1
|
Al-Botaty BM, Elkhoely A, K El-Sayed E, Ahmed AAE. Ethyl pyruvate attenuates isoproterenol-induced myocardial infarction in rats: Insight to TNF-α-mediated apoptotic and necroptotic signaling interplay. Int Immunopharmacol 2022; 103:108495. [PMID: 34973531 DOI: 10.1016/j.intimp.2021.108495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/04/2021] [Accepted: 12/19/2021] [Indexed: 01/17/2023]
Abstract
The current study investigated the prophylactic effect of ethyl pyruvate (EP) in Isoproterenol (ISO) - induced myocardial infarction (MI). Ethyl pyruvate (EP) was given at a dose of 100 mg/kg i.p for 7 days, while isoproterenol (ISO) was administered at a dose of 10 mg/kg s.c. on the 6th and 7th days to induce MI. All parameters were assessed 24 and 48 h following treatment. Interestingly, EP pre-treatment significantly improved ISO-induced hemodynamic alterations and remarkably ameliorated serum levels of cardiac injury markers, Cardiac Troponin I (cTnI) and Cardiac Creatine Kinase (CK-MB). Also, EP notably suppressed levels of oxidative stress markers, total antioxidants (TAO) and malondialdehyde (MDA) as compared to ISO-treated group. Cardioprotective effects of EP were confirmed by histopathological examination. Moreover, EP remarkably attenuated ISO-induced elevation in Tumor Necrosis Factor Alpha (TNF-α) and Nuclear factor kappa-B p65 (NF-κB) expression, along with Interleukin-6 (IL-6), Monocyte chemoattractant protein 1 (MCP-1) and Inducible nitric oxide synthase (i-NOS) levels. Also, EP significantly diminished expression of apoptotic markers; caspase 8, cleaved caspase 3 and apoptotic regulator; cellular FLICE-like inhibitory protein (cFLIP). Finally, EP notably mitigated necroptotic mediators, phosphorylated receptor-interacting serine/threonine protein kinase 1 and 3 (p-RIPK1 and p-RIPK3), phosphorylated mixed lineage kinase domain-like protein (p-MLKL) and heat shock protein 70 (HSP 70) expression as compared to the ISO-treated group. Our study was the first to investigate the effect of EP on the necroptotic signaling. Taken together, EP conferred its cardioprotective effect against ISO-induced MI partially through mitigation of TNF-α and its downstream inflammatory, apoptotic and necroptotic signaling pathways.
Collapse
Affiliation(s)
- Basant M Al-Botaty
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Abeer Elkhoely
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| | - Elsayed K El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Amany A E Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Ethyl pyruvate, a versatile protector in inflammation and autoimmunity. Inflamm Res 2022; 71:169-182. [PMID: 34999919 PMCID: PMC8742706 DOI: 10.1007/s00011-021-01529-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022] Open
Abstract
Ethyl pyruvate (EP) has potent influence on redox processes, cellular metabolism, and inflammation. It has been intensively studied in numerous animal models of systemic and organ-specific disorders whose pathogenesis involves a strong immune component. Here, basic chemical and biological properties of EP are discussed, with an emphasis on its redox and metabolic activity. Further, its influence on myeloid and T cells is considered, as well as on intracellular signaling beyond its effect on immune cells. Also, the effects of EP on animal models of chronic inflammatory and autoimmune disorders are presented. Finally, a possibility to apply EP as a treatment for such diseases in humans is discussed. Scientific papers cited in this review were identified using the PubMed search engine that relies on the MEDLINE database. The reference list covers the most important findings in the field in the past twenty years.
Collapse
|
3
|
Tanwar O, Soni A, Prajapat P, Shivhare T, Pandey P, Samaiya PK, Pandey SP, Kar P. Ethyl Pyruvate as a Potential Defense Intervention against Cytokine Storm in COVID-19? ACS OMEGA 2021; 6:7754-7760. [PMID: 33778286 PMCID: PMC7992141 DOI: 10.1021/acsomega.1c00157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
COVID-19 is a deadly pandemic and has resulted in a huge loss of money and life in the past few months. It is well known that the SARS-CoV-2 gene mutates relatively slowly as compared to other viruses but still may create hurdles in developing vaccines. Therefore, there is a need to develop alternative routes for its management and treatment of COVID-19. Based on the severity of viral infection in COVID-19 patients, critically ill patients (∼5%, with old age, and comorbidities) are at high risk of morbidities. The reason for this severity in such patients is attributed to "misleading cytokine storm", which produces ARDS and results in the deaths of critically ill patients. In this connection, ethyl pyruvate (EP) controls these cytokines/chemokines, is an anti-inflammatory agent, and possesses a protective effect on the lungs, brain, heart, and mitochondria against various injuries. Considering these facts, we propose that the site-selective EP formulations (especially aerosols) could be the ultimate adjuvant therapy for the regulation of misleading cytokine storm in severely affected COVID-19 patients and could reduce the mortalities.
Collapse
Affiliation(s)
- Omprakash Tanwar
- Department
of Pharmacy, Shri G.S. Institute of Technology
and Science, 23, Sir
M. Visvesvaraya Marg (Park Road), Indore 452003, Madhya Pradesh, India
| | - Aastha Soni
- Department
of Pharmacy, Shri G.S. Institute of Technology
and Science, 23, Sir
M. Visvesvaraya Marg (Park Road), Indore 452003, Madhya Pradesh, India
| | - Pawan Prajapat
- Department
of Pharmacy, Shri G.S. Institute of Technology
and Science, 23, Sir
M. Visvesvaraya Marg (Park Road), Indore 452003, Madhya Pradesh, India
| | - Tanu Shivhare
- Department
of Pharmacy, Shri G.S. Institute of Technology
and Science, 23, Sir
M. Visvesvaraya Marg (Park Road), Indore 452003, Madhya Pradesh, India
| | - Pooja Pandey
- Department
of Pharmacy, Shri G.S. Institute of Technology
and Science, 23, Sir
M. Visvesvaraya Marg (Park Road), Indore 452003, Madhya Pradesh, India
| | - Puneet Kumar Samaiya
- Department
of Pharmacy, Shri G.S. Institute of Technology
and Science, 23, Sir
M. Visvesvaraya Marg (Park Road), Indore 452003, Madhya Pradesh, India
| | - Sharad Prakash Pandey
- Department
of Pharmacy, Shri G.S. Institute of Technology
and Science, 23, Sir
M. Visvesvaraya Marg (Park Road), Indore 452003, Madhya Pradesh, India
| | - Parimal Kar
- Department
of Biosciences & Biomedical Engineering, Indian Institute of Technology, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
4
|
Yang R, Zhu S, Tonnessen TI. Ethyl pyruvate is a novel anti-inflammatory agent to treat multiple inflammatory organ injuries. JOURNAL OF INFLAMMATION-LONDON 2016; 13:37. [PMID: 27980458 PMCID: PMC5135784 DOI: 10.1186/s12950-016-0144-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022]
Abstract
Ethyl pyruvate (EP) is a simple derivative of pyruvic acid, which is an important endogenous metabolite that can scavenge reactive oxygen species (ROS). Treatment with EP is able to ameliorate systemic inflammation and multiple organ dysfunctions in multiple animal models, such as acute pancreatitis, alcoholic liver injury, acute respiratory distress syndrome (ARDS), acute viral myocarditis, acute kidney injury and sepsis. Recent studies have demonstrated that prolonged treatment with EP can ameliorate experimental ulcerative colitis and slow multiple tumor growth. It has become evident that EP has pharmacological anti-inflammatory effect to inhibit multiple early inflammatory cytokines and the late inflammatory cytokine HMGB1 release, and the anti-tumor activity is likely associated with its anti-inflammatory effect. EP has been tested in human volunteers and in a clinical trial of patients undergoing cardiac surgery in USA and shown to be safe at clinical relevant doses, even though EP fails to improve outcome of the heart surgery, EP is still a promising agent to treat patients with multiple inflammatory organ injuries and the other clinical trials are on the way. This review focuses on how EP is able to ameliorate multiple organ injuries and summarize recently published EP investigations. The targets of the anti-inflammatory agent EP ![]()
Collapse
Affiliation(s)
- Runkuan Yang
- Department of Intensive Care Medicine, Tampere University Hospital, University of Tampere, 10 Bio katu, Tampere, 33014 Finland ; Department of Critical Care Medicine, University of Pittsburgh Medical School, 3550 Terrace Street, Pittsburgh, PA 15261 USA ; Department of Emergencies and Critical Care, Rikshospital of Oslo University, PO Box 4950, Nydalen, Oslo 0424 Norway
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Beijing, 100050 China
| | - Tor Inge Tonnessen
- Department of Emergencies and Critical Care, Rikshospital of Oslo University, PO Box 4950, Nydalen, Oslo 0424 Norway ; Institute for Clinical Medicine, University of Oslo, Blindern, Oslo 0316 Norway
| |
Collapse
|
5
|
Liu K, Zhang X, Cao G, Liu Y, Liu C, Sun H, Pang X. Intratracheal instillation of ethyl pyruvate nanoparticles prevents the development of shunt-flow-induced pulmonary arterial hypertension in a rat model. Int J Nanomedicine 2016; 11:2587-99. [PMID: 27354791 PMCID: PMC4907741 DOI: 10.2147/ijn.s103183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose To investigate whether inhalation of ethyl pyruvate (EP) encapsulated with poly(ethylene glycol)-block-lactide/glycolide copolymer nanoparticles (EP-NPs) can prevent the development of shunt-flow-induced hyperkinetic pulmonary arterial hypertension (PAH) in a rat model. Materials and methods Rats were separated into five groups: blank (ie, no treatment after shunt flow), normal control (ie, no shunt flow or treatment), EP-NP instillation, EP-only instillation, and vehicle. The animals received intratracheal instillation of EP-NPs or other treatments immediately after a shunt flow, and treatment continued weekly until the end of the experiment. Hemodynamic data were recorded, pulmonary arterial remodeling was assessed, and levels of inflammatory mediators and ET1 expression in the lung and serum were analyzed. In addition, retention of EP in the lungs of rats in the EP-NP and EP-only groups was measured using high-performance liquid chromatography. Results After 12 weeks, hemodynamic abnormalities and pulmonary arterial remodeling were improved in the EP-NP instillation group, compared with the blank, EP-only, and vehicle groups (P<0.05). In addition, the EP-NP group showed significantly decreased levels of HMGB1, IL-6, TNFα, reactive oxygen species, and ET1 in the lung during PAH development (P<0.05). Furthermore, EP-NP instillation was associated with reduced serum levels of inflammatory factors and ET1. High-performance liquid-chromatography measurement indicated that EP retention was greater in the lungs of the EP-NP group than in the EP-only group. Conclusion EP-NP instillation attenuated inflammation and prevented pulmonary arterial remodeling during the development of PAH induced by shunt flow. In the future, EP-NP delivery into the lung might provide a novel approach for preventing PAH.
Collapse
Affiliation(s)
- Kai Liu
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| | - Xiquan Zhang
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| | - Guangqing Cao
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| | - Yongjun Liu
- Pharmacy College of Shandong University, Jinan, People's Republic of China
| | - Chuanzhen Liu
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| | - Hourong Sun
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| | - Xinyan Pang
- Cardiovascular Surgery Department, Qilu Hospital of Shandong University
| |
Collapse
|
6
|
Li W, Rosenbruch M, Pauluhn J. Effect of PEEP on phosgene-induced lung edema: pilot study on dogs using protective ventilation strategies. ACTA ACUST UNITED AC 2014; 67:109-16. [PMID: 25467748 DOI: 10.1016/j.etp.2014.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 12/30/2022]
Abstract
Various therapeutic regimes have been proposed for treatment of phosgene-induced acute lung injury (P-ALI). Most of these treatments rely on late-stage supportive measures to maintain the oxygenation of the lung. This exploratory proof-of-concept study on Beagle dogs focused on protective positive end-expiratory pressure (PEEP) ventilation, initiated early at the yet asymptomatic stage after phosgene exposure. Conscious, spontaneously breathing dogs were head-only exposed to a potentially lethal inhalation dose of phosgene (870 ppm × min). Shortly after exposure, the dogs were anesthetized, intubated and then subjected to mechanical ventilation (PEEP; tidal volume (VT)=10-12 mL/kg body weight, 40 breaths/min) at 0, 4, or 12 cm H2O over a post-exposure period of 8h (one dog per setting). For reference, one additional dog received the same dose of phosgene without anesthesia and mechanical ventilation. Time-course changes of hematocrit, leukocytes, and thrombocytes were determined in peripheral blood. At necropsy, changes lung weights, bronchoalveolar lavage, and histology were used to assess the efficacy of treatment. The most salient outcome in the non-ventilated dog was a time-related hemoconcentration and leukocytosis and autopsy findings suggestive of pulmonary congestion and edema. The pulmonary epithelium of the major airways was generally intact; however, in their lumen inflammatory cells, cellular debris and mucus were present. Relative to the dog receiving no intervention, the lung edema was markedly alleviated by PEEP at both 4 and 12 cm H2O but not at 0 cm H2O PEEP. In summary, the time-dependent progression into a life-threatening pulmonary edema can effectively be suppressed by protective, low-pressure PEEP when implemented early enough after exposure to phosgene. However, due to the exploratory nature of this study, the findings may suggest an association between PEEP and protection from pulmonary edema. However, definite conclusions and recommendations cannot be made yet based upon the small sample size and the limited variables examined.
Collapse
Affiliation(s)
- Wenli Li
- Fourth Military Medical University, Department of Toxicology, Xi'an, China
| | - Martin Rosenbruch
- Bayer HealthCare Pharma, Experimental Toxicology, Wuppertal, Germany
| | - Jürgen Pauluhn
- Bayer HealthCare Pharma, Experimental Toxicology, Wuppertal, Germany.
| |
Collapse
|
7
|
|
8
|
Gupta D, Du Y, Piluek J, Jakub AM, Buela KA, Abbott A, Schuman JS, SundarRaj N. Ethyl pyruvate ameliorates endotoxin-induced corneal inflammation. Invest Ophthalmol Vis Sci 2012; 53:6589-99. [PMID: 22918642 DOI: 10.1167/iovs.11-9266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the anti-inflammatory effect of ethyl pyruvate (EP) in a mouse model of lipopolysaccharide (LPS)-induced corneal inflammation. METHODS LPS was injected intrastromally into the corneas of C57BL/6 mice followed by treatment with a solution of 2.5% EP in 0.2% hydroxypropyl methylcellulose (HPMC) every 90 minutes during the course of 12 hours. Prednisolone acetate 1% solution (PRED FORTE) was used as a positive control. Mice were sacrificed after 3 days, and corneas were examined by in vivo confocal microscopy and analyzed for infiltrated cells by flow cytometry. Gr-1, TNF-α, and pNF-κB-p65 were detected immunohistochemically, and TNF-α, IL-6, and IL-1β levels were quantified by ELISA. RESULTS LPS-induced haze in mice corneas was decreased by 2-fold upon EP treatment; however, it was not changed upon PRED FORTE treatment. Flow cytometry and immunohistochemistry showed infiltration of leukocytes in the LPS-treated corneas; among the infiltrated cells, neutrophils (Gr-1+ and CD11b+) and macrophages (F4/80+ and CD11b+) were 3403.4- and 4.5-fold higher in number, respectively, than in vehicle-treated control corneas. EP or PRED FORTE treatment of LPS-injected corneas decreased the number of neutrophils 7.5- and 7.2-fold and macrophages by 5.6- and 3.5-fold, respectively. Both EP and PRED FORTE decreased TNF-α and IL-6 expression considerably, and to a lesser extent IL-1β expression, in the LPS-treated corneas. CONCLUSIONS The present study demonstrated that EP reduces LPS-induced inflammation in the cornea and thus may have a potential therapeutic application in the inhibition of corneal inflammation.
Collapse
Affiliation(s)
- Divya Gupta
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
10
|
McFadden D, Souba WW. The Journal of Surgical Research Editorial Board–2010. J Surg Res 2010; 160:1-2. [DOI: 10.1016/j.jss.2010.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
McFadden D, Souba WW. The Journal of Surgical Research—2009. J Surg Res 2009. [DOI: 10.1016/j.jss.2008.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|