1
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|
2
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Wang T, Li P, Qi Q, Zhang S, Xie Y, Wang J, Liu S, Ma S, Li S, Gong T, Xu H, Xiong M, Li G, You C, Luo Z, Li J, Du L, Wang C. A multiplex blood-based assay targeting DNA methylation in PBMCs enables early detection of breast cancer. Nat Commun 2023; 14:4724. [PMID: 37550304 PMCID: PMC10406825 DOI: 10.1038/s41467-023-40389-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
The immune system can monitor tumor development, and DNA methylation is involved in the body's immune response to tumors. In this work, we investigate whether DNA methylation alterations in peripheral blood mononuclear cells (PBMCs) could be used as markers for early detection of breast cancer (BC) from the perspective of tumor immune alterations. We identify four BC-specific methylation markers by combining Infinium 850 K BeadChips, pyrosequencing and targeted bisulfite sequencing. Based on the four methylation markers in PBMCs of BC, we develop an efficient and convenient multiplex methylation-specific quantitative PCR assay for the detection of BC and validate its diagnostic performance in a multicenter cohort. This assay was able to distinguish early-stage BC patients from normal controls, with an AUC of 0.940, sensitivity of 93.2%, and specificity of 90.4%. More importantly, this assay outperformed existing clinical diagnostic methods, especially in the detection of early-stage and minimal tumors.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Shujun Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Yan Xie
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Jing Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Shibiao Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Suhong Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Shijun Li
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian, 116011, P. R. China
| | - Tingting Gong
- Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Huiting Xu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, 226361, Jiangsu, China; Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Mengqiu Xiong
- Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P. R. China
| | - Guanghua Li
- Department of clinical laboratory, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510000, P. R. China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Innovation Technology in Laboratory Medicine, Jinan, 250012, P. R. China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, China.
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, China.
| |
Collapse
|
4
|
Liu Y, Tian S, Ning B, Huang T, Li Y, Wei Y. Stress and cancer: The mechanisms of immune dysregulation and management. Front Immunol 2022; 13:1032294. [PMID: 36275706 PMCID: PMC9579304 DOI: 10.3389/fimmu.2022.1032294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in the understanding of psychoneuroimmunology in the past decade have emphasized the notion that stress and cancer are interlinked closely. Durable chronic stress accelerated tumorigenesis and progression, which is unfavorable for clinical outcomes of cancer patients. Available evidence has provided unprecedented knowledge about the role and mechanisms of chronic stress in carcinogenesis, the most well-known one is dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). With abnormal activation of neuroendocrine system, stress-related hormones contribute to increased oncogenes expression, exacerbated chronic inflammation and impaired immunologic function. In addition, accumulating studies have demonstrated that diverse stress interventions including pharmacological approaches, physical exercises and psychological relaxation have been administered to assist in mental disorders reduction and life quality improvement in cancer patients. In this review, we systematically summarize the connection and mechanisms in the stress-immune-cancer axis identified by animal and clinical studies, as well as conclude the effectiveness and deficiencies of existing stress management strategies.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Sheng Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Tian W, Liu Y, Cao C, Zeng Y, Pan Y, Liu X, Peng Y, Wu F. Chronic Stress: Impacts on Tumor Microenvironment and Implications for Anti-Cancer Treatments. Front Cell Dev Biol 2021; 9:777018. [PMID: 34869378 PMCID: PMC8640341 DOI: 10.3389/fcell.2021.777018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is common among cancer patients due to the psychological, operative, or pharmaceutical stressors at the time of diagnosis or during the treatment of cancers. The continuous activations of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS), as results of chronic stress, have been demonstrated to take part in several cancer-promoting processes, such as tumorigenesis, progression, metastasis, and multi-drug resistance, by altering the tumor microenvironment (TME). Stressed TME is generally characterized by the increased proportion of cancer-promoting cells and cytokines, the reduction and malfunction of immune-supportive cells and cytokines, augmented angiogenesis, enhanced epithelial-mesenchymal transition, and damaged extracellular matrix. For the negative effects that these alterations can cause in terms of the efficacies of anti-cancer treatments and prognosis of patients, supplementary pharmacological or psychotherapeutic strategies targeting HPA, SNS, or psychological stress may be effective in improving the prognosis of cancer patients. Here, we review the characteristics and mechanisms of TME alterations under chronic stress, their influences on anti-cancer therapies, and accessory interventions and therapies for stressed cancer patients.
Collapse
Affiliation(s)
- Wentao Tian
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Liu
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Chenghui Cao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Pan
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Murakami F, Tsuboi Y, Takahashi Y, Horimoto Y, Mogushi K, Ito T, Emi M, Matsubara D, Shibata T, Saito M, Murakami Y. Short somatic alterations at the site of copy number variation in breast cancer. Cancer Sci 2021; 112:444-453. [PMID: 32860329 PMCID: PMC7780029 DOI: 10.1111/cas.14630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Copy number variation (CNV) is a polymorphism in the human genome involving DNA fragments larger than 1 kb. Copy number variation sites provide hotspots of somatic alterations in cancers. Herein, we examined somatic alterations at sites of CNV in DNA from 20 invasive breast cancers using a Comparative Genomic Hybridization array specifically designed to detect the genome-wide CNV status of approximately 412 000 sites. Somatic copy number alterations (CNAs) were detected in 39.9% of the CNV probes examined. The most frequently altered regions were gains of 1q21-22 (90%), 8q21-24 (85%), 1q44 (85%), and 3q11 (85%) or losses of 16q22-24 (80%). Gene ontology analyses of genes within the CNA fragments revealed that cascades related to transcription and RNA metabolism correlated significantly with human epidermal growth factor receptor 2 positivity and menopausal status. Thirteen of 20 tumors showed CNAs in more than 35% of sites examined and a high prevalence of CNAs correlated significantly with estrogen receptor (ER) negativity, higher nuclear grade (NG), and higher Ki-67 labeling index. Finally, when CNA fragments were categorized according to their size, CNAs smaller than 10 kb correlated significantly with ER positivity and lower NG, whereas CNAs exceeding 10 Mb correlated with higher NG, ER negativity, and a higher Ki-67 labeling index. Most of these findings were confirmed or supported by quantitative PCR of representative DNA fragments in 72 additional breast cancers. These results suggest that most CNAs are caused by gain or loss of large chromosomal fragments and correlate with NG and several malignant features, whereas solitary CNAs of less than 10 kb could be involved in ER-positive breast carcinogenesis.
Collapse
Affiliation(s)
- Fumi Murakami
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
- Department of Breast OncologyJuntendo UniversityTokyoJapan
- JuntendoUniversity Graduate School of MedicineTokyoJapan
| | - Yumi Tsuboi
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yuka Takahashi
- Department of Breast OncologyJuntendo UniversityTokyoJapan
| | | | - Kaoru Mogushi
- JuntendoUniversity Graduate School of MedicineTokyoJapan
| | - Takeshi Ito
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Mitsuru Emi
- University of Hawaii Cancer CenterHonoluluHIUSA
| | - Daisuke Matsubara
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
- Department of PathologyJichiMedical UniversityShimotsukeJapan
| | - Tatsuhiro Shibata
- Laboratory of Molecular MedicineThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Mitsue Saito
- Department of Breast OncologyJuntendo UniversityTokyoJapan
| | - Yoshinori Murakami
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
7
|
Zhang L, Pan J, Chen W, Jiang J, Huang J. Chronic stress-induced immune dysregulation in cancer: implications for initiation, progression, metastasis, and treatment. Am J Cancer Res 2020; 10:1294-1307. [PMID: 32509380 PMCID: PMC7269780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023] Open
Abstract
Psychological stress is a well-accepted risk factor in cancer initiation and progression. The explosive growth of psychoneuroimmunology research in the past decade has yielded an unprecedented wealth of information about the critical role of chronic stress in the immune dysfunction that influences tumor behaviors, which presents insights to mitigate distress and improve prognosis in cancer patients. Chronic stress exacerbates inflammation and causes a metabolism disorder, making it difficult for the organisms to maintain homeostasis and increasing its susceptibility to cancer. The shifted differentiation and redistribution of the immune system induced by chronic stress fail to combat cancer efficiently. Chronic stress increases the tumor-educated immune suppressive cells and impairs the cytotoxicity of cellular immunity, thereby promoting lymphatic metastasis and hematogenous metastasis. In addition, the efficacy of existing cancer therapies is undermined because chronic stress prevents the immune system from responding properly. Emerging stress-reduction measures have been administered to assist cancer patients to cope with the adverse effects of chronic stress. Here we systematically review the current molecular, cellular, physiological mechanisms about stress-mediated immune responses in the enhancement of tumor initiation and progression, remodeling of tumor microenvironment and impairment of anti-tumor treatment. We also summarize the potential clinically applicable stress-oriented strategies towards cancer and discuss briefly where important knowledge gaps remain.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province), Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
| | - Jun Pan
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province), Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province), Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
| | - Jinxin Jiang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province), Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province), Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, P. R. China
| |
Collapse
|
8
|
Screening of a Novel Upregulated lncRNA, A2M-AS1, That Promotes Invasion and Migration and Signifies Poor Prognosis in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9747826. [PMID: 32352014 PMCID: PMC7171613 DOI: 10.1155/2020/9747826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/26/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022]
Abstract
Understanding of prognostic factors and therapeutic targets for breast cancer is imperative for guidance of patient care. We studied 1203 tumour samples from the Gene Expression Omnibus (GEO) to evaluate potential genes related to breast cancer. R software was used to analyse differentially expressed long noncoding RNAs (lncRNAs) in the RNA microarray expression profiles GSE45827 and GSE65216 and to identify a series of differentially expressed lncRNAs associated with human breast cancer. Of these lncRNAs, A2M-AS1, a lncRNA that has not been previously reported, was significantly upregulated in human breast cancer tissues compared with adjacent nontumour tissues. Importantly, A2M-AS1 upregulation was significantly associated with ER-negative, HER2-positive, and basal-like breast cancer and with poor recurrence-free survival and metastasis-free survival in breast cancer patients. After validating these results in 96 collected human breast cancer tissues and 64 paired adjacent noncancerous tissues, we further investigated the roles of A2M-AS1 in human ER-negative and basal-like breast cancer cells. The results revealed that A2M-AS1 significantly promotes human breast cancer cell proliferation, invasion, and migration. Additionally, bioinformatics analysis of genes coexpressed with A2M-AS1 in the context of human breast cancer combined with qRT-PCR and Western blot assays revealed that A2M-AS1 exerts regulatory effects on downstream factors in the cell adhesion molecule pathway, including CD2 and SELL. These results imply that A2M-AS1 might be a promising candidate prognostic factor and therapeutic target for breast cancer.
Collapse
|
9
|
Colon-Echevarria CB, Lamboy-Caraballo R, Aquino-Acevedo AN, Armaiz-Pena GN. Neuroendocrine Regulation of Tumor-Associated Immune Cells. Front Oncol 2019; 9:1077. [PMID: 31737559 PMCID: PMC6828842 DOI: 10.3389/fonc.2019.01077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Mounting preclinical and clinical evidence continues to support a role for the neuroendocrine system in the modulation of tumor biology and progression. Several studies have shown data supporting a link between chronic stress and cancer progression. Dysregulation of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in promoting angiogenesis, tumor cell proliferation and survival, alteration of the immune response and exacerbating inflammatory networks in the tumor microenvironment. Here, we review how SNS and HPA dysregulation contributes to disturbances in immune cell populations, modifies cancer biology, and impacts immunotherapy response. We also highlight several interventions aimed at circumventing the adverse effects stress has on cancer patients.
Collapse
Affiliation(s)
- Claudia B Colon-Echevarria
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Ponce Health Sciences University, Ponce, PR, United States
| | - Rocio Lamboy-Caraballo
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Ponce Health Sciences University, Ponce, PR, United States
| | - Alexandra N Aquino-Acevedo
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Ponce Health Sciences University, Ponce, PR, United States
| | - Guillermo N Armaiz-Pena
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Ponce Health Sciences University, Ponce, PR, United States.,Divisions of Cancer Biology and Women's Health, Ponce Research Institute, Ponce, PR, United States
| |
Collapse
|
10
|
Jones HP, Aldridge B, Boss-Williams K, Weiss JM. A role for B cells in facilitating defense against an NK cell-sensitive lung metastatic tumor is revealed by stress. J Neuroimmunol 2017; 313:99-108. [PMID: 29153616 DOI: 10.1016/j.jneuroim.2017.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/28/2022]
Abstract
Stressors impair immune defenses and pose risks among cancer patients. Natural Killer cells are not the sole immune defense against tumor development. Utilizing an NK-sensitive tumor model, this study evaluated immune effects to stress and determined whether lung metastasis resulted from B cells' inability to augment tumorlytic function. Lung metastasis directly correlated with delayed lung B cell accumulation compared to NK, and T cells. Decreased interleukin-12 cytokine and CD80+ molecule expression by B cells correlated with decreased tumor lysis and increased tumor development. Thus, tumor defenses in the lung given stress exposure can depend on the B cell function.
Collapse
Affiliation(s)
- Harlan P Jones
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Beau Aldridge
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Katherine Boss-Williams
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jay M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Budiu RA, Vlad AM, Nazario L, Bathula C, Cooper KL, Edmed J, Thaker PH, Urban J, Kalinski P, Lee AV, Elishaev EL, Conrads TP, Flint MS. Restraint and Social Isolation Stressors Differentially Regulate Adaptive Immunity and Tumor Angiogenesis in a Breast Cancer Mouse Model. CANCER AND CLINICAL ONCOLOGY 2017; 6:12-24. [PMID: 28603578 PMCID: PMC5464739 DOI: 10.5539/cco.v6n1p12] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ability of stress to induce immune suppression is widely recognized, but the mechanisms underlying the effects of stress on the adaptive immune system during tumor progression are not completely understood. To study the effect of stress on the immune system in vivo, we used a preclinical immunocompetent mouse model bearing 4T1 mammary adenocarcinoma cells. Mice were randomized into 4 groups, including social isolation (SI), acute restraint stress (aRRS), chronic restraint stress (cRRS), or no stress (NS). We found that SI significantly decreased the number of tumor-bearing mice still alive at the end of protocol (28 days), compared to NS mice. Although we did not detect significant changes in primary tumor volume, we observed a significant increase in the endothelial marker CD31 in primary tumors of SI mice and in lung metastases in SI and RRS mice. Survival decline in SI mice was associated with significant decreases in splenic CD8 cells and in activated T cells. From a mechanistic standpoint, RRS increased expression of FOXP3, CXCL-10, and granzyme B in mouse tumors, and the effects were reversed by propranolol. Our data demonstrate that various forms of stress differentially impact adaptive immunity and tumor angiogenesis, and negatively impact survival.
Collapse
Affiliation(s)
- Raluca A Budiu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Magee Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Anda M Vlad
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Magee Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Linda Nazario
- Magee Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Chandra Bathula
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kristine L Cooper
- Biostatistics Facility Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | - Jessica Edmed
- University of Brighton, School of Pharmacy & Biomolecular Sciences, Brighton, BN2 4GJ, UK
| | - Premal H Thaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St Louis, MO, 63110, USA
| | - Julie Urban
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Adrian V Lee
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | - Esther L Elishaev
- Magee Womens Research Institute, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center at Inova Health System, Annandale, VA, 22003, USA
| | - Melanie S Flint
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA
- University of Brighton, School of Pharmacy & Biomolecular Sciences, Brighton, BN2 4GJ, UK
| |
Collapse
|
12
|
Surayot U, You S. Structural effects of sulfated polysaccharides from Codium fragile on NK cell activation and cytotoxicity. Int J Biol Macromol 2017; 98:117-124. [PMID: 28130139 DOI: 10.1016/j.ijbiomac.2017.01.108] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
Abstract
The effects of sulfates and proteins of the sulfated polysaccharide-F2 (SP-F2) from Codium fragile on the NK cell activation and cytotoxicity were systematically investigated. The SP-F2 treatment significantly increased both NK cell proliferation (129%/100μg/mL) and their potent cytotoxic effects against HeLa cells (46%). The SP-F2 treatment appeared to enhance NK cell activation through the expression of the activating receptor, NKp30; the secretion of the cytokine, IFN-γ and the release of the lysing proteins, perforin and granzyme-B. However, the treatment of the SP-F2 derivatives, deproteinated and desulfated-F2 (DP-F2 and DS-F2), markedly lowered the mRNA expression levels of IFN-γ, granzyme-B, NKp30 and FasL, suggesting that the proteins and sulfates were essential for the interaction between the SP-F2 and NK cells. The antibody neutralization test revealed that CR3 might be a critical receptor involved in SP-F2 NK cell activation.
Collapse
Affiliation(s)
- Utoomporn Surayot
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
13
|
Bortolato B, Hyphantis TN, Valpione S, Perini G, Maes M, Morris G, Kubera M, Köhler CA, Fernandes BS, Stubbs B, Pavlidis N, Carvalho AF. Depression in cancer: The many biobehavioral pathways driving tumor progression. Cancer Treat Rev 2016; 52:58-70. [PMID: 27894012 DOI: 10.1016/j.ctrv.2016.11.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/15/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022]
Abstract
Major Depressive Disorder (MDD) is common among cancer patients, with prevalence rates up to four-times higher than the general population. Depression confers worse outcomes, including non-adherence to treatment and increased mortality in the oncology setting. Advances in the understanding of neurobiological underpinnings of depression have revealed shared biobehavioral mechanisms may contribute to cancer progression. Moreover, psychosocial stressors in cancer promote: (1) inflammation and oxidative/nitrosative stress; (2) a decreased immunosurveillance; and (3) a dysfunctional activation of the autonomic nervous system and of the hypothalamic-pituitaryadrenal axis. Consequently, the prompt recognition of depression among patients with cancer who may benefit of treatment strategies targeting depressive symptoms, cognitive dysfunction, fatigue and sleep disturbances, is a public health priority. Moreover, behavioral strategies aiming at reducing psychological distress and depressive symptoms, including addressing unhealthy diet and life-style choices, as well as physical inactivity and sleep dysfunction, may represent important strategies not only to treat depression, but also to improve wider cancer-related outcomes. Herein, we provide a comprehensive review of the intertwined biobehavioral pathways linking depression to cancer progression. In addition, the clinical implications of these findings are critically reviewed.
Collapse
Affiliation(s)
| | - Thomas N Hyphantis
- Department of Psychiatry, Division of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Sara Valpione
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Medical Oncology, The Christie NHS Trust, Manchester, United Kingdom
| | - Giulia Perini
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Michael Maes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health, Geelong, VIC, Australia; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil; Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria; Revitalis, Waalre, The Netherlands
| | - Gerwyn Morris
- Tir Na Nog, Bryn Road Seaside 87, Llanelli SA152LW, Wales, UK
| | - Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Science, Krakow, Poland
| | - Cristiano A Köhler
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Fortaleza, CE, Brazil
| | - Brisa S Fernandes
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, and Barwon Health, Geelong, Australia; Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, United Kingdom; Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London Box SE5 8AF, United Kingdom; Faculty of Health, Social Care and Education, Anglia Ruskin University, Bishop Hall Lane, Chelmsford CM1 1SQ, United Kingdom
| | - Nicholas Pavlidis
- Department of Medical Oncology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Lutgendorf SK, Andersen BL. Biobehavioral approaches to cancer progression and survival: Mechanisms and interventions. ACTA ACUST UNITED AC 2016; 70:186-97. [PMID: 25730724 DOI: 10.1037/a0035730] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the last decade, there have been groundbreaking strides in our understanding of the multiple biological pathways by which psychosocial and behavioral factors can affect cancer progression. It is now clear that biobehavioral factors not only affect cellular immunity but both directly and indirectly modulate fundamental processes in cancer growth, including inflammation, angiogenesis, invasion, and metastasis. There is also an emerging understanding of how psychological and behavioral factors used in interventions can impact these physiological processes. This review outlines our current understanding of the physiological mechanisms by which psychological, social, and behavioral processes can affect cancer progression. The intervention literature is discussed, along with recommendations for future research to move the field of biobehavioral oncology forward.
Collapse
|
15
|
Cormanique TF, Almeida LEDFD, Rech CA, Rech D, Herrera ACDSDA, Panis C. Chronic psychological stress and its impact on the development of aggressive breast cancer. EINSTEIN-SAO PAULO 2016; 13:352-6. [PMID: 26466057 PMCID: PMC4943778 DOI: 10.1590/s1679-45082015ao3344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 08/10/2015] [Indexed: 01/22/2023] Open
Abstract
Objective To investigate the clinicopathological findings of women diagnosed with breast cancer and study the impact of chronic psychological stress on the pathological characteristics of these tumors. Methods We investigated a cohort composed of women diagnosed with breast cancer and divided into two groups. One group was categorized as presenting with chronic psychological stress (by using the Self-Reporting Questionnaire − SRQ-20). Another group of women with breast cancer, but with no previous history of chronic psychological stress, comprised the Control Group. Clinical and pathological data were assessed. Results Women presenting with a history of chronic distress were significantly overweight when compared to the Control Group. Furthermore, it was observed that these stressed women also had a significant percentage of aggressive breast cancer subtype, the HER2 amplified tumor, which could be putatively associated with the loss of immunosurveillance. Conclusion Our findings suggested an interaction among chronic psychological stress, overweight, and the development of more aggressive breast tumors.
Collapse
Affiliation(s)
| | | | - Cynthia Alba Rech
- Hospital do Câncer de Francisco Beltrão, Francisco Beltrão, PR, Brazil
| | - Daniel Rech
- Hospital do Câncer de Francisco Beltrão, Francisco Beltrão, PR, Brazil
| | | | - Carolina Panis
- Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil
| |
Collapse
|
16
|
Natural killer cell receptors: alterations and therapeutic targeting in malignancies. Immunol Res 2015; 64:25-35. [DOI: 10.1007/s12026-015-8695-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
The narrow-spectrum HDAC inhibitor entinostat enhances NKG2D expression without NK cell toxicity, leading to enhanced recognition of cancer cells. Pharm Res 2013; 32:779-92. [PMID: 24203492 DOI: 10.1007/s11095-013-1231-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Natural killer (NK) cell cytotoxicity correlates with the ligation of activating receptors (e.g., NKG2D) by their ligands (e.g., MHC class I-related chains [MIC] A and B) on target cells. Histone deacetylase inhibitors (HDACi) at high concentrations inhibit tumor growth and can increase NKG2D ligand expression on tumor targets, but are widely regarded as toxic to NK cells. METHODS We investigated the mechanism of entinostat, a benzamide-derivative narrow-spectrum HDACi, in augmenting the cytotoxicity of NK cells against human colon carcinoma and sarcoma by assessing gene and protein expression, histone acetylation, and cytotoxicity in in vitro and murine models. RESULTS We observed that entinostat dose- and time-dependent increase in MIC expression in tumor targets and NKG2D in primary human NK cells, both correlating with increased acetylated histone 3 (AcH3) binding to associated promoters. Entinostat pretreatment of colon carcinoma and sarcoma cells, NK cells, or both led to enhanced overall cytotoxicity in vitro, which was reversed by NKG2D blockade, and inhibited growth of tumor xenografts. Lastly, we showed decreased expression of MICA and ULBP2 transcription in primary human osteosarcoma. CONCLUSIONS Entinostat enhances NK cell killing of cancer cells through upregulation of both NKG2D and its ligands, suggesting an attractive approach for augmenting NK cell immunotherapy of solid tumors such as colon carcinoma and sarcomas.
Collapse
|
18
|
Witek Janusek L, Tell D, Albuquerque K, Mathews HL. Childhood adversity increases vulnerability for behavioral symptoms and immune dysregulation in women with breast cancer. Brain Behav Immun 2013; 30 Suppl:S149-62. [PMID: 22659062 PMCID: PMC3492527 DOI: 10.1016/j.bbi.2012.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 04/24/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022] Open
Abstract
Women respond differentially to the stress-associated with breast cancer diagnosis and treatment, with some women experiencing more intense and/or sustained behavioral symptoms and immune dysregulation than others. Childhood adversity has been identified to produce long-term dysregulation of stress response systems, increasing reactivity to stressors encountered during adulthood. This study determined whether childhood adversity increased vulnerability for more intense and sustained behavioral symptoms (fatigue, perceived stress, and depressive symptoms), poorer quality of life, and greater immune dysregulation in women (N=40) with breast cancer. Evaluation was after breast surgery and through early survivorship. Hierarchical linear modeling was used to examine intra-individual and inter-individual differences with respect to initial status and to the pattern of change (i.e. trajectory) of outcomes. At initial assessment, women exposed to childhood emotional neglect/abuse had greater perceived stress, fatigue, depressive symptoms and poorer quality of life, as well as lower natural killer cell activity (NKCA). Although these outcomes improved over time, women with greater childhood emotional neglect/abuse exhibited worse outcomes through early survivorship. No effect was observed on the pattern of change for these outcomes. In contrast, childhood physical neglect predicted sustained trajectories of greater perceived stress, worse quality of life, and elevated plasma IL-6; with no effect observed at initial assessment. Thus, childhood adversity leaves an enduring imprint, increasing vulnerability for behavioral symptoms, poor quality of life, and elevations in IL-6 in women with breast cancer. Further, childhood adversity predisposes to lower NKCA at a critical time when this immune-effector mechanism is most effective at halting nascent tumor seeding.
Collapse
Affiliation(s)
- Linda Witek Janusek
- Marcella Niehoff School of Nursing, Loyola University Chicago, Health Science Division, Maywood, IL 60153, USA.
| | - Dina Tell
- Marcella Niehoff School of Nursing, Loyola University Chicago, Health Science Division, Maywood, IL 60153
| | - Kevin Albuquerque
- Stritch School of Medicine, Loyola University Chicago, Health Science Division, Maywood, IL 60153
| | - Herbert L. Mathews
- Stritch School of Medicine, Loyola University Chicago, Health Science Division, Maywood, IL 60153
| |
Collapse
|
19
|
Konjevic G, Jurisic V, Jovic V, Vuletic A, Mirjacic Martinovic K, Radenkovic S, Spuzic I. Investigation of NK cell function and their modulation in different malignancies. Immunol Res 2012; 52:139-56. [PMID: 22442005 DOI: 10.1007/s12026-012-8285-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NK cells have become a subject of investigation not only in the field of tumor immunology and infectious diseases, but also within all aspects of immunology, such as transplantation, autoimmunity, and hypersensitivity. Our early studies aside from investigating NK cell activity in experimental animals and humans included studies of perforin expression and modulation in this lymphocyte subset. As NK cell activity is modified by their environment, we showed clinical stage-dependent impairment of their activity and in vitro effect of different sera, Th1 cytokines, and their combination in breast cancer, Hodgkin's disease, and non-Hodgkin's lymphoma patients, especially with respect to metabolic and cell membrane changes of peripheral blood lymphocytes evaluated by spontaneous release of the enzyme lactate dehydrogenase (LDH) that led to the correction of the LDH enzyme release assay for natural cytotoxicity. By long-term immuno-monitoring of patients with malignancies, we also showed the kinetics of NK cell modulation during chemo-immunotherapy. In our more recent studies, we give data of NK function and novel families of NK cell receptor expression in healthy individuals that may be of help in NK cell profiling, by giving referent values of basic and cytokine-induced expression of some NK cell receptors either in evaluation of disease or in immuno-monitoring during cytokine therapy of patients with malignancies. Moreover, we give novel aspects of modulation of NK cell activity by cytokines approved for immunotherapy, IFN and IL-2, in melanoma and other malignancies with respect to alterations in new activating (NKG2D and CD161) and inhibitory (CD158a and CD158b) receptor characteristics and signaling molecules in CD16- and CD56-defined NK cells and their small immunoregulatory and large cytotoxic subsets in peripheral blood and lymph nodes, as NK cell-mediated killing of tumor cells depends on the balance between stimulatory and inhibitory signaling.
Collapse
Affiliation(s)
- Gordana Konjevic
- Laboratory for Experimental Immunology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lu H, Yang Y, Gad E, Inatsuka C, Wenner CA, Disis ML, Standish LJ. TLR2 agonist PSK activates human NK cells and enhances the antitumor effect of HER2-targeted monoclonal antibody therapy. Clin Cancer Res 2011; 17:6742-53. [PMID: 21918170 DOI: 10.1158/1078-0432.ccr-11-1142] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The therapeutic effect of trastuzumab monoclonal antibody (mAb) therapy has been shown to be partially dependent on functional natural killer (NK) cells. Novel agents that enhance NK cell function could potentially improve the antitumor effect of trastuzumab. We recently identified polysaccharide krestin (PSK), a natural product extracted from medicinal mushroom Trametes versicolor, as a potent toll-like receptor 2 (TLR2) agonist. This study was undertaken to evaluate the effect of PSK on human NK cells and the potential of using PSK to enhance HER2-targeted mAb therapy. EXPERIMENTAL DESIGN Human peripheral blood mononuclear cells were stimulated with PSK to evaluate the effect of PSK on NK cell activation, IFN-γ production, cytotoxicity, and trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity (ADCC). Whether the effect of PSK on NK cells is direct or indirect was also investigated. Then, in vivo experiment in neu transgenic (neu-T) mice was carried out to determine the potential of using PSK to augment the antitumor effect of HER2-targeted mAb therapy. RESULTS PSK activated human NK cells to produce IFN-γ and to lyse K562 target cells. PSK also enhanced trastuzumab-mediated ADCC against SKBR3 and MDA-MB-231 breast cancer cells. Both direct and interleukin-12-dependent indirect effects seem to be involved in the effect of PSK on NK cells. Oral administration of PSK significantly potentiated the antitumor effect of anti-HER2/neu mAb therapy in neu-T mice. CONCLUSION These results showed that PSK activates human NK cells and potentiates trastuzumab-mediated ADCC. Concurrent treatment with PSK and trastuzumab may be a novel way to augment the antitumor effect of trastuzumab.
Collapse
Affiliation(s)
- Hailing Lu
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Costanzo ES, Sood AK, Lutgendorf SK. Biobehavioral influences on cancer progression. Immunol Allergy Clin North Am 2011; 31:109-32. [PMID: 21094927 DOI: 10.1016/j.iac.2010.09.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review focuses on the contributions of stress-related behavioral factors to cancer growth and metastasis and the biobehavioral mechanisms underlying these relationships. Behavioral factors that are important in modulation of the stress response and the pivotal role of neuroendocrine regulation in the downstream alteration of physiologic pathways relevant to cancer control, including the cellular immune response, inflammation, and tumor angiogenesis, invasion, and cell signaling pathways are described. Consequences for cancer progression and metastasis, as well as quality of life, are delineated. Behavioral and pharmacologic interventions with the potential to alter these biobehavioral pathways for patients with cancer are discussed.
Collapse
Affiliation(s)
- Erin S Costanzo
- Department of Psychiatry, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, USA.
| | | | | |
Collapse
|
22
|
Mundy-Bosse BL, Thornton LM, Yang HC, Andersen BL, Carson WE. Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients. Cell Immunol 2011; 270:80-7. [PMID: 21600570 DOI: 10.1016/j.cellimm.2011.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/28/2011] [Accepted: 04/12/2011] [Indexed: 01/06/2023]
Abstract
Our group has shown in a randomized clinical trial that psychological intervention to reduce stress in patients with stages II and III breast cancer led to enhanced immune function, fewer recurrences and improved overall survival. We hypothesized that patients with high levels of stress would have alterations in myeloid-derived suppressor cells (MDSC) compared to patients with lower stress. PBMC from 16 patients with high stress (n = 8) or with low stress (n = 8) after surgery as measured by the Impact of Event Scale (IES) questionnaire were evaluated for the presence of MDSC. Patients with higher IES scores had significantly elevated salivary cortisol levels (P = 0.013; 13 μg/dl vs. 9.74 μg/dl). Levels of IL-1Rα were also significantly elevated in the higher IES group (45.09 pg/ml vs. 97.16 pg/ml; P = 0.010). IP 10, G-CSF, and IL-6 were all higher in the high stress group although not to a significant degree. Flow cytometric analysis for CD33+/HLA-DR-neg/CD15+/CD11b+ MDSC revealed increased MDSC in patients with lower IES scores (P = 0.009). CD11b+/CD15+ cells constituted 9.4% of the CD33+/HLA DR-neg cell population in patients with high IES, vs. 27.3% in patients with low IES scores. Additional analyzes of the number of stressful events that affected the patients in addition to their cancer diagnosis revealed that this type of stress measure correlated with elevated levels of MDSC (P = 0.064). These data indicate the existence of a complex relationship between stress and immune function in breast cancer patients.
Collapse
Affiliation(s)
- Bethany L Mundy-Bosse
- Department of Integrated Biomedical Sciences, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
23
|
Presurgical stress management improves postoperative immune function in men with prostate cancer undergoing radical prostatectomy. Psychosom Med 2011; 73:218-25. [PMID: 21257977 DOI: 10.1097/psy.0b013e31820a1c26] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To assess whether stress management (SM) improved immune outcomes in men undergoing surgery for prostate cancer. METHODS A total of 159 men were assigned randomly to a two-session presurgical SM intervention, a two-session supportive attention (SA) group, or a standard care (SC) group. Men in the SM group discussed their concerns about the upcoming surgery and were taught diaphragmatic breathing, guided imagery; they had an imaginal exposure to the day of surgery and learned adaptive coping skills. Men in the SA group discussed their concerns about the upcoming surgery and had a semistructured medical interview. Blood samples were collected at baseline (1 month before surgery) and 48 hours after surgery. Measures of mood (Profile of Mood States) were collected at baseline, 1 week pre surgery, and the morning of surgery. RESULTS Men in the SM group had significantly higher levels of natural killer cell cytotoxicity (p = .04) and higher levels of circulating proinflammatory cytokines (interleukin [IL]-12p70, p = .02; IL-1β, p = .02; tumor necrosis factor-α, p = .05) 48 hours post surgery than men in the SA group and higher levels of natural killer cell cytotoxicity (p = 0.02) and IL-1β (p = .05) than men in the SC group. Immune parameters increased for the SM group and decreased or stayed the same for the SA and SC groups. The SM group had significantly lower Profile of Mood States scores than the SC group (p = .006), with no other group differences between SA and SC groups. Changes in mood were not associated with immune outcomes. CONCLUSIONS The finding that SM leads to decreased presurgical mood-disturbance and increased immune parameters after surgery reveals the potential psychological and biological benefits of presurgical SM.
Collapse
|
24
|
Abstract
Epidemiologic evidence increasingly has supported the role of biobehavioral risk factors such as social adversity, depression, and stress in cancer progression. This review describes in vitro, in vivo, and clinical studies demonstrating relationships between such processes and pathways involved in cancer progression. These include effects on the cellular immune response, angiogenesis, invasion, anoikis, and inflammation. Biobehavioral factors have been shown to contribute to the cross talk between tumor and host cells in the tumor microenvironment, and stress effects on host cells such as macrophages seem to be critical for many pathways involved in tumor progression. Some effects are bidirectional in that tumor-derived inflammation seems to affect central nervous system processes, giving rise to vegetative symptoms and contributing to dysregulation of the hypothalamic-pituitary-adrenal axis with downstream effects on inflammatory control. Findings to date are reviewed, and fruitful areas for future research are discussed.
Collapse
|
25
|
Hu Z, Li J. Natural killer cells are crucial for the efficacy of Icon (factor VII/human IgG1 Fc) immunotherapy in human tongue cancer. BMC Immunol 2010; 11:49. [PMID: 20939894 PMCID: PMC2965132 DOI: 10.1186/1471-2172-11-49] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Icon is a novel, dual neovascular- and cancer cell-targeting immunotherapeutic agent and has shown efficacy in the treatment of cancer, wet form macular degeneration and endometriosis. However, its underlying mechanism remains to be investigated. The objective of this study is to elucidate the mechanism of Icon immunotherapy in cancer using a squamous carcinoma human tongue cancer line TCA8113 in vitro and in vivo in severe combined immunodeficiency (SCID) mice. RESULTS We showed that Icon, as a chimeric factor VII and human IgG1 Fc immunoconjugate, could separately induce murine natural killer (NK) cells and activate complement to kill TCA8113 cancer cells in vitro via antibody dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, Icon-NK ADCC had a significantly stronger effect than that of Icon-CDC. Moreover, Icon could completely eradicate established human tongue tumour xenografts in vivo in the CB-17 strain of SCID mice that have functional NK cells at a normal level, whereas it was less effective in SCID/Beige mice that do not have functional NK cells. CONCLUSIONS We conclude that NK cells are crucial for the efficacy of Icon immunotherapy in the treatment of cancer. The results also suggest that impaired NK level/activity could contribute to the resistance to therapeutic antibodies that are currently under investigation in preclinical and clinical studies.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
26
|
Konjević G, Mirjačić Martinović K, Vuletić A, Radenković S. Novel aspects of in vitro IL-2 or IFN-α enhanced NK cytotoxicity of healthy individuals based on NKG2D and CD161 NK cell receptor induction. Biomed Pharmacother 2010; 64:663-71. [PMID: 20800424 DOI: 10.1016/j.biopha.2010.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 06/21/2010] [Indexed: 01/03/2023] Open
Abstract
As IL-2 and IFN-α modulate NK cell activity it was of interest to investigate the expression of newly defined NK cell receptors and augmented NK cell activity in healthy individuals after cytokine in vitro treatment. Peripheral blood lymphocytes (PBL) obtained from 31 healthy volunteers treated for 18 h with 200 IU/ml IL-2 and 250 IU/ml IFN-α were evaluated for NK cell cytotoxicity. Expression of NKG2D, CD161, CD158a, CD158b receptors was analyzed on CD3⁻CD16+ NK cells, cytotoxic CD16(bright) and regulatory CD16(dim) subsets by FACS flow. The found induced significant in vitro enhancement of NK cell activity by both cytokines is supported by specific cytokine induction in PBL of pSTAT1 and pSTAT5, determined by Western blotting, as well as induction of IRF-1 transcription. Both cytokines induce significant up-regulation of NKG2D expression while only IFN-α induced significant up-regulation of CD161, with no alteration in KIR expression by either cytokine on CD3⁻CD16+ NK cells. Investigated cytokines did not induce change in NK cell bright and dim subset distribution. Moreover, we find that, not only cytokine receptor induction on the CD3⁻CD16+ NK cells, but also simultaneous increase in their percentage and/or density on CD16(bright) and CD16(dim) subsets, represent good indicators of receptor cytokine-susceptibility. As the role of NK cells has been shown in the loss of tolerance, infection and cancer, the data obtained in this study may be of help in NK cell profiling, by giving referent values of cytokine-induced novel NK cell receptor expression either in evaluation of these diseases or in immunomonitoring during cytokine immunotherapy.
Collapse
Affiliation(s)
- G Konjević
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| | | | | | | |
Collapse
|
27
|
Chernyshov VP, Sudoma IO, Dons'koi BV, Kostyuchyk AA, Masliy YV. Elevated NK cell cytotoxicity, CD158a expression in NK cells and activated T lymphocytes in peripheral blood of women with IVF failures. Am J Reprod Immunol 2010; 64:58-67. [PMID: 20236262 DOI: 10.1111/j.1600-0897.2010.00825.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PROBLEM The aim of this study was to evaluate the role of elevated natural killer cytotoxicity (NKc) in women with multiple implantation failures (IF) in vitro fertilization-embryo transfer (IVF-ET) cycles. METHODS OF STUDY Seventy-nine antiphospholipid antibodies-negative women with IF including 33 women with elevated NKc were selected for investigation. K-562 cell line was used to evaluate NKc. Lymphocyte subsets, intracellular cytokines [interferon (IFN)-gamma, interleukin (IL)-4, tumour necrosis factor, IL-10], expression of activating markers [CD69, human leukocyte antigen (HLA)-DR], CD8, KIR (CD158a), CD95, and chemokine receptors (CXCR3, CCR4) were estimated by flow cytometry. RESULTS In women with IF, levels of NKc were higher than in IVF successful women. IF was associated with higher expression of CD8, CD158a, and HLA-DR in NK cells, activating markers in T lymphocytes, and lower levels of CCR4+ and IL-4+ T lymphocyte subsets. Predictive value of single elevated NKc for IVF success was 0.85, but addition of two other abnormal parameters resulted in its decrease to <0.39. CONCLUSIONS Elevated NKc is negative factor, though not critical for implantation in IVF cycles. Immune mechanism of IVF failure includes not only elevated NKc but also some other factors, such as elevated expression of CD8 and CD158a on NK cells, T lymphocyte activation, and diminished T helper 2 parameters.
Collapse
Affiliation(s)
- Viktor P Chernyshov
- Laboratory of Immunology, Institute of Pediatrics, Obstetrics and Gynecology, Academy of Medical Sciences of Ukraine, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
28
|
Karimi K, Arck PC. Natural Killer cells: keepers of pregnancy in the turnstile of the environment. Brain Behav Immun 2010; 24:339-47. [PMID: 19800965 DOI: 10.1016/j.bbi.2009.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/10/2009] [Accepted: 09/25/2009] [Indexed: 12/26/2022] Open
Abstract
During early pregnancy, an orchestrated endocrine-immunological scenario of maternal adaptation toward tolerance of the semiallogeneic fetus is required. Mechanisms preventing fetal loss by protecting the immune privilege of the gravid uterus, i.e. Galectin-1 or regulatory T cells, have recently been identified. Further, the presence of a unique population of Natural Killer (NK) cells, in humans identified by their CD56(+++)Galectin (Gal)-1(+)CD16(-) phenotype in the uterine lining (decidua), has been proposed to be a pivotal aspect of maternal adaptation to pregnancy. Decidual NK (dNK) cells comprise the largest population of immune cells during the first trimester in human decidua and control trophoblast invasion and vascular remodeling through their ability to secrete an array of angiogenesis-regulating molecules, chemokines and cytokines. A wealth of environmental factors, such as smoking, altered nutrition, pollution or stress has been proposed to peril not only pregnancy, but also fetal development. Further, published evidence supports that NK cells act as sentinel cells and environmental challenges can change their phenotype, e.g. via epigenetic pathways. We here review the effect of environmental factors, largely stress perception, on NK cells and its implication for pregnancy, fetal development and general health. As NK cells may not only be passive responders to the environment, but can also be 'educated and licensed', we propose novel strategies aiming to take advantage of the versatility of NK cells in maintaining immunosurveillance and tissue homeostasis.
Collapse
Affiliation(s)
- Khalil Karimi
- Department of Medicine, Brain Body Institute, McMaster University, Hamilton, Canada L8N4A6.
| | | |
Collapse
|
29
|
Chung SA, Wolf TK, Shapiro CM. Sleep and Health Consequences of Shift Work in Women. J Womens Health (Larchmt) 2009; 18:965-77. [DOI: 10.1089/jwh.2007.0742] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sharon A. Chung
- Sleep Research Unit, University of Toronto, Ontario, Canada
- Neuropsychiatry Program, University of Toronto, Ontario, Canada
- University Health Network, University of Toronto, Ontario, Canada
| | | | - Colin M. Shapiro
- Sleep Research Unit, University of Toronto, Ontario, Canada
- Neuropsychiatry Program, University of Toronto, Ontario, Canada
- University Health Network, University of Toronto, Ontario, Canada
- Youthdale Child & Adolescent Sleep Centre, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Boyadjieva NI, Ortigüela M, Arjona A, Cheng X, Sarkar DK. Beta-endorphin neuronal cell transplant reduces corticotropin releasing hormone hyperresponse to lipopolysaccharide and eliminates natural killer cell functional deficiencies in fetal alcohol exposed rats. Alcohol Clin Exp Res 2009; 33:931-7. [PMID: 19320628 DOI: 10.1111/j.1530-0277.2009.00911.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Natural killer (NK) cell dysfunction is associated with hyperresponse of corticotropin releasing hormone (CRH) to immune challenge and with a loss of beta-endorphin (BEP) neurons in fetal alcohol exposed animals. Recently, we established a method to differentiate neural stem cells into BEP neurons using cyclic adenosine monophosphate (cAMP)-elevating agents in cultures. Hence, we determined whether in vitro differentiated BEP neurons could be used for reversing the compromised stress response and immune function in fetal alcohol exposed rats. METHODS To determine the effect of BEP neuron transplants on NK cell function, we implanted in vitro differentiated BEP neurons into the paraventricular nucleus of pubertal and adult male rats exposed to ethanol or control in utero. The functionality of transplanted BEP neurons was determined by measuring proopiomelanocortin (POMC) gene expression in these cells and their effects on CRH gene expression under basal and after lipopolysaccaride (LPS) challenge. In addition, the effectiveness of BEP neurons in activating NK cell functions is determined by measuring NK cell cytolytic activity and interferon-gamma (IFN-gamma) production in the spleen and in the peripheral blood mononuclear cell (PBMC) following cell transplantation. RESULTS We showed here that when these in vitro differentiated BEP neurons were transplanted into the hypothalamus, they maintain biological functions by producing POMC and reducing the CRH neuronal response to the LPS challenge. BEP neuronal transplants significantly increased NK cell cytolytic activity in the spleen and in the PBMC and increased plasma levels of IFN-gamma in control and fetal alcohol exposed rats. CONCLUSIONS These data further establish the BEP neuronal regulatory role in the control of CRH and NK cell cytolytic function and identify a possible novel therapy to treat stress hyperresponse and immune deficiency in fetal alcohol exposed subjects.
Collapse
Affiliation(s)
- Nadka I Boyadjieva
- Endocrine Program, Department of Animal Sciences, Rutgers-The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
31
|
Bose A, Baral R. Natural killer cell mediated cytotoxicity of tumor cells initiated by neem leaf preparation is associated with CD40-CD40L-mediated endogenous production of interleukin-12. Hum Immunol 2007; 68:823-31. [PMID: 17961770 DOI: 10.1016/j.humimm.2007.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/23/2007] [Accepted: 08/01/2007] [Indexed: 02/04/2023]
Abstract
Neem leaf preparation (NLP) was found to activate natural killer (NK) cells (CD56(+)CD3(-)) to enhance their cytotoxic ability to tumor cells and stimulate the release of interleukin-12 (IL-12) from macrophages from healthy individuals and head-and-neck squamous cell carcinoma patients. NLP upregulated cytotoxic (CD16(+) and CD56(dim)) NK cells, and the cytotoxicity of NK-sensitive K562 cells by NLP-stimulated peripheral blood mononuclear cells decreased significantly after IL-12 neutralization. This NK-mediated cytotoxicity was manifest by upregulation of IL-12-dependent intracellular expression of the perforin-granzyme B system. Moreover, NK cytotoxic function was abolished after use of concanamycin A, a perforin inhibitor, but not by brefeldin A, a Fas inhibitor, confirming the participation of the perforin-granzyme B system. In addition NLP upregulated the expression of CD40 in CD14(+) monocytes and CD40L in CD56(+) lymphocytes. Neutralization of CD40 and CD40L in NLP-stimulated peripheral blood mononuclear cells culture resulted in significant downregulation of IL-12 release and cytotoxicity of NK cells, demonstrating the role of a CD40-CD40L interaction in the observed functions. Signals involved in the NLP-induced release of IL-12, and thereby induction of NK cell cytotoxicity, are mediated by activating p38MAPK pathway, but not through the ERK1/2 signaling pathway. Overall the results suggest that NLP effects NK cellular cytotoxicity by CD40-CD40L-mediated endogenous production of IL-12, which critically controls perforin-dependent tumor cell cytotoxicity.
Collapse
Affiliation(s)
- Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | | |
Collapse
|