1
|
Wenxuan L, Liu L, Zhang L, Qiu Z, Wu Z, Deng W. Role of gonadally synthesized steroid hormones in the colorectal cancer microenvironment. Front Oncol 2023; 13:1323826. [PMID: 38115900 PMCID: PMC10728810 DOI: 10.3389/fonc.2023.1323826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
Objective To understand the relationship between steroid hormones synthesized by the gonads and colorectal cancer as well as its tumor microenvironment, in the expectation of providing new ideas in order to detect and treat colorectal cancer. Methods Through reviewing the relevant literature at home and abroad, we summarized that androgens promote the growth of colorectal cancer, and estrogens and progesterone help prevent bowel cancer from developing; these three hormones also have a relevant role in the cellular and other non-cellular components of the tumor microenvironment of colorectal cancer. Conclusion The current literature suggests that androgens, estrogens, and progesterone are valuable in diagnosing and treating colorectal cancer, and that androgens promote the growth of colorectal cancer whereas estrogens and progesterone inhibit colorectal cancer, and that, in addition, the receptors associated with them are implicated in the modulation of a variety of cellular components of the microenvironment of colorectal cancer.
Collapse
Affiliation(s)
- Liu Wenxuan
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongkai Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Patel M, Pennel KAF, Quinn JA, Hood H, Chang DK, Biankin AV, Rebus S, Roseweir AK, Park JH, Horgan PG, McMillan DC, Edwards J. Spatial expression of IKK-alpha is associated with a differential mutational landscape and survival in primary colorectal cancer. Br J Cancer 2022; 126:1704-1714. [PMID: 35173303 PMCID: PMC9174220 DOI: 10.1038/s41416-022-01729-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To understand the relationship between key non-canonical NF-κB kinase IKK-alpha(α), tumour mutational profile and survival in primary colorectal cancer. METHODS Immunohistochemical expression of IKKα was assessed in a cohort of 1030 patients who had undergone surgery for colorectal cancer using immunohistochemistry. Mutational tumour profile was examined using a customised gene panel. Immunofluorescence was used to identify the cellular location of punctate IKKα expression. RESULTS Two patterns of IKKα expression were observed; firstly, in the tumour cell cytoplasm and secondly as discrete 'punctate' areas in a juxtanuclear position. Although cytoplasmic expression of IKKα was not associated with survival, high 'punctate' IKKα expression was associated with significantly reduced cancer-specific survival on multivariate analysis. High punctate expression of IKKα was associated with mutations in KRAS and PDGFRA. Dual immunofluorescence suggested punctate IKKα expression was co-located with the Golgi apparatus. CONCLUSIONS These results suggest the spatial expression of IKKα is a potential biomarker in colorectal cancer. This is associated with a differential mutational profile highlighting possible distinct signalling roles for IKKα in the context of colorectal cancer as well as potential implications for future treatment strategies using IKKα inhibitors.
Collapse
Affiliation(s)
- Meera Patel
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Kathryn A F Pennel
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jean A Quinn
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hannah Hood
- School of Medicine, Wolfson Medical School Building, University of Glasgow, Glasgow, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Antonia K Roseweir
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - James H Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
4
|
Hirtz R, Libuda L, Hinney A, Föcker M, Bühlmeier J, Holterhus PM, Kulle A, Kiewert C, Hebebrand J, Grasemann C. Size Matters: The CAG Repeat Length of the Androgen Receptor Gene, Testosterone, and Male Adolescent Depression Severity. Front Psychiatry 2021; 12:732759. [PMID: 34744823 PMCID: PMC8564040 DOI: 10.3389/fpsyt.2021.732759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
There is a distinct increase in the prevalence of depression with the onset of puberty. The role of peripubertal testosterone levels in boys in this context is insufficiently understood and may be modulated by a functional polymorphism of the androgen receptor gene (AR), a variable number of CAG repeats. Moreover, there is preliminary evidence that the relationship between testosterone, CAG repeat length, and the severity of depressive symptoms may differ between subclinical and overt depression, but this has neither been studied in a clinical sample of adolescents with depression nor compared between subclinical and overt depression in an adequately powered study. To investigate the relationship between free testosterone, CAG repeat length of the AR, depression status (subclinical vs. overt), and the severity of depressive symptoms, 118 boys treated as in- or daycare patients at a single psychiatric hospital were studied. Of these, 73 boys had at least mild depressive symptoms according to the Beck Depression Inventory-II (BDI-II > 13). Higher-order moderation analysis in the multiple regression framework revealed a constant relationship between free testosterone and depression severity irrespective of the number of CAG repeats in adolescents with a BDI-II score ≤ 13. In adolescents with a BDI-II score > 13, however, there was a significant negative relationship between free testosterone and BDI-II score in patients with <19 CAG repeats and a significant positive relationship regarding free testosterone and BDI-II score in those with more than 28 CAG repeats, even when considering important covariates. These results suggest that the effects of testosterone on mood in male adolescents with depression depend on the genetic make-up of the AR as well as on depression status. This complex relationship should be considered by future studies addressing mental health issues against an endocrine background and may, moreover, contribute to tailored treatment concepts in psychiatric medicine, especially in adults.
Collapse
Affiliation(s)
- Raphael Hirtz
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Libuda
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Faculty of Natural Sciences, Institute of Nutrition, Consumption and Health, University Paderborn, Paderborn, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, University Hospital Münster, Münster, Germany
| | - Judith Bühlmeier
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Paul-Martin Holterhus
- Department of Paediatrics I, Paediatric Endocrinology and Diabetes, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - Alexandra Kulle
- Department of Paediatrics I, Paediatric Endocrinology and Diabetes, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - Cordula Kiewert
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Corinna Grasemann
- Department of Pediatrics, St. Josef-Hospital, Center for Rare Diseases (CeSER), Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Ryan CP, Crespi BJ. Androgen receptor polyglutamine repeat number: models of selection and disease susceptibility. Evol Appl 2012; 6:180-96. [PMID: 23467468 PMCID: PMC3586616 DOI: 10.1111/j.1752-4571.2012.00275.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/04/2012] [Indexed: 12/14/2022] Open
Abstract
Variation in polyglutamine repeat number in the androgen receptor (AR CAGn) is negatively correlated with the transcription of androgen-responsive genes and is associated with susceptibility to an extensive list of human disease. Only a small portion of the heritability for many of these diseases is explained by conventional SNP-based genome-wide association studies, and the forces shaping AR CAGn among humans remains largely unexplored. Here, we propose evolutionary models for understanding selection at the AR CAG locus, namely balancing selection, sexual conflict, accumulation-selection, and antagonistic pleiotropy. We evaluate these models by examining AR CAGn-linked susceptibility to eight extensively studied diseases representing the diverse physiological roles of androgens, and consider the costs of these diseases by their frequency and fitness effects. Five diseases could contribute to the distribution of AR CAGn observed among contemporary human populations. With support for disease susceptibilities associated with long and short AR CAGn, balancing selection provides a useful model for studying selection at this locus. Gender-specific differences AR CAGn health effects also support this locus as a candidate for sexual conflict over repeat number. Accompanied by the accumulation of AR CAGn in humans, these models help explain the distribution of repeat number in contemporary human populations.
Collapse
Affiliation(s)
- Calen P Ryan
- Department of Biological Sciences, Simon Fraser University Burnaby, BC, Canada
| | | |
Collapse
|
6
|
Gottlieb B, Beitel LK, Nadarajah A, Paliouras M, Trifiro M. The androgen receptor gene mutations database: 2012 update. Hum Mutat 2012; 33:887-94. [DOI: 10.1002/humu.22046] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/18/2012] [Indexed: 12/18/2022]
|