1
|
Kothari P, Dhaniya G, Sardar A, Sinha S, Girme A, Rai D, Chutani K, Hingorani L, Trivedi R. A glucuronated flavone TMMG spatially targets chondrocytes to alleviate cartilage degeneration through negative regulation of IL-1β. Biomed Pharmacother 2023; 163:114809. [PMID: 37167724 DOI: 10.1016/j.biopha.2023.114809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023] Open
Abstract
Chondrocytes are the only resident cell types that form the extracellular matrix of cartilage. Inflammation alters the anabolic and catabolic regulation of chondrocytes, resulting in the progression of osteoarthritis (OA). The potential of TMMG, a glucuronated flavone, was explored against the pathophysiology of OA in both in vitro and in vivo models. The effects of TMMG were evaluated on chondrocytes and the ATDC5 cell line treated with IL-1β in an established in vitro inflammatory OA model. An anterior cruciate ligament transection (ACLT) model was used to simulate post-traumatic injury in vivo. Micro-CT and histological examination were employed to examine the micro-architectural status and cartilage alteration. Further, serum biomarkers were measured using ELISA to assess OA progression. In-vitro, TMMG reduced excessive ROS generation and inhibited pro-inflammatory IL-1β secretion by mouse chondrocytes and macrophages, which contributes to OA progression. This expression pattern closely mirrored osteoclastogenesis prevention. In-vivo results show that TMMG prevented chondrocyte apoptosis and degradation of articular cartilage thickness, subchondral parameters, and elevated serum COMP, CTX-II, and IL-1β which were significantly restored in 5 and 10 mg.kg-1day-1 treated animals and comparable to the positive control Indomethacin. In addition, TMMG also improved cartilage integrity and decreased the OARSI score by maintaining chondrocyte numbers and delaying ECM degradation. These findings suggest that TMMG may be a prospective disease-modifying agent that can mitigate OA progression.
Collapse
Affiliation(s)
- Priyanka Kothari
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Geeta Dhaniya
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirban Sardar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shradha Sinha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aboli Girme
- Pharmanza Herbal Pvt Ltd. Anand, Gujarat 388435, India
| | - Divya Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kunal Chutani
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt Ltd. Anand, Gujarat 388435, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Donnenfield JI, Proffen BL, Fleming BC, Murray MM. Responding to ACL Injury and its Treatments: Comparative Gene Expression between Articular Cartilage and Synovium. Bioengineering (Basel) 2023; 10:527. [PMID: 37237597 PMCID: PMC10215325 DOI: 10.3390/bioengineering10050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between cartilage and synovium is a rapidly growing area of osteoarthritis research. However, to the best of our knowledge, the relationships in gene expression between these two tissues have not been explored in mid-stage disease development. The current study compared the transcriptomes of these two tissues in a large animal model one year following posttraumatic osteoarthritis induction and multiple surgical treatment modalities. Thirty-six Yucatan minipigs underwent transection of the anterior cruciate ligament. Subjects were randomized to no further intervention, ligament reconstruction, or ligament repair augmented with an extracellular matrix (ECM) scaffold, followed by RNA sequencing of the articular cartilage and synovium at 52 weeks after harvest. Twelve intact contralateral knees served as controls. Across all treatment modalities, the primary difference in the transcriptomes was that the articular cartilage had greater upregulation of genes related to immune activation compared to the synovium-once baseline differences between cartilage and synovium were adjusted for. Oppositely, synovium featured greater upregulation of genes related to Wnt signaling compared to articular cartilage. After adjusting for expression differences between cartilage and synovium seen following ligament reconstruction, ligament repair with an ECM scaffold upregulated pathways related to ion homeostasis, tissue remodeling, and collagen catabolism in cartilage relative to synovium. These findings implicate inflammatory pathways within cartilage in the mid-stage development of posttraumatic osteoarthritis, independent of surgical treatment. Moreover, use of an ECM scaffold may exert a chondroprotective effect over gold-standard reconstruction through preferentially activating ion homeostatic and tissue remodeling pathways within cartilage.
Collapse
Affiliation(s)
- Jonah I. Donnenfield
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benedikt L. Proffen
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Martha M. Murray
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Longo UG, Papalia R, De Salvatore S, Picozzi R, Sarubbi A, Denaro V. Induced Models of Osteoarthritis in Animal Models: A Systematic Review. BIOLOGY 2023; 12:283. [PMID: 36829562 PMCID: PMC9953428 DOI: 10.3390/biology12020283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
The most common induction methods for OA are mechanical, surgical and chemical. However, there is not a gold standard in the choice of OA animal models, as different animals and induction methods are helpful in different contexts. Reporting the latest evidence and results in the literature could help researchers worldwide to define the most appropriate indication for OA animal-model development. This review aims to better define the most appropriate animal model for various OA conditions. The research was conducted on the following literature databases: Medline, Embase, Cinahl, Scopus, Web of Science and Google Scholar. Studies reporting cases of OA in animal models and their induction from January 2010 to July 2021 were included in the study and reviewed by two authors. The literature search retrieved 1621 articles, of which 36 met the selection criteria and were included in this review. The selected studies included 1472 animals. Of all the studies selected, 8 included information about the chemical induction of OA, 19 were focused on mechanical induction, and 9 on surgical induction. Nevertheless, it is noteworthy that several induction models, mechanical, surgical and chemical, have been proven suitable for the induction of OA in animals.
Collapse
Affiliation(s)
- Umile Giuseppe Longo
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Rocco Papalia
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Sergio De Salvatore
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
- Department of Orthopedics, Children’s Hospital Bambino Gesù, 00165 Roma, Italy
| | - Riccardo Picozzi
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Antonio Sarubbi
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Vincenzo Denaro
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| |
Collapse
|
4
|
Narez GE, Brown G, Herrick A, Ek RJ, Dejardin L, Wei F, Haut RC, Haut Donahue TL. Evaluating the Efficacy of Combined P188 Treatment and Surgical Intervention in Preventing Post-Traumatic Osteoarthritis Following a Traumatic Knee Injury. J Biomech Eng 2022; 144:1120716. [PMID: 34751734 DOI: 10.1115/1.4052564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/08/2022]
Abstract
Previous studies have shown that reconstructive surgery alone following injury to the anterior cruciate ligament (ACL) does not prevent the development of post-traumatic osteoarthritis (PTOA). Poloxamer 188 (P188) has been shown to prevent cell death following trauma in both articular cartilage and meniscal tissue. This study aims to test the efficacy of single or multiple administrations of P188 in conjunction with reconstructive surgery to help prevent or delay the onset of the disease. Thirty skeletally mature rabbits underwent closed-joint trauma that resulted in ACL rupture and meniscal damage and were randomly assigned to one of four treatment groups with varying doses of P188. ACL reconstruction was then performed using an autograft from the semitendinosus tendon. Animals were euthanized 1-month following trauma, meniscal tissue was assessed for changes in morphology, mechanical properties, and proteoglycan content. Femurs and tibias were scanned using microcomputed tomography to determine changes in bone quality, architecture, and osteophyte formation. The medial meniscus experienced more damage and a decrease in the instantaneous modulus regardless of treatment group, while P188 treatment tended to limit degenerative changes in the lateral meniscus. Both lateral and medial menisci had documented decreases in the equilibrium modulus and inconsistent changes in proteoglycan content. Minimal changes were documented in the tibias and femurs, with the only significant change being the formation of osteophytes in both bones regardless of treatment group. The data suggest that P188 was able to limit some degenerative changes in the meniscus associated with PTOA and may warrant future studies.
Collapse
Affiliation(s)
- Gerardo E Narez
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003
| | - Gabriel Brown
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003
| | - Ashley Herrick
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003
| | - Ryan J Ek
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003
| | - Loic Dejardin
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - Feng Wei
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Roger C Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824
| | - Tammy L Haut Donahue
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003; S631 Life Sciences Laboratory, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003
| |
Collapse
|
5
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
6
|
Wei F, Haut Donahue T, Haut RC, Porcel Sanchez MD, Dejardin LM. Reconstruction of the cranial cruciate ligament using a semitendinosus autograft in a lapine model. Vet Surg 2021; 50:1326-1337. [PMID: 33914354 DOI: 10.1111/vsu.13643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To clarify and improve a cranial cruciate ligament (CrCL) deficient stifle stabilization technique using a semitendinosus tendon (ST) autograft fixed with an interference fit screw (IFS) in a closed-joint trauma lapine osteoarthritis (OA) model. STUDY DESIGN Experimental OA model. ANIMALS Forty-one Flemish Giant rabbits. METHODS Following arthrotomy of traumatized lapine stifles, the ST insertion on the tibial plateau was exposed and the ST was transected near its origin. The graft was passed through tibial and femoral tunnels, manually tensioned and then secured in place with a custom IFS and periosteal sutures. Drawer was manually assessed during and immediately after surgery intraoperatively. Upon euthanasia, joint laxity was measured at 2, 10, or 22 weeks postoperatively and compared to that of the contralateral, intact stifles and stifles with a surgically transected CrCL. RESULTS Minimal postoperative drawer was present in 34% of the rabbits and potentially correlated with meniscal injury and subsequent meniscectomy. CrCL reconstruction significantly reduced joint laxity to a level (3.6 ± 1.6 mm) similar to that (2.7 ± 0.8 mm) in contralateral intact stifles. CONCLUSION Surgical replacement of a traumatically injured CrCL using a ST autograft fixed with an IFS replicated a common human surgical technique and effectively restored joint stability in the short, medium, and long terms of the study. CLINICAL SIGNIFICANCE The study provides researchers a useful, clinically relevant, post-traumatic CrCL deficient rabbit model for the study of OA and investigations of interventions to mitigate or prevent long-term joint degeneration.
Collapse
Affiliation(s)
- Feng Wei
- Orthopaedic Biomechanics Laboratories, Michigan State University, East Lansing, Michigan, USA.,Department of Radiology, Michigan State University, East Lansing, Michigan, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Tammy Haut Donahue
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | - Roger C Haut
- Orthopaedic Biomechanics Laboratories, Michigan State University, East Lansing, Michigan, USA.,Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | | | - Loic M Dejardin
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Narez GE, Fischenich KM, Donahue TLH. Experimental animal models of post-traumatic osteoarthritis of the knee. Orthop Rev (Pavia) 2020; 12:8448. [PMID: 32922696 PMCID: PMC7461640 DOI: 10.4081/or.2020.8448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022] Open
Abstract
Due to the complex and dynamic nature of osteoarthritis (OA) and post-traumatic osteoarthritis (PTOA), animal models have been used to investigate the progression and pathogenesis of the disease. Researchers have used different experimental models to study OA and PTOA. With an emphasis on the knee joint, this review will compare and contrast the existing body of knowledge from anterior cruciate ligament transection models, meniscectomy models, combination models, as well as impact models in large animals to see how tissues respond to these different approaches to induce experimental OA and PTOA. The tissues discussed will include articular cartilage and the meniscus, with a focus on morphological, mechanical and histological assessments. The goal of this review is to demonstrate the progressive nature of OA by indicating the strong correlation between progressive tissue degeneration, change of mechanical properties, and loss of biochemical integrity and to highlight key differences between the most commonly used experimental animal models.
Collapse
Affiliation(s)
- Gerardo E Narez
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA
| | | | | |
Collapse
|
8
|
Early degeneration of the meniscus revealed by microbiomechanical alteration in a rabbit anterior cruciate ligament transection model. J Orthop Translat 2020; 21:146-152. [PMID: 32309140 PMCID: PMC7152828 DOI: 10.1016/j.jot.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background The microbiomechanical properties of the meniscus influence the cell response to the surrounding biomechanical environment and are beneficial to understand meniscus repairing and healing. To date, however, this information remains ambiguous. This study aims to characterise the microbiomechanical properties of the meniscus after degeneration in a rabbit anterior cruciate ligament transection (ACLT) model and to analyse the corresponding histology at the macroscale and chemical composition. Methods Twenty New Zealand white rabbits were used. Menisci were collected from the knee joints 4 and 8 weeks after the ACLT and from those of the corresponding control groups. The central portions of both medial and lateral menisci were investigated using atomic force microscopy, histological study, and an energy-dispersive spectrometer. The evaluation was conducted regionally within the inner, middle, and outer sites from the top layer (facing the femoral surface) to the bottom layer (facing the tibial surface) in both the lateral and medial menisci to obtain the site-dependent properties. Results At 4 weeks after surgery, the dynamic elastic modulus at the microlevel increased significantly at both the top and bottom layers compared with the intact meniscus (P = 0.021). At 8 weeks after surgery, the stiffening occurred in all regions (P = 0.030). The medial meniscus showed greater change than the lateral meniscus. All these microbiomechanical alterations occurred before the histological findings at the macroscale. Conclusion The microbiomechanical properties in the meniscus changed significantly after ACLT and were site dependent. Their alterations occurred before the histological changes of degeneration were observed. The Translational Potential of this Article The results of our study indicated that degeneration promoted meniscus stiffening. Thus, they provide a better understanding of the disease process affecting the meniscus. Our results might be beneficial to understand how mechanical forces distribute throughout the healthy and pathologic joint. They indicate the possibility of early diagnosis using a minimally invasive arthroscopic tool, as well as they might guide treatment to the healthy and pathologic meniscus and joint.
Collapse
|
9
|
Brown SB, Hornyak JA, Jungels RR, Shah YY, Yarmola EG, Allen KD, Sharma B. Characterization of Post-Traumatic Osteoarthritis in Rats Following Anterior Cruciate Ligament Rupture by Non-Invasive Knee Injury (NIKI). J Orthop Res 2020; 38:356-367. [PMID: 31520482 PMCID: PMC8596306 DOI: 10.1002/jor.24470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
Small animal models are essential for studying anterior cruciate ligament (ACL) injury, one of the leading risk factors for post-traumatic osteoarthritis (PTOA). Non-surgical models of ACL rupture have recently surged as a new tool to study PTOA, as they circumvent the confounding effects of surgical disruption of the joint. These models primarily have been explored in mice and rabbits, but are relatively understudied in rats. The purpose of this work was to establish a non-invasive, mechanical overload model of ACL rupture in the rat and to study the disease pathogenesis following the injury. ACL rupture was induced via non-invasive tibial compression in Lewis rats. Disease state was characterized for 4 months after ACL rupture via histology, computed tomography, and biomarker capture from the synovial fluid. The non-invasive knee injury (NIKI) model created consistent ACL ruptures without direct damage to other tissues and resulted in conventional OA pathology. NIKI knees exhibited structural changes as early as 4 weeks post-injury, including regional structural changes to cartilage, chondrocyte and cartilage disorganization, changes to the bone architecture, synovial hyperplasia, and the increased presence of biomarkers of cartilage fragmentation and pro-inflammatory cytokines. These results suggest that this model can be a valuable tool to study PTOA. By establishing the fundamental pathogenesis of this injury, additional opportunities are created to evaluate unique contributing factors and potential therapeutic interventions for this disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:356-367, 2020.
Collapse
Affiliation(s)
- Shannon B. Brown
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Jessica A. Hornyak
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Ryan R. Jungels
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Yash Y. Shah
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Elena G. Yarmola
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Kyle D. Allen
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Blanka Sharma
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| |
Collapse
|
10
|
Matsuda Y, Shibata Y, Basaki K, Fukuda Y, Takaki N, Maeda T, Hirao M, Yano M, Higashiya M, Obata T, Seki S, Nishijima K. Characteristic features of newly established specific pathogen-free albino large rabbit (JW-AKT): Comparison with Japanese White and New Zealand White rabbits. J Vet Med Sci 2019; 81:739-743. [PMID: 30918135 PMCID: PMC6541839 DOI: 10.1292/jvms.18-0758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was conducted to reveal characteristic features of albino large rabbit (JW-AKT) which we formerly established a specific pathogen-free (SPF) colony. Body weights of JW-AKT rabbit at 52 weeks old was 5.7 ± 0.4 kg in males and 6.4 ± 0.4 kg in females. Weight of body, heart, lung and kidney in JW-AKT rabbit was significantly higher than in Japanese white and New Zealand white rabbits in both sexes. Though the body weight (BW) was rather lower in males, body length and brain weights tended to be higher in males than in females. Since body fat was significantly higher in females, what affects difference in BW is body fat, rather than the physical constitution of female JW-AKT rabbit. No critical sex difference was found in hematological parameters in JW-AKT rabbit. The results indicated that JW-AKT were about 1.5 times larger than the general laboratory rabbits with common properties in hematology. Thus, JW-AKT rabbit could be used as a novel SPF experimental animal model with some advantages in surgical experiments or collection of large amount of biological specimen.
Collapse
Affiliation(s)
- Yukihisa Matsuda
- Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University, 1-1-1 Hondo, Akita 010-8543 Japan
| | - Yoshiko Shibata
- Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University, 1-1-1 Hondo, Akita 010-8543 Japan
| | - Keita Basaki
- Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University, 1-1-1 Hondo, Akita 010-8543 Japan
| | - Yasuyoshi Fukuda
- Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University, 1-1-1 Hondo, Akita 010-8543 Japan
| | - Naofumi Takaki
- Kitayama Labes Co., Ltd., 8046-1 Nishiminowa, Ina, Nagano 399-4501 Japan
| | - Tatsuhiro Maeda
- Kitayama Labes Co., Ltd., 8046-1 Nishiminowa, Ina, Nagano 399-4501 Japan
| | - Masao Hirao
- Kitayama Labes Co., Ltd., 8046-1 Nishiminowa, Ina, Nagano 399-4501 Japan
| | - Megumi Yano
- Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University, 1-1-1 Hondo, Akita 010-8543 Japan
| | - Misako Higashiya
- Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University, 1-1-1 Hondo, Akita 010-8543 Japan
| | - Takahiro Obata
- Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University, 1-1-1 Hondo, Akita 010-8543 Japan
| | - Shinsuke Seki
- Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University, 1-1-1 Hondo, Akita 010-8543 Japan
| | - Kazutoshi Nishijima
- Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University, 1-1-1 Hondo, Akita 010-8543 Japan
| |
Collapse
|
11
|
Travascio F, Jackson AR. The nutrition of the human meniscus: A computational analysis investigating the effect of vascular recession on tissue homeostasis. J Biomech 2017; 61:151-159. [PMID: 28778387 DOI: 10.1016/j.jbiomech.2017.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/09/2017] [Accepted: 07/16/2017] [Indexed: 11/19/2022]
Abstract
The meniscus is essential to the functioning of the knee, offering load support, congruency, lubrication, and protection to the underlying cartilage. Meniscus degeneration affects ∼35% of the population, and potentially leads to knee osteoarthritis. The etiology of meniscal degeneration remains to be elucidated, although many factors have been considered. However, the role of nutritional supply to meniscus cells in the pathogenesis of meniscus degeneration has been so far overlooked. Nutrients are delivered to meniscal cells through the surrounding synovial fluid and the blood vessels present in the outer region of the meniscus. During maturation, vascularization progressively recedes up to the outer 10% of the tissue, leaving the majority avascular. It has been hypothesized that vascular recession might significantly reduce the nutrient supply to cells, thus contributing to meniscus degeneration. The objective of this study was to evaluate the effect of vascular recession on nutrient levels available to meniscus cells. This was done by developing a novel computational model for meniscus homeostasis based on mixture theory. It was found that transvascular transport of nutrients in the vascularized region of the meniscus contributes to more than 40% of the glucose content in the core of the tissue. However, vascular recession does not significantly alter nutrient levels in the meniscus, reducing at most 5% of the nutrient content in the central portion of the tissue. Therefore, our analysis suggests that reduced vascularity is not likely a primary initiating source in tissue degeneration. However, it does feasibly play a key role in inability for self-repair, as seen clinically.
Collapse
Affiliation(s)
- Francesco Travascio
- Biomechanics Research Laboratory, Department of Industrial Engineering, University of Miami, Coral Gables, FL, United States.
| | - Alicia R Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
12
|
Blaker CL, Little CB, Clarke EC. Joint loads resulting in ACL rupture: Effects of age, sex, and body mass on injury load and mode of failure in a mouse model. J Orthop Res 2017; 35:1754-1763. [PMID: 27601010 DOI: 10.1002/jor.23418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/29/2016] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) tears are a common knee injury with a known but poorly understood association with secondary joint injuries and post-traumatic osteoarthritis (OA). Female sex and age are known risk factors for ACL injury but these variables are rarely explored in mouse models of injury. This study aimed to further characterize a non-surgical ACL injury model to determine its clinical relevance across a wider range of mouse specifications. Cadaveric and anesthetized C57BL/6 mice (9-52 weeks of age) underwent joint loading to investigate the effects of age, sex, and body mass on ACL injury mechanisms. The ACL injury load (whole joint load required to rupture the ACL) was measured from force-displacement data, and mode of failure was assessed using micro-dissection and histology. ACL injury load was found to increase with body mass and age (p < 0.001) but age was not significant when controlling for mass. Sex had no effect. In contrast, the mode of ACL failure varied with both age and sex groups. Avulsion fractures (complete or mixed with mid-substance tears) were common in all age groups but the proportion of mixed and mid-substance failures increased with age. Females were more likely than males to have a major avulsion relative to a mid-substance tear (p < 0.01). This data compliments studies in human cadaveric knees, and provides a basis for determining the severity of joint injury relative to a major ACL tear in mice, and for selecting joint loading conditions in future experiments using this model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1754-1763, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
13
|
Levillain A, Magoariec H, Boulocher C, Decambron A, Viateau V, Hoc T. Effects of a viscosupplementation therapy on rabbit menisci in an anterior cruciate ligament transection model of osteoarthritis. J Biomech 2017; 58:147-154. [PMID: 28554494 DOI: 10.1016/j.jbiomech.2017.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/14/2017] [Accepted: 04/30/2017] [Indexed: 12/26/2022]
Abstract
The aim of this study was to evaluate the morphological, microstructural, and mechanical effects of a viscosupplementation therapy on rabbit menisci at an early stage of osteoarthritis (OA). Anterior cruciate ligament transection (ACLT) was performed in twelve male New-Zealand White rabbits on the right knee joint. Six of these twelve rabbits received a mono intra-articular injection of high molecular weight hyaluronic acid (HA) two weeks after ACLT. Six additional healthy rabbits served as controls. Medial menisci were removed from all right knees (n=18) six weeks after ACLT and were graded macroscopically. Indentation-relaxation tests were performed in the anterior and posterior regions of the menisci. Collagen fiber organization and glycosaminoglycan (GAG) content were assessed by biphotonic confocal microscopy and histology, respectively. Viscosupplementation significantly (p=0.002) improved the surface integrity of the medial menisci compared to the operated non-treated group. Moreover, the injection seems to have an effect on the GAG distribution in the anterior region of the menisci. However, the viscoelastic properties of both operated groups were similar and significantly lower than those of the healthy group, which was explained by their modified collagen fiber organization. They displayed disruption of the tie fibers due to structural alterations of the superficial layers from which they emanate, leading to modifications in the deep zone. To conclude, the viscosupplementation therapy prevents macroscopic lesions of the menisci, but it fails to restore their collagen fiber organization and their viscoelastic properties. This finding supports the role of this treatment in improving the lubrication over the knee.
Collapse
Affiliation(s)
- A Levillain
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36 av Guy de Collongue, 69134 Ecully Cedex, France
| | - H Magoariec
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36 av Guy de Collongue, 69134 Ecully Cedex, France
| | - C Boulocher
- Research unit ICE, UPSP 2011.03.101, Université de Lyon, veterinary campus of VetAgro Sup, 69 280 Marcy l'Etoile, France
| | - A Decambron
- B2OA, UMR 7052, ENVA, 7 Avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | - V Viateau
- B2OA, UMR 7052, ENVA, 7 Avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | - T Hoc
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36 av Guy de Collongue, 69134 Ecully Cedex, France.
| |
Collapse
|
14
|
Fischenich KM, Pauly HM, Button KD, Fajardo RS, DeCamp CE, Haut RC, Haut Donahue TL. A study of acute and chronic tissue changes in surgical and traumatically-induced experimental models of knee joint injury using magnetic resonance imaging and micro-computed tomography. Osteoarthritis Cartilage 2017; 25:561-569. [PMID: 27756698 PMCID: PMC5359039 DOI: 10.1016/j.joca.2016.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/27/2016] [Accepted: 10/09/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objective of this study was to monitor the progression of joint damage in two animal models of knee joint trauma using two non-invasive, clinically available imaging modalities. METHODS A 3-T clinical magnet and micro-computed tomography (μCT) was used to document changes immediately following injury (acute) and post-injury (chronic) at time points of 4, 8, or 12 weeks. Joint damage was recorded at dissection and compared to the chronic magnetic resonance imaging (MRI) record. Fifteen Flemish Giant rabbits were subjected to a single tibiofemoral compressive impact (ACLF), and 18 underwent a combination of anterior cruciate ligament (ACL) and meniscal transection (mACLT). RESULTS All ACLF animals experienced ACL rupture, and 13 also experienced acute meniscal damage. All ACLF and mACLT animals showed meniscal and articular cartilage damages at dissection. Meniscal damage was documented as early as 4 weeks and worsened in 87% of the ACLF animals and 71% of the mACLT animals. Acute cartilage damage also developed further and increased in occurrence with time in both models. A progressive decrease in bone quantity and quality was documented in both models. The MRI data closely aligned with dissection notes suggesting this clinical tool may be a non-invasive method for documenting joint damage in lapine models of knee joint trauma. CONCLUSIONS The study investigates the acute to chronic progression of meniscal and cartilage damage at various time points, and chronic changes to the underlying bone in two models of posttraumatic osteoarthritis (PTOA), and highlights the dependency of the model on the location, type, and progression of damage over time.
Collapse
Affiliation(s)
| | - Hannah M. Pauly
- Department of Mechanical Engineering, Colorado State
University, Fort Collins, CO USA
| | - Keith D. Button
- Orthopaedic Biomechanics Laboratories, College of
Osteopathic Medicine, Michigan State University, East Lansing, MI USA
| | - Ryan S. Fajardo
- Department of Radiology, Michigan State University, East
Lansing, MI USA
| | - Charles E. DeCamp
- Small Animal Clinical Sciences, College of Veterinary
Medicine, Michigan State University, East Lansing, MI USA
| | - Roger C. Haut
- Orthopaedic Biomechanics Laboratories, College of
Osteopathic Medicine, Michigan State University, East Lansing, MI USA,Department of Radiology, Michigan State University, East
Lansing, MI USA
| | - Tammy L. Haut Donahue
- Department of Mechanical Engineering, Colorado State
University, Fort Collins, CO USA
| |
Collapse
|
15
|
Fischenich KM, Button KD, DeCamp C, Haut RC, Donahue TLH. Comparison of two models of post-traumatic osteoarthritis; temporal degradation of articular cartilage and menisci. J Orthop Res 2017; 35:486-495. [PMID: 27129040 DOI: 10.1002/jor.23275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/22/2016] [Indexed: 02/04/2023]
Abstract
The objective of this study was to compare longitudinal results from two models of combined anterior cruciate ligament (ACL) and meniscal injury. A modified ACL transection (mACLT) model and a traumatic impact (ACLF) model were used to create an ACL rupture and acute meniscal damage in a Flemish Giant animal model. The animals were euthanized at time points of 4, 8, or 12 weeks. The menisci were assessed for equilibrium and instantaneous compressive modulus, as well as glycosaminoglycan (GAG) coverage. The articular cartilage was mechanically assessed for thickness, matrix modulus, fiber modulus, and permeability. Articular cartilage GAG coverage, fissuring, tidemark integrity, and subchondral bone thickness were measured. Both models resulted in damage indicative of osteoarthritis, including decreased meniscal mechanics and GAG coverage, increased permeability and fissuring of articular cartilage, and decreased GAG coverage. The mACLT model had an early and lasting effect on the menisci mechanics and GAG coverage, while cartilage damage was not significantly affected until 12 weeks. The ACLF model resulted in an earlier change of articular cartilage GAG coverage and fissuring in both the 8 and 12 week groups. The menisci were only significantly affected at the 12 week time point in the ACLF model. We concluded the progression of post traumatic osteoarthritis was dependent on injury modality: a point to be considered in future investigations. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:486-495, 2017.
Collapse
Affiliation(s)
- Kristine M Fischenich
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, 80523, Colorado.,School of Biomedical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, 80523, Colorado
| | - Keith D Button
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Charlie DeCamp
- Small Animal Clinical Sciences, College of Veterinary, Michigan State University, East Lansing, Michigan
| | - Roger C Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Tammy L Haut Donahue
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, 80523, Colorado.,School of Biomedical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, 80523, Colorado
| |
Collapse
|
16
|
Small animal models to understand pathogenesis of osteoarthritis and use of stem cell in cartilage regeneration. Cell Biochem Funct 2017; 35:3-11. [DOI: 10.1002/cbf.3246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/06/2016] [Accepted: 12/04/2016] [Indexed: 01/05/2023]
|
17
|
Holyoak DT, Tian YF, van der Meulen MCH, Singh A. Osteoarthritis: Pathology, Mouse Models, and Nanoparticle Injectable Systems for Targeted Treatment. Ann Biomed Eng 2016; 44:2062-75. [PMID: 27044450 DOI: 10.1007/s10439-016-1600-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/26/2016] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a progressive, degenerative disease of articulating joints that not only affects the elderly, but also involves younger, more active individuals with prolonged participation in high physical-demand activities. Thus, effective therapies that are easy to adopt clinically are critical in limiting the societal burden associated with OA. This review is focused on intra-articular injectable regimens and provides a comprehensive look at existing in vivo models of OA that might be suitable for developing, testing, and finding a cure for OA by intra-articular injections. We first discuss the pathology, molecular mechanisms responsible for the initiation and progression of OA, and challenges associated with disease-specific targeting of OA. We proceed to discuss available animal models of OA and provide a detailed perspective on the use of mouse models in studies of experimental OA. We finally provide a closer look at intra-articular injectable treatments for OA, focusing on biomaterials-based nanoparticles, and provide a comprehensive overview of the various nanometer-size ranges studied.
Collapse
Affiliation(s)
- Derek T Holyoak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853-7501, USA
| | - Ye F Tian
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853-7501, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853-7501, USA.
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853-7501, USA.
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853-7501, USA.
| |
Collapse
|
18
|
Non-invasive mouse models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2015; 23:1627-38. [PMID: 26003950 PMCID: PMC4577460 DOI: 10.1016/j.joca.2015.05.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/20/2015] [Accepted: 05/10/2015] [Indexed: 02/02/2023]
Abstract
Animal models of osteoarthritis (OA) are essential tools for investigating the development of the disease on a more rapid timeline than human OA. Mice are particularly useful due to the plethora of genetically modified or inbred mouse strains available. The majority of available mouse models of OA use a joint injury or other acute insult to initiate joint degeneration, representing post-traumatic osteoarthritis (PTOA). However, no consensus exists on which injury methods are most translatable to human OA. Currently, surgical injury methods are most commonly used for studies of OA in mice; however, these methods may have confounding effects due to the surgical/invasive injury procedure itself, rather than the targeted joint injury. Non-invasive injury methods avoid this complication by mechanically inducing a joint injury externally, without breaking the skin or disrupting the joint. In this regard, non-invasive injury models may be crucial for investigating early adaptive processes initiated at the time of injury, and may be more representative of human OA in which injury is induced mechanically. A small number of non-invasive mouse models of PTOA have been described within the last few years, including intra-articular fracture of tibial subchondral bone, cyclic tibial compression loading of articular cartilage, and anterior cruciate ligament (ACL) rupture via tibial compression overload. This review describes the methods used to induce joint injury in each of these non-invasive models, and presents the findings of studies utilizing these models. Altogether, these non-invasive mouse models represent a unique and important spectrum of animal models for studying different aspects of PTOA.
Collapse
|
19
|
Central defect type partial ACL injury model on goat knees: the effect of infrapatellar fat pad excision. J Orthop Surg Res 2015; 10:137. [PMID: 26338041 PMCID: PMC4558767 DOI: 10.1186/s13018-015-0281-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/25/2015] [Indexed: 01/12/2023] Open
Abstract
Background The mid-substance central defect injury has been used to investigate the primary healing capacity of the anterior cruciate ligament (ACL) in a goat model. The sagittal plane stability on this model has not been confirmed, and possible effects of fat pad excision on healing have not been evaluated. We hypothesize that excising the fat pad tissue results in poorer ligament healing as assessed histologically and decreased tensile strength of the healing ligament. We further hypothesize that the creation of a central defect does not affect sagittal plane knee stability. Methods A mid-substance central defect was created with a 4-mm arthroscopic punch in the ACLs of right knees of all the subjects through a medial mini-arthrotomy. Goats were assigned to groups based on whether the fat pad was preserved (group 1, n = 5) or excised completely (group 2, n = 5). The left knees served as controls in each goat. Histopathology of the defect area along with measurement of type I collagen in one goat from each group were performed at 10th week postoperatively. The remaining knees were evaluated biomechanically at the 12th week, by measuring anterior tibial translation (ATT) of the knee joints at 90° of flexion and testing tensile properties (ultimate tensile load (UTL), ultimate elongation (UE), stiffness (S), failure mode (FM)) of the femur-ACL-tibia complex. Results and discussion Histopathology analysis revealed that the central defect area was fully filled macroscopically and microscopically. However, myxoid degeneration and fibrosis were observed in group 2 and increased collagen type I content was noted in group 2. There were no significant differences within and between groups in terms of ATT values (p = 0.715 and p = 0.149, respectively). There were no significance between or within groups in terms of ultimate tensile load and ultimate elongation; however, group 2 demonstrated greater stiffness than group 1 that was correlated with the fibrotic changes detected microscopically (p = 0.043). Conclusions The central defect type injury model was confirmed to be biomechanically stable in a goat model. Resection of the fat pad was noted to negatively affect defect healing and increase ligament stiffness in the central defect injury model.
Collapse
|
20
|
Nakagawa Y, Sekiya I, Kondo S, Tabuchi T, Ichinose S, Koga H, Tsuji K, Muneta T. Relationship between MRIT1rho value and histological findings of intact and radially incised menisci in microminipigs. J Magn Reson Imaging 2015; 43:434-45. [DOI: 10.1002/jmri.24988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/12/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine; Tokyo Medical and Dental University; Tokyo Japan
| | - Shimpei Kondo
- Department of Joint Surgery and Sports Medicine; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| | | | - Shizuko Ichinose
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University; Tokyo Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
21
|
Leal MF, Astur DC, Debieux P, Arliani GG, Franciozi CES, Loyola LC, Andreoli CV, Smith MC, Pochini ADC, Ejnisman B, Cohen M. Identification of Suitable Reference Genes for Investigating Gene Expression in Anterior Cruciate Ligament Injury by Using Reverse Transcription-Quantitative PCR. PLoS One 2015; 10:e0133323. [PMID: 26192306 PMCID: PMC4507999 DOI: 10.1371/journal.pone.0133323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022] Open
Abstract
The anterior cruciate ligament (ACL) is one of the most frequently injured structures during high-impact sporting activities. Gene expression analysis may be a useful tool for understanding ACL tears and healing failure. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has emerged as an effective method for such studies. However, this technique requires the use of suitable reference genes for data normalization. Here, we evaluated the suitability of six reference genes (18S, ACTB, B2M, GAPDH, HPRT1, and TBP) by using ACL samples of 39 individuals with ACL tears (20 with isolated ACL tears and 19 with ACL tear and combined meniscal injury) and of 13 controls. The stability of the candidate reference genes was determined by using the NormFinder, geNorm, BestKeeper DataAssist, and RefFinder software packages and the comparative ΔCt method. ACTB was the best single reference gene and ACTB+TBP was the best gene pair. The GenEx software showed that the accumulated standard deviation is reduced when a larger number of reference genes is used for gene expression normalization. However, the use of a single reference gene may not be suitable. To identify the optimal combination of reference genes, we evaluated the expression of FN1 and PLOD1. We observed that at least 3 reference genes should be used. ACTB+HPRT1+18S is the best trio for the analyses involving isolated ACL tears and controls. Conversely, ACTB+TBP+18S is the best trio for the analyses involving (1) injured ACL tears and controls, and (2) ACL tears of patients with meniscal tears and controls. Therefore, if the gene expression study aims to compare non-injured ACL, isolated ACL tears and ACL tears from patients with meniscal tear as three independent groups ACTB+TBP+18S+HPRT1 should be used. In conclusion, 3 or more genes should be used as reference genes for analysis of ACL samples of individuals with and without ACL tears.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038–032, São Paulo, SP, Brazil
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, 04023–001, São Paulo, SP, Brazil
- * E-mail:
| | - Diego Costa Astur
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038–032, São Paulo, SP, Brazil
| | - Pedro Debieux
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038–032, São Paulo, SP, Brazil
| | - Gustavo Gonçalves Arliani
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038–032, São Paulo, SP, Brazil
| | | | - Leonor Casilla Loyola
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038–032, São Paulo, SP, Brazil
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, 04023–001, São Paulo, SP, Brazil
| | - Carlos Vicente Andreoli
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038–032, São Paulo, SP, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, 04023–001, São Paulo, SP, Brazil
| | - Alberto de Castro Pochini
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038–032, São Paulo, SP, Brazil
| | - Benno Ejnisman
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038–032, São Paulo, SP, Brazil
| | - Moises Cohen
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038–032, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Efficacy of P188 on lapine meniscus preservation following blunt trauma. J Mech Behav Biomed Mater 2015; 47:57-64. [PMID: 25846264 DOI: 10.1016/j.jmbbm.2015.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 11/22/2022]
Abstract
Traumatic injury to the knee leads to the development of post-traumatic osteoarthritis. The objective of this study was to characterize the effects of a single intra-articular injection of a non-ionic surfactant, Poloxamer 188 (P188), in preservation of meniscal tissue following trauma through maintenance of meniscal glycosaminoglycan (GAG) content and mechanical properties. Flemish Giant rabbits were subjected to a closed knee joint, traumatic compressive impact with the joint constrained to prevent anterior tibial translation. The contralateral limb served as an un-impacted control. Six animals (treated) received an injection of P188 in phosphate buffered saline (PBS) post trauma, and another six animals (sham) received a single injection of PBS to the impacted limb. Histological analyses for GAG was determined 6 weeks post trauma, and functional outcomes were assessed using stress relaxation micro-indentation. The impacted limbs of the sham group demonstrated a significant decrease in meniscal GAG coverage compared to non-impacted limbs (p<0.05). GAG coverage of the impacted P188 treated limbs was not significantly different than contralateral non-impacted limbs in all regions except the medial anterior (p<0.05). No significant changes were documented in mechanics for either the sham or treated groups compared to their respective control limbs. This suggests that a single intra-articular injection of P188 shows promise in prevention of trauma induced GAG loss.
Collapse
|
23
|
Wheatley BB, Fischenich KM, Button KD, Haut RC, Haut Donahue TL. An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading. J Biomech 2015; 48:1454-60. [PMID: 25776872 DOI: 10.1016/j.jbiomech.2015.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/15/2015] [Indexed: 01/13/2023]
Abstract
Inverse finite element (FE) analysis is an effective method to predict material behavior, evaluate mechanical properties, and study differences in biological tissue function. The meniscus plays a key role in load distribution within the knee joint and meniscal degradation is commonly associated with the onset of osteoarthritis. In the current study, a novel transversely isotropic hyper-poro-viscoelastic constitutive formulation was incorporated in a FE model to evaluate changes in meniscal material properties following tibiofemoral joint impact. A non-linear optimization scheme was used to fit the model output to indentation relaxation experimental data. This study is the first to investigate rate of relaxation in healthy versus impacted menisci. Stiffness was found to be decreased (p=0.003), while the rate of tissue relaxation increased (p=0.010) at twelve weeks post impact. Total amount of relaxation, however, did not change in the impacted tissue (p=0.513).
Collapse
Affiliation(s)
- Benjamin B Wheatley
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - Keith D Button
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Roger C Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Tammy L Haut Donahue
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
24
|
Atarod M, Frank CB, Shrive NG. Increased meniscal loading after anterior cruciate ligament transection in vivo: a longitudinal study in sheep. Knee 2015; 22:11-7. [PMID: 25487300 DOI: 10.1016/j.knee.2014.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/25/2014] [Accepted: 10/30/2014] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Meniscal injury has been well documented as a frequent consequence of both acute and chronic ACL deficiency. The purpose of this study was to evaluate the effect of ACL deficiency on meniscal loads in vivo and determine how these loads would change over time after ACL injury. METHODS The in vivo kinematics of the stifle joint of five sheep were measured during normal gait, as well as 4 and 20 weeks after ACL transection. A unique robotic testing platform was then programmed to reproduce all the previously recorded kinematics and the loads carried by medial and lateral menisci during gait were estimated. RESULTS The results demonstrated a significant increase in both medial and lateral meniscal loads 20 weeks following ACL transection, mainly during mid-stance phase of gait (p = 0.007 and p = 0.003, respectively), with interesting inter-subject variability. A moderate correlation (R(2) ≥ 0.5) between in situ meniscal loads and anterior tibial translations was also detected over time after injury, increased translations post injury generally corresponded to larger meniscal loads. CONCLUSION The dramatic increase in meniscal loads long term post ACL transection probably explains the meniscal changes or injuries reported clinically in many chronic ACL-deficient knees.
Collapse
Affiliation(s)
- Mohammad Atarod
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.
| | - Cyril B Frank
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.
| | - Nigel G Shrive
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
25
|
Fischenich KM, Coatney GA, Haverkamp JH, Button KD, DeCamp C, Haut RC, Haut Donahue TL. Evaluation of meniscal mechanics and proteoglycan content in a modified anterior cruciate ligament transection model. J Biomech Eng 2014; 136:1864206. [PMID: 24749144 DOI: 10.1115/1.4027468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/22/2014] [Indexed: 01/14/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) develops as a result of traumatic loading that causes tears of the soft tissues in the knee. A modified transection model, where the anterior cruciate ligament (ACL) and both menisci were transected, was used on skeletally mature Flemish Giant rabbits. Gross morphological assessments, elastic moduli, and glycosaminoglycan (GAG) coverage of the menisci were determined to quantify the amount of tissue damage 12 weeks post injury. This study is one of the first to monitor meniscal changes after inducing combined meniscal and ACL transections. A decrease in elastic moduli as well as a decrease in GAG coverage was seen.
Collapse
|
26
|
Fischenich KM, Button KD, Coatney GA, Fajardo RS, Leikert KM, Haut RC, Haut Donahue TL. Chronic changes in the articular cartilage and meniscus following traumatic impact to the lapine knee. J Biomech 2014; 48:246-53. [PMID: 25523754 DOI: 10.1016/j.jbiomech.2014.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 01/13/2023]
Abstract
The objective of this study was to induce anterior cruciate ligament (ACL) and meniscal damage, via a single tibiofemoral compressive impact, in order to document articular cartilage and meniscal changes post-impact. Tibiofemoral joints of Flemish Giant rabbits were subjected to a single blunt impact that ruptured the ACL and produced acute meniscal damage. Animals were allowed unrestricted cage activity for 12 weeks before euthanasia. India ink analysis of the articular cartilage revealed higher degrees of surface damage on the impacted tibias (p=0.018) and femurs (p<0.0001) compared to controls. Chronic meniscal damage was most prevalent in the medial central and medial posterior regions. Mechanical tests revealed an overall 19.4% increase in tibial plateau cartilage thickness (p=0.026), 34.8% increase in tibial plateau permeability (p=0.054), 40.8% increase in femoral condyle permeability (p=0.029), and 20.1% decrease in femoral condyle matrix modulus (p=0.012) in impacted joints compared to controls. Both instantaneous and equilibrium moduli of the lateral and medial menisci were decreased compared to control (p<0.02). Histological analyses revealed significantly increased presence of fissures in the medial femur (p=0.036). In both meniscus and cartilage there was a significant decrease in GAG coverage for the impacted limbs. Based on these results it is clear that an unattended combined meniscal and ACL injury results in significant changes to the soft tissues in this experimental joint 12 weeks post-injury. Such changes are consistent with a clinical description of mid to late stage PTOA of the knee.
Collapse
Affiliation(s)
- Kristine M Fischenich
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Keith D Button
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Garrett A Coatney
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Ryan S Fajardo
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Kevin M Leikert
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Roger C Haut
- Department of Radiology, Michigan State University, East Lansing, MI, USA; Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Tammy L Haut Donahue
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
27
|
Killian ML, Haut RC, Haut Donahue TL. Acute cell viability and nitric oxide release in lateral menisci following closed-joint knee injury in a lapine model of post-traumatic osteoarthritis. BMC Musculoskelet Disord 2014; 15:297. [PMID: 25192881 PMCID: PMC4246489 DOI: 10.1186/1471-2474-15-297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/27/2014] [Indexed: 01/13/2023] Open
Abstract
Background Traumatic impaction is known to cause acute cell death and macroscopic damage to cartilage and menisci in vitro. The purpose of this study was to investigate cell viability and macroscopic damage of the medial and lateral menisci using an in situ model of traumatic loading. Furthermore, the release of nitric oxide from meniscus, synovium, cartilage, and subchondral bone was also documented. Methods The left limbs of five rabbits were subjected to tibiofemoral impaction resulting in anterior cruciate ligament (ACL) rupture and meniscal damage. Meniscal tear morphology was assessed immediately after trauma and cell viability of the lateral and medial menisci was assessed 24 hrs post-injury. Nitric oxide (NO) released from joint tissues to the media was assayed at 12 and 24 hrs post injury. Results ACL and meniscal tearing resulted from the traumatic closed joint impact. A significant decrease in cell viability was observed in the lateral menisci following traumatic impaction compared to the medial menisci and control limbs. While NO release was greater in the impacted joints, this difference was not statistically significant. Conclusion This is the first study to investigate acute meniscal viability following an in situ traumatic loading event that results in rupture of the ACL. The change in cell viability of the lateral menisci may play a role in the advancement of joint degeneration following traumatic knee joint injury. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-297) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Tammy L Haut Donahue
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO, USA.
| |
Collapse
|
28
|
Brophy RH, Martinez M, Borrelli J, Silva MJ. Effect of combined traumatic impact and radial transection of medial meniscus on knee articular cartilage in a rabbit in vivo model. Arthroscopy 2012; 28:1490-6. [PMID: 22770708 PMCID: PMC9624128 DOI: 10.1016/j.arthro.2012.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to test the hypothesis that combined meniscectomy and traumatic impact accelerate early degeneration of articular cartilage in the knee versus meniscectomy alone. METHODS A previously published in vivo rabbit cartilage impact model was used combined with radial transection of the medial meniscus posterior horn versus meniscal transection alone. Rabbits were killed 3 months after surgery. Quantitative histologic analysis of the articular cartilage proteoglycan depth and glycosaminoglycan (GAG) fraction was performed at the site of impact on the posterior femoral condyle (PFC) and at the distal femoral condyle (DFC) overlying the meniscectomy in the surgical knee and the contralateral control knee. RESULTS The articular cartilage in the knees that underwent isolated meniscectomy did not differ significantly from the contralateral control knees for any measured value. The knees with a combined insult had a lower GAG fraction (P = .03) at the PFC and a greater depth of proteoglycan loss at both the PFC (P = .02) and the DFC (P = .04) versus contralateral controls. Compared with meniscectomy alone, the combined-insult knees had a greater depth of proteoglycan loss at the DFC (P = .005). CONCLUSIONS On the basis of early results using GAG fraction and proteoglycan depth, combined traumatic impact and meniscectomy are more damaging to articular cartilage than meniscectomy alone. CLINICAL RELEVANCE A knee with a combination of meniscal injury and articular cartilage impact may be at particularly high risk for early joint degeneration.
Collapse
Affiliation(s)
- Robert H Brophy
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | |
Collapse
|
29
|
Declercq HA, Forsyth RG, Verbruggen A, Verdonk R, Cornelissen MJ, Verdonk PCM. CD34 and SMA expression of superficial zone cells in the normal and pathological human meniscus. J Orthop Res 2012; 30:800-8. [PMID: 22025365 DOI: 10.1002/jor.21582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 10/06/2011] [Indexed: 02/04/2023]
Abstract
The aim of this study was to evaluate histological changes in torn (0.5-27 weeks after injury) and osteoarthritic (OA) knee menisci versus normal menisci after PAS-AB, SAF-O-FG, and immunostaining for CD34, CD31, and smooth muscle actin (SMA). Cell layers in the superficial zone and the cell density in the deep zone of the menisci were counted. In the superficial zone of normal menisci, cells expressing CD34 were demonstrated. CD34(+) CD31(-) cells were absent in OA menisci and disappeared in torn menisci as a function of time. In contrast, an increase of SMA(+) cells combined with an increase of cell layers was observed in the superficial zone of torn menisci. SMA(+) cells were absent in normal and OA menisci. The predominant tissue type in torn menisci evolved from fibrocartilage-like to fibrous-like tissue as a function of time, whereas in OA menisci it became cartilage-like. The response of the superficial zone was reflected by the decrease of CD34(+) and the increase of SMA(+) cells in torn menisci and the transformation of a fibrous-like into a cartilage-like surface layer in OA menisci. These results potentially illustrate the contribution of CD34(+) cells to the homeostasis of meniscus tissue.
Collapse
Affiliation(s)
- Heidi A Declercq
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Nishimuta JF, Levenston ME. Response of cartilage and meniscus tissue explants to in vitro compressive overload. Osteoarthritis Cartilage 2012; 20:422-429. [PMID: 22289896 PMCID: PMC3384701 DOI: 10.1016/j.joca.2012.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/24/2011] [Accepted: 01/10/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the relative susceptibility of cartilage and meniscus tissues to mechanical injury by applying a single, controlled overload and observing cellular, biochemical, and mechanical changes. DESIGN Cartilage and meniscus tissue explants in radial confinement were subjected to a range of injury by indenting to 40% strain at three different strain rates: 0.5%/s (slow), 5%/s (medium), or 50%/s (fast). Following injury, samples were cultured for either 1 or 9 days. Explants were assayed for cell metabolic activity, water content, and sulfated glycosaminoglycan (sGAG) content. Mechanical properties of explants were determined in torsional shear and unconfined compression. Conditioned medium was assayed for sGAG and lactate dehydrogenase (LDH) release. RESULTS Peak injury force increased with strain rate but both tissues displayed little to no macroscopic damage. Cell metabolism was lowest in medium and fast groups on day 1. Cell lysis increased with peak injury force and loading rate in both tissues. In contrast, sGAG content and release did not significantly vary with loading rate. Additionally, mechanical properties did not significantly vary with loading rate in either tissue. CONCLUSION By use of a custom confinement chamber, large peak forces were obtained without macroscopic destruction of the explants. At the loads achieved in this studied, cell damage was induced without detectable physical or compositional changes. These results indicate that sub-failure injury can induce biologic damage that may not be readily detected and could be an early event in osteoarthritis genesis.
Collapse
Affiliation(s)
- James F. Nishimuta
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Marc E. Levenston
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
31
|
Frank CB, Beveridge JE, Huebner KD, Heard BJ, Tapper JE, O'Brien EJO, Shrive NG. Complete ACL/MCL deficiency induces variable degrees of instability in sheep with specific kinematic abnormalities correlating with degrees of early osteoarthritis. J Orthop Res 2012; 30:384-92. [PMID: 21919045 DOI: 10.1002/jor.21549] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 08/22/2011] [Indexed: 02/04/2023]
Abstract
People are not equally disabled by combined anterior cruciate ligament (ACL)/medial collateral ligament (MCL) injuries, nor do they all develop osteoarthritis (OA). Although biological/biomechanical causes are not clear, some association presumably exists between joint instability and OA development. We hypothesized that degree of OA development following standardized complete ACL/MCL injuries will vary directly with the degree of biomechanical abnormality between individuals. Three groups of sheep were used to test the hypothesis: 17 normal, 9 ACL/MCL transected, and 7 sham animals. Normal joints were assessed morphologically while sham and experimental animals had gait assessment pre- and at 4 and 20 weeks post-surgery, with cartilage and bone changes being mapped and graded at sacrifice at 20 weeks. Sham joints were morphologically normal and had only one minor kinematic change at 20 weeks. Although variable, ACL/MCL deficient animals showed significant kinematic abnormalities in 4/6 degrees of freedom (DOFs), as well as cartilage/bone damage by 20 weeks (p < 0.05). Linear regression analysis revealed that changes in medial-lateral (ML) translation were related to the current level of joint degradation as represented by total gross OA score (p = 0.0044, R(2) = 0.71) in the ACL/MCL transected group. Even identical ACL/MCL injuries result in inter-animal variations in instability and OA, however significant kinematic abnormalities in ML translation do relate to early OA in sheep.
Collapse
Affiliation(s)
- Cyril B Frank
- The McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | | | |
Collapse
|
32
|
Isaac DI, Meyer EG, Haut RC. Development of a Traumatic Anterior Cruciate Ligament and Meniscal Rupture Model With a Pilot In Vivo Study. J Biomech Eng 2010; 132:064501. [DOI: 10.1115/1.4001111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The current study describes the development of a small animal, closed-joint model of traumatic anterior cruciate ligament (ACL) and meniscal rupture. This model can be used in future studies to investigate the roles of these acute damages on the long-term health of an injured knee joint. Forty-two Flemish Giant rabbits received an insult to the left tibiofemoral joint ex vivo in order to document optimal energy and joint orientation needed to generate ACL and meniscal rupture, without gross fracture of bone. Impact energies ranged from 10 J to 22 J, and joint flexion angle ranged from 60 deg to 90 deg. Three in vivo animals were impacted at 13 J with the knee flexed at 90 deg, as this was determined to be the optimal load and joint orientation for ACL and meniscal ruptures, and sacrificed at 12 weeks. Impact data from the ex vivo group revealed that 13 J of dropped-mass energy, generating approximately 1100 N of load on the knee, would cause ACL and meniscal ruptures, without gross bone fracture. Acute damage to the lateral and medial menisci was documented in numerous ex vivo specimens, with isolated lateral meniscal tears being more frequent than isolated medial tears in other cases. The in vivo animals showed no signs of ill health or other physical complications. At 12 week post-trauma these animals displayed marked degeneration of the traumatized joint including synovitis, cartilage erosion, and the formation of peripheral osteophytes. Histological microcracks at the calcified cartilage-subchondral bone interface were also evident in histological sections of these animals. A closed-joint model of traumatic ACL and meniscal rupture was produced, without gross bone fracture, and a pilot, in vivo study showed progressive joint degeneration without any other noticeable physical impairments of the animals over 12 weeks. This closed-joint, traumatic injury model may be useful in future experimental studies of joint disease and various intervention strategies.
Collapse
Affiliation(s)
- Daniel I. Isaac
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Eric G. Meyer
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Roger C. Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|