1
|
Pérez-Fernández BA, Calzadilla L, Enrico Bena C, Del Giudice M, Bosia C, Boggiano T, Mulet R. Sodium acetate increases the productivity of HEK293 cells expressing the ECD-Her1 protein in batch cultures: experimental results and metabolic flux analysis. Front Bioeng Biotechnol 2024; 12:1335898. [PMID: 38659646 PMCID: PMC11039900 DOI: 10.3389/fbioe.2024.1335898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Human Embryonic Kidney cells (HEK293) are a popular host for recombinant protein expression and production in the biotechnological industry. This has driven within both, the scientific and the engineering communities, the search for strategies to increase their protein productivity. The present work is inserted into this search exploring the impact of adding sodium acetate (NaAc) into a batch culture of HEK293 cells. We monitored, as a function of time, the cell density, many external metabolites, and the supernatant concentration of the heterologous extra-cellular domain ECD-Her1 protein, a protein used to produce a candidate prostate cancer vaccine. We observed that by adding different concentrations of NaAc (0, 4, 6 and 8 mM), the production of ECD-Her1 protein increases consistently with increasing concentration, whereas the carrying capacity of the medium decreases. To understand these results we exploited a combination of experimental and computational techniques. Metabolic Flux Analysis (MFA) was used to infer intracellular metabolic fluxes from the concentration of external metabolites. Moreover, we measured independently the extracellular acidification rate and oxygen consumption rate of the cells. Both approaches support the idea that the addition of NaAc to the culture has a significant impact on the metabolism of the HEK293 cells and that, if properly tuned, enhances the productivity of the heterologous ECD-Her1 protein.
Collapse
Affiliation(s)
- Bárbara Ariane Pérez-Fernández
- Group of Complex Systems and Statistical Physics, Department of Applied Physics, Physics Faculty, University of Havana, Havana, Cuba
| | | | | | | | - Carla Bosia
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | | | - Roberto Mulet
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, Havana, Cuba
| |
Collapse
|
2
|
Mert S, Bulutoglu B, Chu C, Dylewski M, Lin FM, Yu YM, Yarmush ML, Sheridan RL, Uygun K. Multiorgan Metabolomics and Lipidomics Provide New Insights Into Fat Infiltration in the Liver, Muscle Wasting, and Liver-Muscle Crosstalk Following Burn Injury. J Burn Care Res 2020; 42:269-287. [PMID: 32877506 DOI: 10.1093/jbcr/iraa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Burn injury mediated hypermetabolic syndrome leads to increased mortality among severe burn victims, due to liver failure and muscle wasting. Metabolic changes may persist up to 2 years following the injury. Thus, understanding the underlying mechanisms of the pathology is crucially important to develop appropriate therapeutic approaches. We present detailed metabolomic and lipidomic analyses of the liver and muscle tissues in a rat model with a 30% body surface area burn injury located at the dorsal skin. Three hundred and thirty-eight of 1587 detected metabolites and lipids in the liver and 119 of 1504 in the muscle tissue exhibited statistically significant alterations. We observed excessive accumulation of triacylglycerols, decreased levels of S-adenosylmethionine, increased levels of glutamine and xenobiotics in the liver tissue. Additionally, the levels of gluconeogenesis, glycolysis, and tricarboxylic acid cycle metabolites are generally decreased in the liver. On the other hand, burn injury muscle tissue exhibits increased levels of acyl-carnitines, alpha-hydroxyisovalerate, ophthalmate, alpha-hydroxybutyrate, and decreased levels of reduced glutathione. The results of this preliminary study provide compelling observations that liver and muscle tissues undergo distinctly different changes during hypermetabolism, possibly reflecting liver-muscle crosstalk. The liver and muscle tissues might be exacerbating each other's metabolic pathologies, via excessive utilization of certain metabolites produced by each other.
Collapse
Affiliation(s)
- Safak Mert
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Beyza Bulutoglu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christopher Chu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maggie Dylewski
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Florence M Lin
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Yong-Ming Yu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Martin L Yarmush
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Robert L Sheridan
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
3
|
Pannala VR, Vinnakota KC, Rawls KD, Estes SK, O'Brien TP, Printz RL, Papin JA, Reifman J, Shiota M, Young JD, Wallqvist A. Mechanistic identification of biofluid metabolite changes as markers of acetaminophen-induced liver toxicity in rats. Toxicol Appl Pharmacol 2019; 372:19-32. [PMID: 30974156 DOI: 10.1016/j.taap.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) is the most commonly used analgesic and antipyretic drug in the world. Yet, it poses a major risk of liver injury when taken in excess of the therapeutic dose. Current clinical markers do not detect the early onset of liver injury associated with excess APAP-information that is vital to reverse injury progression through available therapeutic interventions. Hence, several studies have used transcriptomics, proteomics, and metabolomics technologies, both independently and in combination, in an attempt to discover potential early markers of liver injury. However, the casual relationship between these observations and their relation to the APAP mechanism of liver toxicity are not clearly understood. Here, we used Sprague-Dawley rats orally gavaged with a single dose of 2 g/kg of APAP to collect tissue samples from the liver and kidney for transcriptomic analysis and plasma and urine samples for metabolomic analysis. We developed and used a multi-tissue, metabolism-based modeling approach to integrate these data, characterize the effect of excess APAP levels on liver metabolism, and identify a panel of plasma and urine metabolites that are associated with APAP-induced liver toxicity. Our analyses, which indicated that pathways involved in nucleotide-, lipid-, and amino acid-related metabolism in the liver were most strongly affected within 10 h following APAP treatment, identified a list of potential metabolites in these pathways that could serve as plausible markers of APAP-induced liver injury. Our approach identifies toxicant-induced changes in endogenous metabolism, is applicable to other toxicants based on transcriptomic data, and provides a mechanistic framework for interpreting metabolite alterations.
Collapse
Affiliation(s)
- Venkat R Pannala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| | - Kalyan C Vinnakota
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Kristopher D Rawls
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA.
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| |
Collapse
|
4
|
Pannala VR, Wall ML, Estes SK, Trenary I, O'Brien TP, Printz RL, Vinnakota KC, Reifman J, Shiota M, Young JD, Wallqvist A. Metabolic network-based predictions of toxicant-induced metabolite changes in the laboratory rat. Sci Rep 2018; 8:11678. [PMID: 30076366 PMCID: PMC6076258 DOI: 10.1038/s41598-018-30149-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
In order to provide timely treatment for organ damage initiated by therapeutic drugs or exposure to environmental toxicants, we first need to identify markers that provide an early diagnosis of potential adverse effects before permanent damage occurs. Specifically, the liver, as a primary organ prone to toxicants-induced injuries, lacks diagnostic markers that are specific and sensitive to the early onset of injury. Here, to identify plasma metabolites as markers of early toxicant-induced injury, we used a constraint-based modeling approach with a genome-scale network reconstruction of rat liver metabolism to incorporate perturbations of gene expression induced by acetaminophen, a known hepatotoxicant. A comparison of the model results against the global metabolic profiling data revealed that our approach satisfactorily predicted altered plasma metabolite levels as early as 5 h after exposure to 2 g/kg of acetaminophen, and that 10 h after treatment the predictions significantly improved when we integrated measured central carbon fluxes. Our approach is solely driven by gene expression and physiological boundary conditions, and does not rely on any toxicant-specific model component. As such, it provides a mechanistic model that serves as a first step in identifying a list of putative plasma metabolites that could change due to toxicant-induced perturbations.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| | - Martha L Wall
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN, 37232, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN, 37232, USA
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kalyan C Vinnakota
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN, 37232, USA.
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
5
|
Li L, Zhao J, Ge C, Yu L, Ma H. Dehydroepiandrosterone rehabilitate BRL‐3A cells oxidative stress damage induced by hydrogen peroxide. J Cell Physiol 2018. [DOI: 10.1002/jcp.26458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Longlong Li
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingPeople's Republic of China
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjingPeople's Republic of China
| | - Jinlong Zhao
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingPeople's Republic of China
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjingPeople's Republic of China
| | - Chongyang Ge
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingPeople's Republic of China
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjingPeople's Republic of China
| | - Lei Yu
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingPeople's Republic of China
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjingPeople's Republic of China
| | - Haitian Ma
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingPeople's Republic of China
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjingPeople's Republic of China
| |
Collapse
|
6
|
Izamis ML, Tolboom H, Uygun B, Berthiaume F, Yarmush ML, Uygun K. Resuscitation of ischemic donor livers with normothermic machine perfusion: a metabolic flux analysis of treatment in rats. PLoS One 2013; 8:e69758. [PMID: 23922793 PMCID: PMC3724866 DOI: 10.1371/journal.pone.0069758] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022] Open
Abstract
Normothermic machine perfusion has previously been demonstrated to restore damaged warm ischemic livers to transplantable condition in animal models. However, the mechanisms of recovery are unclear, preventing rational optimization of perfusion systems and slowing clinical translation of machine perfusion. In this study, organ recovery time and major perfusate shortcomings were evaluated using a comprehensive metabolic analysis of organ function in perfusion prior to successful transplantation. Two groups, Fresh livers and livers subjected to 1 hr of warm ischemia (WI) received perfusion for a total preservation time of 6 hrs, followed by successful transplantation. 24 metabolic fluxes were directly measured and 38 stoichiometrically-related fluxes were estimated via a mass balance model of the major pathways of energy metabolism. This analysis revealed stable metabolism in Fresh livers throughout perfusion while identifying two distinct metabolic states in WI livers, separated at t = 2 hrs, coinciding with recovery of oxygen uptake rates to Fresh liver values. This finding strongly suggests successful organ resuscitation within 2 hrs of perfusion. Overall perfused livers regulated metabolism of perfusate substrates according to their metabolic needs, despite supraphysiological levels of some metabolites. This study establishes the first integrative metabolic basis for the dynamics of recovery during perfusion treatment of marginal livers. Our initial findings support enhanced oxygen delivery for both timely recovery and long-term sustenance. These results are expected to lead the optimization of the treatment protocols and perfusion media from a metabolic perspective, facilitating translation to clinical use.
Collapse
Affiliation(s)
- Maria-Louisa Izamis
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Herman Tolboom
- Division of Cardiac and Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Basak Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Effect of fasting on the metabolic response of liver to experimental burn injury. PLoS One 2013; 8:e54825. [PMID: 23393558 PMCID: PMC3564862 DOI: 10.1371/journal.pone.0054825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/17/2012] [Indexed: 12/31/2022] Open
Abstract
Liver metabolism is altered after systemic injuries such as burns and trauma. These changes have been elucidated in rat models of experimental burn injury where the liver was isolated and perfused ex vivo. Because these studies were performed in fasted animals to deplete glycogen stores, thus simplifying quantification of gluconeogenesis, these observations reflect the combined impact of fasting and injury on liver metabolism. Herein we asked whether the metabolic response to experimental burn injury is different in fed vs. fasted animals. Rats were subjected to a cutaneous burn covering 20% of the total body surface area, or to similar procedures without administering the burn, hence a sham-burn. Half of the animals in the burn and sham-burn groups were fasted starting on postburn day 3, and the others allowed to continue ad libitum. On postburn day 4, livers were isolated and perfused for 1 hour in physiological medium supplemented with 10% hematocrit red blood cells. The uptake/release rates of major carbon and nitrogen sources, oxygen, and carbon dioxide were measured during the perfusion and the data fed into a mass balance model to estimate intracellular fluxes. The data show that in fed animals, injury increased glucose output mainly from glycogen breakdown and minimally impacted amino acid metabolism. In fasted animals, injury did not increase glucose output but increased urea production and the uptake of several amino acids, namely glutamine, arginine, glycine, and methionine. Furthermore, sham-burn animals responded to fasting by triggering gluconeogenesis from lactate; however, in burned animals the preferred gluconeogenic substrate was amino acids. Taken together, these results suggest that the fed state prevents the burn-induced increase in hepatic amino acid utilization for gluconeogenesis. The role of glycogen stores and means to increase and/or maintain internal sources of glucose to prevent increased hepatic amino acid utilization warrant further studies.
Collapse
|
8
|
Izamis ML, Uygun K, Sharma NS, Uygun B, Yarmush ML, Berthiaume F. Development of Metabolic Indicators of Burn Injury: Very Low Density Lipoprotein (VLDL) and Acetoacetate Are Highly Correlated to Severity of Burn Injury in Rats. Metabolites 2012; 2:458-78. [PMID: 24957642 PMCID: PMC3901222 DOI: 10.3390/metabo2030458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 01/04/2023] Open
Abstract
Hypermetabolism is a significant sequela to severe trauma such as burns, as well as critical illnesses such as cancer. It persists in parallel to, or beyond, the original pathology for many months as an often-fatal comorbidity. Currently, diagnosis is based solely on clinical observations of increased energy expenditure, severe muscle wasting and progressive organ dysfunction. In order to identify the minimum number of necessary variables, and to develop a rat model of burn injury-induced hypermetabolism, we utilized data mining approaches to identify the metabolic variables that strongly correlate to the severity of injury. A clustering-based algorithm was introduced into a regression model of the extent of burn injury. As a result, a neural network model which employs VLDL and acetoacetate levels was demonstrated to predict the extent of burn injury with 88% accuracy in the rat model. The physiological importance of the identified variables in the context of hypermetabolism, and necessary steps in extension of this preliminary model to a clinically utilizable index of severity of burn injury are outlined.
Collapse
Affiliation(s)
- Maria-Louisa Izamis
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Nripen S Sharma
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Basak Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Anti-inflammatory properties of histone deacetylase inhibitors: a mechanistic study. J Trauma Acute Care Surg 2012; 72:347-53; discussion 353-4. [PMID: 22327976 DOI: 10.1097/ta.0b013e318243d8b2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND We have demonstrated that postshock administration of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, can significantly improve early survival in a highly lethal model of hemorrhagic shock. As the primary insult in hemorrhagic shock is cellular hypoxia, and transcription factor hypoxia-inducible factor-1α (HIF-1α) controls proinflammatory gene expression in macrophages, we hypothesized that SAHA would attenuate the HIF-1α associated proinflammatory pathway in a hypoxic macrophage model. METHODS Mouse macrophages were exposed to hypoxic conditions (0.5% O2, 10% CO2, and 89.5% N2) at 37°C in the presence or absence of SAHA (10 μmol/L). The cells and culture medium were harvested at 1 hour, 4 hours, and 8 hours. Sham (no hypoxia, no SAHA) served as a control. Western blots were performed to assess protein levels of prolyl hydroxylase 2 (PHD2), HIF-1α, and inducible nitric oxide synthase (iNOS) in the cells. Colorimetric biochemical assay and enzyme-linked immunosorbent assay were used to analyze the release of nitric oxide (NO) and secretion of tumor necrosis factor α (TNF-α), respectively, in the cell culture medium. RESULTS Hypoxia significantly increased cellular level of HIF-1α (1 hour and 4 hours), gene transcription of iNOS (4 hours and 8 hours), iNOS protein (8 hours), NO production (8 hours), and TNF-α secretion (4 hours and 8 hours). SAHA treatment attenuated all of the above hypoxia-induced alterations in the macrophages. In addition, SAHA treatment significantly increased cellular level of PHD2, one of the upstream negative regulators of HIF-1α, at 1 hour. CONCLUSIONS Treatment with SAHA attenuates hypoxia-HIF-1α-inflammatory pathway in macrophages and suppresses hypoxia-induced release of proinflammatory NO and TNF-α. SAHA also causes an early increase in cellular PHD2, which provides, at least in part, a new explanation for the decrease in the HIF-1α protein levels.
Collapse
|
10
|
Orman MA, Berthiaume F, Androulakis IP, Ierapetritou MG. Advanced stoichiometric analysis of metabolic networks of mammalian systems. Crit Rev Biomed Eng 2012; 39:511-34. [PMID: 22196224 DOI: 10.1615/critrevbiomedeng.v39.i6.30] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
11
|
Orman MA, Mattick J, Androulakis IP, Berthiaume F, Ierapetritou MG. Stoichiometry based steady-state hepatic flux analysis: computational and experimental aspects. Metabolites 2012; 2:268-91. [PMID: 24957379 PMCID: PMC3901202 DOI: 10.3390/metabo2010268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/16/2022] Open
Abstract
: The liver has many complex physiological functions, including lipid, protein and carbohydrate metabolism, as well as bile and urea production. It detoxifies toxic substances and medicinal products. It also plays a key role in the onset and maintenance of abnormal metabolic patterns associated with various disease states, such as burns, infections and major traumas. Liver cells have been commonly used in in vitro experiments to elucidate the toxic effects of drugs and metabolic changes caused by aberrant metabolic conditions, and to improve the functions of existing systems, such as bioartificial liver. More recently, isolated liver perfusion systems have been increasingly used to characterize intrinsic metabolic changes in the liver caused by various perturbations, including systemic injury, hepatotoxin exposure and warm ischemia. Metabolic engineering tools have been widely applied to these systems to identify metabolic flux distributions using metabolic flux analysis or flux balance analysis and to characterize the topology of the networks using metabolic pathway analysis. In this context, hepatic metabolic models, together with experimental methodologies where hepatocytes or perfused livers are mainly investigated, are described in detail in this review. The challenges and opportunities are also discussed extensively.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - John Mattick
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Marianthi G Ierapetritou
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Orman MA, Androulakis IP, Berthiaume F, Ierapetritou MG. Metabolic network analysis of perfused livers under fed and fasted states: incorporating thermodynamic and futile-cycle-associated regulatory constraints. J Theor Biol 2011; 293:101-10. [PMID: 22037644 DOI: 10.1016/j.jtbi.2011.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
Isolated liver perfusion systems have been extensively used to characterize intrinsic metabolic changes in liver under various conditions, including systemic injury, hepatotoxin exposure, and warm ischemia. Most of these studies were performed utilizing fasted animals prior to perfusion so that a simplified metabolic network could be used in order to determine intracellular fluxes. However, fasting induced metabolic alterations might interfere with disease related changes. Therefore, there is a need to develop a "unified" metabolic flux analysis approach that could be similarly applied to both fed and fasted states. In this study we explored a methodology based on elementary mode analysis in order to determine intracellular fluxes and active pathways simultaneously. In order to decrease the solution space, thermodynamic constraints, and enzymatic regulatory properties for the formation of futile cycles were further considered in the model, resulting in a mixed integer quadratic programming problem. Given the published experimental observations describing the perfused livers under fed and fasted states, the proposed approach successfully determined that gluconeogenesis, glycogenolysis and fatty acid oxidation were active in both states. However, fasting increased the fluxes in gluconeogenic reactions whereas it decreased fluxes associated with glycogenolysis, TCA cycle, fatty acid oxidation and electron transport reactions. This analysis further identified that more pathways were found to be active in fed state while their weight values were relatively lower compared to fasted state. Glucose, lactate, glutamine, glutamate and ketone bodies were also found to be important external metabolites whose extracellular fluxes should be used in the hepatic metabolic network analysis. In conclusion, the mathematical formulation explored in this study is an attractive tool to analyze the metabolic network of perfused livers under various disease conditions. This approach could be simultaneously applied to both fasted and fed data sets.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
13
|
Orman MA, Ierapetritou MG, Androulakis IP, Berthiaume F. Metabolic response of perfused livers to various oxygenation conditions. Biotechnol Bioeng 2011; 108:2947-57. [PMID: 21755498 DOI: 10.1002/bit.23261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 01/06/2023]
Abstract
Isolated liver perfusion systems have been used to characterize intrinsic metabolic changes in liver as a result of various perturbations, including systemic injury, hepatotoxin exposure, and warm ischemia. Most of these studies were done using hyperoxic conditions (95% O(2)) but without the use of oxygen carriers in the perfusate. Prior literature data do not clearly establish the impact of oxygenation, and in particular that of adding oxygen carriers to the perfusate, on the metabolic functions of the liver. Therefore, herein the effects of oxygen delivery in the perfusion system on liver metabolism were investigated by comparing three modes of oxygenation. Rat livers were perfused via the portal and hepatic veins at a constant flow rate of 3 mL/min/g liver in a recirculating perfusion system. In the first group, the perfusate was equilibrated in a membrane oxygenator with room air (21% O(2)) before entering the liver. In the second group, the perfusate was equilibrated with a 95% O(2)/5% CO(2) gas mixture. In the third group, the perfusate was supplemented with washed bovine red blood cells (RBCs) at 10% hematocrit and also equilibrated with the 95% O(2)/5% CO(2) gas mixture. Oxygen and CO(2) gradients across the liver were measured periodically with a blood gas analyzer. The rate of change in the concentration of major metabolites in the perfusate was measured over time. Net extracellular fluxes were calculated from these measurements and applied to a stoichiometric-based optimization problem to determine the intracellular fluxes and active pathways in the perfused livers. Livers perfused with RBCs consumed oxygen at twice the rate observed using hyperoxic (95% O(2)) perfusate without RBCs, and also produced more urea and ketone bodies. At the flow rate used, the oxygen supply in perfusate without RBCs was just sufficient to meet the average oxygen demand of the liver but would be insufficient if it increased above baseline, as is often the case in response to environmental perturbations. Metabolic pathway analysis suggests that significant anaerobic glycolysis occurred in the absence of RBCs even using hyperoxic perfusate. Conversely, when RBCs were used, glucose production from lactate and glutamate, as well as pathways related to energy metabolism were upregulated. RBCs also reversed an increase in PPP fluxes induced by the use of hyperoxic perfusate alone. In conclusion, the use of oxygen carriers is required to investigate the effect of various perturbations on liver metabolism.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
14
|
Sharma NS, Nagrath D, Yarmush ML. Metabolic profiling based quantitative evaluation of hepatocellular metabolism in presence of adipocyte derived extracellular matrix. PLoS One 2011; 6:e20137. [PMID: 21603575 PMCID: PMC3095641 DOI: 10.1371/journal.pone.0020137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/26/2011] [Indexed: 12/05/2022] Open
Abstract
The elucidation of the effect of extracellular matrices on hepatocellular metabolism is critical to understand the mechanism of functional upregulation. We have developed a system using natural extracellular matrices [Adipogel] for enhanced albumin synthesis of rat hepatocyte cultures for a period of 10 days as compared to collagen sandwich cultures. Primary rat hepatocytes isolated from livers of female Lewis rats recover within 4 days of culture from isolation induced injury while function is stabilized at 7 days post-isolation. Thus, the culture period can be classified into three distinct stages viz. recovery stage [day 0–4], pre-stable stage [day 5–7] and the stable stage [day 8–10]. A Metabolic Flux Analysis of primary rat hepatocytes cultured in Adipogel was performed to identify the key metabolic pathways modulated as compared to collagen sandwich cultures. In the recovery stage [day 4], the collagen-soluble Adipogel cultures shows an increase in TriCarboxylic Acid [TCA] cycle fluxes; in the pre-stable stage [day 7], there is an increase in PPP and TCA cycle fluxes while in the stable stage [day 10], there is a significant increase in TCA cycle, urea cycle fluxes and amino acid uptake rates concomitant with increased albumin synthesis rate as compared to collagen sandwich cultures throughout the culture period. Metabolic analysis of the collagen-soluble Adipogel condition reveals significantly higher transamination reaction fluxes, amino acid uptake and albumin synthesis rates for the stable vs. recovery stages of culture. The identification of metabolic pathways modulated for hepatocyte cultures in presence of Adipogel will be a useful step to develop an optimization algorithm to further improve hepatocyte function for Bioartificial Liver Devices. The development of this framework for upregulating hepatocyte function in Bioartificial Liver Devices will facilitate the utilization of an integrated experimental and computational approach for broader applications of Adipogel in tissue e engineering and regenerative medicine.
Collapse
Affiliation(s)
- Nripen S. Sharma
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and The Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Deepak Nagrath
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, United States of America
| | - Martin L. Yarmush
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and The Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Nachuraju P, Friedman AJ, Friedman JM, Cabrales P. Exogenous nitric oxide prevents cardiovascular collapse during hemorrhagic shock. Resuscitation 2011; 82:607-13. [PMID: 21342744 DOI: 10.1016/j.resuscitation.2010.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/15/2010] [Accepted: 12/27/2010] [Indexed: 11/27/2022]
Abstract
This study investigated the systemic and microvascular hemodynamic changes related to increased nitric oxide (NO) availability following significant hemorrhage, made available by administration of NO releasing nanoparticles (NO-nps). Hemodynamic responses to hemorrhagic shock were studied in the hamster window chamber. Acute hemorrhage was induced by arterial controlled bleeding of 50% of blood volume, and the resulting hemodynamic parameters were followed over 90 min. Exogenous NO was administered in the form of NO-nps (5mg/kg suspended in 50 μl saline) 10 min following induced hemorrhage. Control groups received equal dose of NO free nanoparticles (Control-nps) and Vehicle solution. Animals treated with NO-nps partially maintained systemic and microvascular function during hypovolemic shock compared to animals treated with Control-nps or the Vehicle (50 μl saline). The continuous NO released by the NO-nps reverted arteriolar vasoconstriction, partially recovered both functional capillary density and microvascular blood flows. Additionally, NO supplementation post hemorrhage prevented cardiac decompensation, and thereby maintained and stabilized the heart rate. Paradoxically, the peripheral vasodilation induced by the NO-nps did not decrease blood pressure, and combined with NO's effects on vascular resistance, NO-nps promoted intravascular pressure redistribution and blood flow, avoiding tissue ischemia. Therefore, by increasing NO availability with NO-nps during hypovolemic shock, it is possible that cardiac stability and microvascular perfusion can be preserved, ultimately increasing survivability and local tissue viability, and reducing hemorrhagic shock sequelae. The relevance, stability, and efficacy of exogenous NO therapy in the form of NO-nps will potentially facilitate the intended use in battlefield and trauma situations.
Collapse
Affiliation(s)
- Parimala Nachuraju
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | | |
Collapse
|
16
|
Orman MA, Berthiaume F, Androulakis IP, Ierapetritou MG. Pathway analysis of liver metabolism under stressed condition. J Theor Biol 2010; 272:131-40. [PMID: 21163266 DOI: 10.1016/j.jtbi.2010.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/17/2010] [Accepted: 11/24/2010] [Indexed: 11/28/2022]
Abstract
Pathway analysis is a useful tool which reveals important metabolic network properties. However, the big challenge is to propose an objective function for estimating active pathways, which represent the actual state of network. In order to provide weight values for all possible pathways within the metabolic network, this study presents different approaches, considering the structural and physiological properties of the metabolic network, aiming at a unique decomposition of the flux vector into pathways. These methods were used to analyze the hepatic metabolism considering available data sets obtained from the perfused livers of fasted rats receiving burn injury. Utilizing unique decomposition techniques and different fluxes revealed that higher weights were always attributed to short pathways. Specific pathways, including pyruvate, glutamate and oxaloacetate pools, and urea production from arginine, were found to be important or essential in all methods and experimental conditions. Moreover the pathways, including serine production from glycine and conversion between acetoacetate and B-OH-butyrate, were assigned higher weights. Pathway analysis was also used to identify the main sources for the production of certain products in the hepatic metabolic network to gain a better understanding of the effects of burn injury on liver metabolism.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
17
|
Izamis ML, Sharma NS, Uygun B, Bieganski R, Saeidi N, Nahmias Y, Uygun K, Yarmush ML, Berthiaume F. In situ metabolic flux analysis to quantify the liver metabolic response to experimental burn injury. Biotechnol Bioeng 2010; 108:839-52. [PMID: 21404258 DOI: 10.1002/bit.22998] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/09/2010] [Accepted: 10/28/2010] [Indexed: 12/13/2022]
Abstract
Trauma such as burns induces a hypermetabolic response associated with altered central carbon and nitrogen metabolism. The liver plays a key role in these metabolic changes; however, studies to date have evaluated the metabolic state of liver using ex vivo perfusions or isotope labeling techniques targeted to specific pathways. Herein, we developed a unique mass balance approach to characterize the metabolic state of the liver in situ, and used it to quantify the metabolic changes to experimental burn injury in rats. Rats received a sham (control uninjured), 20% or 40% total body surface area (TBSA) scald burn, and were allowed to develop a hypermetabolic response. One day prior to evaluation, all animals were fasted to deplete glycogen stores. Four days post-burn, blood flow rates in major vessels of the liver were measured, and blood samples harvested. We combined measurements of metabolite concentrations and flow rates in the major vessels entering and leaving the liver with a steady-state mass balance model to generate a quantitative picture of the metabolic state of liver. The main findings were: (1) Sham-burned animals exhibited a gluconeogenic pattern, consistent with the fasted state; (2) the 20% TBSA burn inhibited gluconeogenesis and exhibited glycolytic-like features with very few other significant changes; (3) the 40% TBSA burn, by contrast, further enhanced gluconeogenesis and also increased amino acid extraction, urea cycle reactions, and several reactions involved in oxidative phosphorylation. These results suggest that increasing the severity of injury does not lead to a simple dose-dependent metabolic response, but rather leads to qualitatively different responses.
Collapse
Affiliation(s)
- Maria-Louisa Izamis
- The Center for Engineering in Medicine, Massachusetts General Hospital/Harvard Medical School/Shriners Hospitals for Children, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Orman MA, Arai K, Yarmush ML, Androulakis IP, Berthiaume F, Ierapetritou MG. Metabolic flux determination in perfused livers by mass balance analysis: Effect of fasting. Biotechnol Bioeng 2010; 107:825-35. [DOI: 10.1002/bit.22878] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Kan WH, Hsu JT, Schwacha MG, Choudhry MA, Raju R, Bland KI, Chaudry IH. Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation-induced hepatic injury. J Appl Physiol (1985) 2008; 105:1076-82. [PMID: 18635878 DOI: 10.1152/japplphysiol.90495.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although trauma-hemorrhage produces tissue hypoxia, systemic inflammatory response and organ dysfunction, the mechanisms responsible for these alterations are not clear. Using a potent selective inducible nitric oxide (NO) synthase inhibitor, N-[3-(aminomethyl) benzyl]acetamidine (1400W), and a nonselective NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), we investigated whether inducible NO synthase plays any role in producing hepatic injury, inflammation, and changes of protein expression following trauma-hemorrhage. To investigate this, male Sprague-Dawley rats were subjected to midline laparotomy and hemorrhagic shock (mean blood pressure 35-40 mmHg for approximately 90 min) followed by fluid resuscitation. Animals were treated with either vehicle (DMSO) or 1400W (10 mg/kg body wt ip), or L-NAME (30 mg/kg iv), 30 min before resuscitation and killed 2 h after resuscitation. Trauma-hemorrhage/resuscitation induced a marked hypotension and increase in markers of hepatic injury (i.e., plasma alpha-glutathione S-transferase, tissue myeloperoxidase activity, and nitrotyrosine formation). Hepatic expression of iNOS, hypoxia-inducible factor-1alpha, ICAM-1, IL-6, TNF-alpha, and neutrophil chemoattractant (cytokine-induced neutrophil chemoattractant-1 and macrophage inflammatory protein-2) protein levels were also markedly increased following trauma-hemorrhage/resuscitation. Administration of the iNOS inhibitor 1400W significantly attenuated hypotension and expression of these mediators of hepatic injury induced by trauma-hemorrhage/resuscitation. However, administration of L-NAME could not attenuate hepatic dysfunction and tissue injury mediated by trauma-hemorrhage, although it improved mean blood pressure as did 1400W. These results indicate that increased expression of iNOS following trauma-hemorrhage plays an important role in the induction of hepatic damage under such conditions.
Collapse
Affiliation(s)
- Wen-Hong Kan
- Center for Surgical Research, University of Alabama at Birmingham, 1670 University Blvd., Birmingham, AL 35294-0019, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Banta S, Vemula M, Yokoyama T, Jayaraman A, Berthiaume F, Yarmush ML. Contribution of gene expression to metabolic fluxes in hypermetabolic livers induced through burn injury and cecal ligation and puncture in rats. Biotechnol Bioeng 2007; 97:118-37. [PMID: 17009336 PMCID: PMC3199956 DOI: 10.1002/bit.21200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Severe injury activates many stress-related and inflammatory pathways that can lead to a systemic hypermetabolic state. Prior studies using perfused hypermetabolic rat livers have identified intrinsic metabolic flux changes that were not dependent upon the continual presence of elevated stress hormones and substrate loads. We investigated the hypothesis that such changes may be due to persistent alterations in gene expression. A systemic hypermetabolic response was induced in rats by applying a moderate burn injury followed 2 days later by cecum ligation and puncture (CLP) to produce sepsis. Control animals received a sham-burn followed by CLP, or a sham-burn followed by sham-CLP. Two days after CLP, livers were analyzed for gene expression changes using DNA microarrays and for metabolism alterations by ex vivo perfusion coupled with Metabolic Flux Analysis. Burn injury prior to CLP increased fluxes while decreases in gene expression levels were observed. Conversely, CLP alone significantly increased metabolic gene expression, but decreased many of the corresponding metabolic fluxes. Burn injury combined with CLP led to the most dramatic changes, where concurrent changes in fluxes and gene expression levels occurred in about 1/3 of the reactions. The data are consistent with the notion that in this model, burn injury prior to CLP increased fluxes through post-translational mechanisms with little contribution of gene expression, while CLP treatment up-regulated the metabolic machinery by transcriptional mechanisms. Overall, these data show that mRNA changes measured at a single time point by DNA microarray analysis do not reliably predict metabolic flux changes in perfused livers.
Collapse
Affiliation(s)
- Scott Banta
- Center for Engineering in Medicine, Shriners Hospital for Children, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|