS Steatohepatitis was induced in male Db, C57BL/6 and TLR-2(-/-) mice by feeding an L-amino acid-defined diet that was deficient in methionine and choline (MCDD). Mice fed the base diet supplemented with methionine and choline (control diet; CD) were used as controls. To determine the role of fat quality, MCDD was enriched with polyunsaturated corn oil (PUFA) or coconut oil that is comprised mostly of saturated fat (SAFA); the total amount of each fat was 112.9 g/kg of diet. After 8 weeks of feeding CD or MCDD, hepatic steatosis, inflammation and necrosis were evaluated in histological sections. Total RNA was extracted from frozen liver samples and mRNA expression of TNFalpha, collagen alpha1, IL-10, peroxisome proliferator-activated receptor-gamma (PPAR-gamma), TLR-4, and CD14, was analyzed via real-time PCR. Protein levels of TLR-2 were analyzed by western blot. RESULTS Panlobular macrovessicular steatosis and diffuse leukocyte infiltration were noted in PUFA-fed Db mice. Histological scores demonstrated significantly less steatosis, inflammation and necrosis in SAFA-fed mice of all mouse strains. However, compared to wild type mice, hepatocellular damage was notably more severe in TLR-2(-/-) mice. Consistent with histological findings, mRNA expression of TNFalpha was elevated by approximately 3-fold in TLR-2(-/-) mice; PPAR-gamma expression was blunted in this strain compared to wild type. Expression of the matrix protein collagen alphaI was also significantly higher in TLR-2(-/-) mice, indicating a pro-fibrogenic state. Sensitivity to steatohepatitis due to dietary fat or TLR-2 deficiency correlated significantly with alterations in the expression of TLR-4 as well as the co-receptor CD-14. CONCLUSIONS Our findings suggest that dietary saturated fat plays a protective role against MCDD-induced steatohepatitis, whereas TLR-2 deficiency exacerbated NASH. The mechanism underlying the response to dietary fat and TLR-2 likely involves altered signalling via the TLR-4 pathway.
Collapse
Affiliation(s)
- Chantal A Rivera
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Koncsos P, Seres I, Harangi M, Illyés I, Józsa L, Gönczi F, Bajnok L, Paragh G. Human paraoxonase-1 activity in childhood obesity and its relation to leptin and adiponectin levels. Pediatr Res 2010; 67:309-13. [PMID: 19915520 DOI: 10.1203/pdr.0b013e3181c9fb66] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Childhood obesity is a predisposing factor for adult cardiovascular diseases. Human serum paraoxonase (PON1) may protect against atherosclerosis by hydrolyzing lipid peroxides in oxidized LDL. Alterations and potential correlations of PON1 activities, leptin and adiponectin levels in childhood obesity were studied. We measured PON1 paraoxonase and arylesterase activities, anthropometric parameters, leptin and adiponectin levels in 59 white, obese (obese group-OB: BMI corrected for age: 95.1 +/- 3.5 percentile, age: 11.9 +/- 1.6 y) and 51 normal-weight children (control group-C: BMI corrected for age: 64.1 +/- 8.4 percentile, age: 12.0 +/- 3.9 y). Obese children had significantly lower PON1 paraoxonase (OB: 84.80 (64.33/144.74) U/L versus. C: 99.42 (83.33/152.05) U/L; p < 0.05) and arylesterase activities (OB: 94.40 (82.20/108.70) U/L versus. C: 115.20 (93.70/126.00) U/L; p < 0.01), higher leptin (OB: 37.05 (24.33/53.87) ng/mL versus. C: 4.62 (2.52/17.6) ng/mL; p < 0.0001) and lower adiponectin levels (OB: 7.56 (5.69/12.06) microg/mL versus. C: 11.51 (8.84/14.49) microg/mL; p < 0.001) compared with the normal-weight group. PON1 arylesterase activity showed inverse univariate correlation with leptin (r = -0.29; p < 0.05) and positive correlation with adiponectin levels (r = 0.39; p < 0.01). In multiple regression analysis adiponectin was strongly associated with PON1 arylesterase activity in obese children (beta = 0.45, p < 0.02). Our results emphasize the importance of the investigated metabolic alterations which may have further effects on cardiovascular morbidity and mortality in later adulthood. Altered levels of leptin, adiponectin and PON1 activities may be useful markers beside the general risk factors in childhood obesity.
Collapse
Affiliation(s)
- Péter Koncsos
- First Department of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Leptin induces an inflammatory phenotype in lean Wistar rats. Mediators Inflamm 2010; 2009:738620. [PMID: 20150963 PMCID: PMC2817554 DOI: 10.1155/2009/738620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/29/2009] [Accepted: 10/15/2009] [Indexed: 01/05/2023] Open
Abstract
The present study addressed the hypothesis that leptin promotes leukocyte trafficking into adipose tissue. Accordingly, male Wistar rats were treated with saline or recombinant rat leptin (1 mg/kg) via the tail vein. Leukocyte trafficking in mesenteric venules was quantified by intravital microscopy. Treatment with leptin resulted in a 3- and 5-fold increases in rolling and firm adhesion, respectively. Compared to vehicle controls, leptin enhanced mRNA levels of IL-6 (8-fold) and MCP-1 (5-fold) in mesenteric adipose tissue (MAT). Similar increases in these markers were observed in mesenteric venules and in liver. Finally, the direct effect of leptin was assessed in C3A hepatocytes treated with leptin for 24 hours (7.8 ng/mL–125 ng/mL). Consistent with observations in vivo, production of ICAM-1, MCP-1, and IL-6 by hepatocytes was increased significantly. These findings support the hypothesis that leptin directly initiates inflammation in the local environment of mesenteric adipose tissue as well as systemically.
Collapse
|
46
|
Leptin and adiponectin blood levels in women with premature ovarian failure and age- and weight-matched women with normal menstrual cycles. Menopause 2010; 17:174-7. [DOI: 10.1097/gme.0b013e3181b00dad] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Abstract
White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body's fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and immune systems and play major roles in metabolism. Numerous studies have shown nutrient or hormonal manipulations can greatly influence adipose tissue development. In addition, the associations between various disease states, such as insulin resistance and cardiovascular disease, and disregulation of adipose tissue seen in epidemiological and intervention studies are great. Evaluation of known adipokines suggests these factors secreted from adipose tissue play roles in several pathologies. As the identification of more adipokines and determination of their role in biological systems, and the interactions between adipocytes and other cells types continues, there is little doubt that we will gain a greater appreciation for a tissue once thought to simply store excess energy.
Collapse
|
48
|
Zeadin M, Butcher M, Werstuck G, Khan M, Yee CK, Shaughnessy SG. Effect of leptin on vascular calcification in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2009; 29:2069-75. [PMID: 19797706 DOI: 10.1161/atvbaha.109.195255] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The adipocytokine leptin has been proposed to increase cardiovascular risk in both obese and diabetic individuals. In the current study, therefore, we used apoE-deficient mice to examine the effects of leptin on both lesion size and calcification. METHODS AND RESULTS Mice were treated with once daily intraperitoneal injections of leptin (125 microg/mouse/d) for 2 months. The mice were then euthanized, and sections of the aortic root and thoracic aorta analyzed histomorphometrically. Measurements of lesion size and surface area occupied by atherosclerotic lesions did not reveal any differences between nontreated and leptin-treated animals. However, von Kossa staining of the aortic root demonstrated an 8.3+/-2.0-fold increase in lesion calcification as well as a 2.5+/-0.6-fold increase in valvular calcification in those animals treated with leptin. In addition, the percent total lesion area demonstrating ALP-positive staining was 5.4+/-2.1-fold greater in leptin-treated mice when compared to nontreated control mice. This increase in ALP staining was also accompanied by an increase in the expression of the osteoblast-specific markers, osteocalcin, and osteopontin. CONCLUSIONS Based on these observations, we conclude that leptin may increase cardiovascular risk by promoting osteogenic differentiation and thus vascular calcification.
Collapse
Affiliation(s)
- Melec Zeadin
- Department of Pathology and Molecular Medicine, McMaster University and Henderson Research Center, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Tarkowski A, Bjersing J, Shestakov A, Bokarewa MI. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J Cell Mol Med 2009; 14:1419-31. [PMID: 19754671 PMCID: PMC3829009 DOI: 10.1111/j.1582-4934.2009.00899.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of cellular structures activated by recognition of pathogen associated molecular sequences. The activation of TLRs triggers a variety of intracellular mechanisms aiming to protect the host from the invading microorganisms. Lipopolysaccharide (LPS) is the main ligand for TLR4. Here we show that resistin, a cystein-rich protein believed to regulate carbohydrate metabolism, competes with LPS for binding to TLR4. Binding of recombinant resistin to human myeloid and epithelial cells was assessed by flow cytometry and its co-precipitation with TLR4 was demonstrated. Antibodies against TLR4 abolished resistin binding to human leucocytes and cytokine production by peripheral blood mononuclear cells in response to resistin stimulation. In contrast, isotype-matched murine IgG or TLR2 antibodies were unable to prevent binding of resistin to the cells. Similarly, TLR4-dependent pattern of resistin binding was observed in epithelial cell line HEK293 (human epithelial kidney cell), where TLR4 transfected, but not myeloid differentiation factor 2/CD14-transfected, TLR2 transfected or HEKnull cells, responded functionally to resistin stimulation. Intracellular signalling of resistin was assessed using inhibitors of transcription factors mitogen activated protein kinases, nuclear factor-kappaB, phosphoinositide 3-kinase and siRNA targeting TLR4 and human myeloid differentiation factor 88. Results demonstrate that TLR4 serves as a receptor for the pro-inflammatory effects of resistin in human cells. This may partly explain the multifunctional role of resistin in chronic inflammation, atherosclerosis and insulin resistance.
Collapse
Affiliation(s)
- Andrej Tarkowski
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden
| | | | | | | |
Collapse
|
50
|
Kaysen GA, Kotanko P, Zhu F, Sarkar SR, Heymsfield SB, Kuhlmann MK, Dwyer T, Usvyat L, Havel P, Levin NW. Relationship between adiposity and cardiovascular risk factors in prevalent hemodialysis patients. J Ren Nutr 2009; 19:357-64. [PMID: 19596588 DOI: 10.1053/j.jrn.2009.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Increased body mass index (BMI) is associated with reduced all-cause and cardiovascular (CV) mortality in hemodialysis (HD) patients, whereas CV risk increases with BMI in the general population. In the general population, obesity is associated with inflammation, decreased high-density lipoprotein (HDL) cholesterol, increased low-density lipoprotein (LDL) cholesterol, and triglycerides (TGs), all risk factors for CV disease. Low-density lipoprotein cholesterol does not predict CV risk in HD, whereas increased C-reactive protein and interleukin-6 (IL-6), low HDL and apolipoprotein (apo) AI, and increased fasting TGs do predict risk. Renal failure is associated with dyslipidemia and inflammation in normal-weight patients. We hypothesized that the effects of obesity may be obscured by renal failure in HD. METHODS We explored the relationship between adipose tissue pools and distribution, i.e., subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) (measured by magnetic resonance imaging) and measures of inflammation (C-reactive protein, IL-6, ceruloplasmin, and alpha1 acid glycoprotein), HDL and LDL cholesterol, total TGs, apo AI, apo B, apo CII (an activator of lipoprotein lipase), apo CIII (an inhibitor of lipoprotein lipase), and the adipokines, leptin and adiponectin, in 48 patients with prevalent HD. RESULTS AND CONCLUSIONS Total TG concentrations were positively correlated with VAT controlled for age, sex, and weight. Both apo CII and apo CIII were correlated only with VAT. Adiponectin was inversely correlated with VAT, and leptin was positively associated with SAT. C-reactive protein and alpha1 acid glycoprotein were weakly associated with SAT, whereas ceruloplasmin was strongly associated with VAT according to multiple regression analysis. In contrast, apo B, LDL, apo AI, HDL, and IL-6 were not correlated with any measure of body composition, potentially mitigating the effects of obesity in HD.
Collapse
|