1
|
Zhang L, Voss JG, Soulakova JN, St Pierre Schneider B. Effects of hypobaric hypoxia during a simulated ultra-long-haul flight on inflammation and regeneration after muscle trauma and muscle trauma-hemorrhagic shock. Muscle Nerve 2023; 67:320-329. [PMID: 36747325 DOI: 10.1002/mus.27795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
INTRODUCTION/AIMS Because wounded warfighters or trauma victims may receive en route care to the closest medical facility via airplane transport, we investigated the effects of extended mild hypobaric hypoxia (HB), the environmental milieu of most airplanes, on inflammation and regeneration after muscle trauma or monotrauma (MT) and muscle trauma-hemorrhagic shock or polytrauma (PT). METHODS Male C57BL/6N mice were assigned to one of six groups pertaining to injury (control/uninjured, MT, and PT) and atmospheric pressure exposure (HB and normobaric normoxia, NB). Body mass, blood and muscle leukocyte number by flow cytometry, immunohistochemistry, or both, and the muscle relative mRNA level of selected genes involved in inflammation and muscle regeneration were examined at ~1.7, 4, 8, and 14 days post trauma (dpt). At 14 dpt, the proportion of smaller- and larger-sized myofibers at the regenerating site of MT mice was determined. RESULTS Greater body mass loss, an increased number of blood and muscle leukocytes, and differential muscle relative mRNA levels were observed in MT and PT groups compared to controls. The MT+HB or PT+HB mice demonstrated more body mass loss and altered relative mRNA level than the corresponding NB mice. Additionally, a subgroup of MT+HB mice demonstrated a greater proportion of smaller myofibers (250 to 500 μm2 ) than MT+NB mice at 14 dpt. DISCUSSION HB exposure after muscle trauma alone may prolong regeneration. Following HB exposure, therapies that promote oxygenation may be needed during this muscle recovery.
Collapse
Affiliation(s)
- Liyuan Zhang
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| | - Joachim G Voss
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, Ohio, USA
| | - Julia N Soulakova
- Department of Population Health Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | | |
Collapse
|
2
|
Maddry JK, Arana AA, Perez CA, Medellin KL, Paciocco JA, Mora AG, Holder WG, Davis WT, Herson PS, Bebarta VS. Influence of Time to Transport to a Higher Level Facility on the Clinical Outcomes of US Combat Casualties with TBI: A Multicenter 7-Year Study. Mil Med 2021; 185:e138-e145. [PMID: 31334769 DOI: 10.1093/milmed/usz178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/30/2019] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a leading cause of death and disability worldwide and is associated with mortality rates as high as 30%. Patients with TBI are at high risk for secondary injury and need to be transported to definitive care expeditiously. However, the physiologic effects of aeromedical evacuation are not well understood and may compound these risks. Combat TBI patients may benefit from delayed aeromedical evacuation. The goal of this study was to evaluate the impact of transport timing out of theater via Critical Care Air Transport Teams (CCATT) to a higher level facility on the clinical outcomes of combat casualties with TBI. MATERIALS AND METHODS We performed a retrospective review of patients with TBI who were evacuated out of theater by CCATT from January 2007 to May 2014. Data abstractors collected flight information, vital signs, procedures, in-flight assessments, and outcomes. Time to transport was defined as the time from injury to CCATT evacuation out of combat theater. We calculated descriptive statistics and constructed regression models to determine the association between time to transport and clinical outcomes. This study was approved by the U.S. Air Force 59th Medical Wing Institutional Review Board. RESULTS We analyzed the records of 438 patients evacuated out of theater via CCATT and categorized them into three groups: patients who were transported in one day or less (n = 165), two days (n = 163), and three or more days (n = 110). We used logistic regression models to compare outcomes among patients who were evacuated in two days or three or more days to those who were transported within one day while adjusting for demographics, injury severity, and injury type. Patients who were evacuated in two days or three or more days had 50% lower odds of being discharged on a ventilator and were twice as likely to return to duty or be discharged home than those who were evacuated within one day. Additionally, patients transported in three or more days were 70% less likely to be ventilated at discharge with a GCS of 8 or lower and had 30% lower odds of mortality than those transported within one day. CONCLUSIONS In patients with moderate to severe TBI, a delay in aeromedical evacuation out of the combat theater was associated with improved mortality rates and a higher likelihood of discharge to home and return to duty dispositions. This study is correlational in nature and focused on CCATT transports from Role III to Role IV facilities; as such, care must be taken in interpreting our findings and future studies are needed to establish a causal link between delayed evacuation and improved discharge disposition. Our study suggests that delaying aeromedical evacuation of TBI patients when feasible may confer benefit.
Collapse
Affiliation(s)
- Joseph K Maddry
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, Fort Sam Houston, TX 78234
| | - Allyson A Arana
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, Fort Sam Houston, TX 78234
| | - Crystal A Perez
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, Fort Sam Houston, TX 78234
| | - Kimberly L Medellin
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, Fort Sam Houston, TX 78234
| | - Joni A Paciocco
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, Fort Sam Houston, TX 78234
| | - Alejandra G Mora
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, Fort Sam Houston, TX 78234
| | - William G Holder
- Department of Emergency Medicine, Brooke Army Medical Center, 3551 Roger Brooke Dr, Fort Sam Houston, TX 78234
| | - William T Davis
- Department of Emergency Medicine, Brooke Army Medical Center, 3551 Roger Brooke Dr, Fort Sam Houston, TX 78234
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado School of Medicine, 12401 E. 17th Ave 7th Floor, Aurora, CO 80045
| | - Vikhyat S Bebarta
- 59th MDW, U.S. Air Force En route Care Research Center, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Bldg. 3610, Fort Sam Houston, TX 78234.,Department of Emergency Medicine, University of Colorado School of Medicine, 12401 E. 17th Ave 7th Floor, Aurora, CO 80045
| |
Collapse
|
3
|
Acute Hypobaric and Hypoxic Preconditioning Reduces Myocardial Ischemia-Reperfusion Injury in Rats. Cardiol Res Pract 2021; 2021:6617374. [PMID: 33815836 PMCID: PMC7990552 DOI: 10.1155/2021/6617374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background Chronic and/or intermittent exposure to hypobaric hypoxia reportedly exerts cardioprotective effects against ischemia-reperfusion injury. However, few studies have focused on the cardioprotective effects of acute and/or short-term hypobaric and hypoxic exposures. This study investigated the effects of acute hypobaric hypoxia on myocardial ischemia-reperfusion injury. Materials and Methods Rats were assigned to groups receiving normobaric normoxia (NN group), hypobaric hypoxia (HH group), or normobaric hypoxia (NH group). HH group rats were exposed to 60.8 kPa and 12.6% fraction of inspired oxygen in a hypobaric chamber for 6 h. NH group rats were exposed to hypoxic conditions under normal pressure. After each exposure, 30 min of myocardial ischemia was followed by 60 min of reperfusion. Cardiac function and infarct size were determined after reperfusion. Expression of hypoxia-inducible factor 1 alpha (HIF1α) was also measured. Results Cardiac function was better preserved in the HH and NH groups than in the NN group (p < 0.01 each). Median infarct size/area at risk was significantly lower in the HH group (50%, interquartile range [IQR] 48–54%; p < 0.01 vs. NN group) and NH group (45%, IQR 36–50%; p < 0.01 vs. NN group) than in the NN group (72%, IQR 69–75%). HIF1α expression was significantly higher in the HH group (p < 0.05 vs. NN group) and NH group (p < 0.01 vs. NN group) than in the NN group. Conclusions Exposure to acute and/or short-term hypobaric and hypoxic conditions might exert cardioprotective effects against myocardial ischemia-reperfusion injury via HIF1α modulation.
Collapse
|
4
|
Maddry JK, Mora AG, Perez CA, Reeves LK, Paciocco JA, Clemons MA, Sheean A, Kester NM, Bebarta VS. Characterization of Long-range Aeromedical Transport and Its Relationship to the Development of Traumatic Extremity Compartment Syndrome: A 7-year, Retrospective Study. Mil Med 2021; 187:e224-e231. [PMID: 33433584 DOI: 10.1093/milmed/usaa462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/23/2020] [Accepted: 01/08/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Military aeromedical transport evacuates critically injured patients are for definitive care, including patients with or at risk for developing traumatic compartment syndrome of the extremities (tCSoE). Compartment pressure changes of the extremities have not been determined to be associated with factors inherent to aeromedical transport in animal models, but the influence of aeromedical evacuation (AE) transport on the timing of tCSoE development has not been studied in humans. Using a registry-based methodology, this study sought to characterize the temporal features of lower extremity compartment syndrome relative to the timing of transcontinental AE. With this approach, this study aims to inform practice in guidelines relating to the timing and possible effects of long-distance AE and the development of lower extremity compartment syndrome. Using patient care records, we sought to characterize the temporal features of tCSoE diagnosis relative to long-range aeromedical transport. In doing so, we aim to inform practice in guidelines relating to the timing and risks of long-range AE and postulate whether there is an ideal time to transport patients who are at risk for or with tCSoE. METHODS We performed a retrospective record review of patients with a diagnosis of tCSoE who were evacuated out of theater from January 2007 to May 2014 via aeromedical transport. Data abstractors collected flight information, laboratory values, vital signs, procedures, in-flight assessments, and outcomes. We used the duration of time from injury to arrival at Landstuhl Regional Medical Center (LRMC) to represent time to transport. We compared groups based on time of tCSoE (inclusive of upper and lower extremity) diagnosis relative to injury day and time of transport (preflight versus postflight). We used descriptive statistics and multivariable regression models to determine the associations between time to transport, time to tCSoE diagnosis, and outcomes. RESULTS Within our study window, 238 patients had documentation of tCSoE. We found that 47% of patients with tCSoE were diagnosed preflight and 53% were diagnosed postflight. Over 90% in both groups developed tCSoE within 48 hours of injury; the time to diagnosis was similar for casualties diagnosed pre- and postflight (P = .65). There was no association between time to arrival at LRMC and day of tCSoE diagnosis (risk ratio, 1.06; 95% CI, 0.96-1.16). CONCLUSION The timing of tCSoE diagnosis is not associated with the timing of transport; therefore, AE likely does not influence the development of tCSoE.
Collapse
Affiliation(s)
- Joseph K Maddry
- Air Force 59th MDW/ST - En Route Care Research Center, JBSA Ft Sam Houston, TX 78234, USA.,Department of Emergency Medicine, Brooke Army Medical Center, Ft Sam Houston, TX 78234, USA
| | - Alejandra G Mora
- Air Force 59th MDW/ST - En Route Care Research Center, JBSA Ft Sam Houston, TX 78234, USA
| | - Crystal A Perez
- Air Force 59th MDW/ST - En Route Care Research Center, JBSA Ft Sam Houston, TX 78234, USA
| | - Lauren K Reeves
- Air Force 59th MDW/ST - En Route Care Research Center, JBSA Ft Sam Houston, TX 78234, USA
| | - Joni A Paciocco
- Department of Emergency Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Melissa A Clemons
- Air Force 59th MDW/ST - En Route Care Research Center, JBSA Ft Sam Houston, TX 78234, USA
| | - Andrew Sheean
- Department of Orthopedic Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX 78234, USA
| | - Nurani M Kester
- Department of Emergency Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Vikhyat S Bebarta
- Center for COMBAT Research, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Evaluation with endothelial nitric oxide synthase (eNOS) immunoreactivity of the protective role of astaxanthin on hepatorenal injury of remote organs caused by ischaemia reperfusion of the lower extremities. GASTROENTEROLOGY REVIEW 2019; 15:161-172. [PMID: 32550950 PMCID: PMC7294969 DOI: 10.5114/pg.2019.88620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
Introduction Ischemia and following reperfusion triggers local and systemic damage with the involvement of free oxygen radicals and inflammatory mediators. Although blood flow saves extremity from necrosis,multi organ dysfunction may progress and cause death of the patient. Aim The study aims to examine the effect of astaxanthin (AST) on the prevention of remote tissue injury resulting from lower extremity ischaemia–reperfusion (I/R). To elucidate the potential hepatoprotective and renoprotective effects of AST, in addition to histopathological findings, the intrahepatic and intrarenal kinetics of endothelial nitric oxide synthase (eNOS) during I/R were determined by using the immunohistochemical method. Material and methods Twenty-eight male Wistar albino rats were divided into four groups. For the control group, only the anaesthesia procedure (2 h) was conducted without I/R. In the I/R group, 2 h of reperfusion was conducted following ischaemia under anaesthesia. For the I/R group + AST, 7 days prior to ischaemia, 125 mg/kg AST was given with gavage, and 2 h of ischaemia and 2 h of reperfusion were conducted under anaesthesia. Following necropsy, liver and kidney tissue samples were fixed in 10% buffered formalin for 48 h for histopathological and immunohistochemical investigation. Results The histological analysis revealed that severe I/R hepatorenal injury such as inflammatory cell infiltration, dilatation in sinusoids and lumen of tubuli, congestion in glomerular capillaries, degeneration in hepatocyte and epithelial cells of tubuli, and necrosis was ameliorated by AST. Immunohistochemical studies showed that the I/R-induced elevation in eNOS expression was reduced by AST treatment. Conclusions In the case of acute lower extremity I/R, AST decreased the ischaemic injury in liver and renal tissues by protecting the microcirculation and providing a cytoprotective effect with vasodilatation.
Collapse
|
6
|
Moore SE, Voss JG, St Pierre Schneider B. 17β-estradiol alters mRNA co-expression after murine muscle injury and mild hypobaria. Exp Biol Med (Maywood) 2019; 244:1454-1462. [PMID: 31533466 DOI: 10.1177/1535370219877360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here, we assessed the effects of 17β-estradiol exposure on mRNA co-expression patterns of muscle tissue during recovery in a closed muscle crush injury and hypobaria exposure murine model. Eighteen ovariectomized placebo-treated and 18 ovariectomized 17β-estradiol-treated female mice underwent closed muscle crush injury and hypobaric simulated flight. The mice recovered for 32, 96, or 192 h, and then were euthanized. Their harvested injured lateral gastrocnemius muscles underwent microarray analysis. We used weighted gene co-expression network analysis to construct a co-expression network for the control mice, and then applied the same network to the estrogen-treated mice. We compared the relationships between co-expression in gene modules over time between the two experimental groups. Enriched functional cluster analyses of significant co-expression network modules document a variety of different pathways of interest. Some of the functional cluster enrichments within several of the significantly correlated modules are related to the formation and function of microtubules. Our findings demonstrate that following a closed muscle crush injury in a murine model, the presence of 17β-estradiol alters mRNA co-expression patterns over time. It appears that estrogen promotes the expression of mRNA related to microtubule activity within the cytoskeleton of myofibers and in movement of organelles and receptors. Further study is needed, but the enrichment of these microtubule-related pathways may be integral in the muscle tissue regeneration process, and thus suggests that the presence of estrogen may promote muscle recovery through the work of the microtubules. Impact statement This study uses a murine model to address the clinical situation of transporting soldiers or civilians who have sustained skeletal muscle trauma by air. Our findings show that crush-injured muscle tissue of ovariectomized, 17β-estradiol-treated mice exposed to mild hypobaric hypoxia exhibited mRNA co-expression patterns among pathways associated with microtubule-dependent processes. Palmitoylation and other pathways necessary for movement of estrogen receptors to the cell membrane were also differentially enriched in the estrogen-treated mice. These first findings reframe the discussion regarding estrogen effects during muscle recovery from an inflammation-oriented inquiry to that of a structural, cytoskeletal inquiry and support additional research to understand the non-inflammation-related influences of estrogen during muscle recovery. Also, these results may suggest a role for estrogen or estrogen-like substances to treat muscle trauma.
Collapse
Affiliation(s)
- Scott Emory Moore
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joachim G Voss
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
7
|
Oyster N, Witt M, Gharaibeh B, Poddar M, Schneppendahl J, Huard J. Characterization of a compartment syndrome-like injury model. Muscle Nerve 2015; 51:750-8. [PMID: 25242666 DOI: 10.1002/mus.24461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/23/2014] [Accepted: 09/17/2014] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Acute compartment syndrome (CS) is caused by an elevation of pressure within a muscular compartment that can be caused by numerous factors, including blunt trauma. In this study, we characterized a rodent model of CS-like injury. METHODS Forty male athymic rats received a standardized injury of ischemia and compression to their hindlimbs, while the intracompartmental pressure (ICP) was measured using an implantable transmitter. Tetanic muscle function was evaluated, and histology was performed on the tibialis anterior (TA) muscle. RESULTS ICPs were held at 260.70 ± 2.70 mm Hg during injury. Injured muscles recovered 59% of their total function 4 weeks after injury, and histology showed high levels of edema, inflammation (CD68(+) ), angiogenesis (CD31(+) ), and fibrosis within 72 hours after injury. CONCLUSIONS We describe a novel CS-like injury model and a novel method to measure ICP, which could potentially be used to develop innovative therapies to manage CS injury in patients.
Collapse
Affiliation(s)
- Nick Oyster
- Stem Cell Research Center, University of Pittsburgh, Suite 206, Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania, 15219, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The medical community is actively engaged in research to provide the highest level of evidence to support clinical practice. The care of wounded warriors creates unique challenges, and conducting research that provides evidence for clinical practice is important to outcomes in this patient population. When the current wars began, much debate centered on the best way to care for wounded warriors. To address these concerns, we use a MythBusters format, based on the popular television show, to describe how recent research has dispelled some earlier misconceptions and clarify how clinical practice has been changed. In addition, we assess the progress that has been made on addressing the original prioritized research objectives of the first Extremity War Injuries symposium.
Collapse
|
9
|
Poloxamer-188 Reduces Muscular Edema After Tourniquet-Induced Ischemia-Reperfusion Injury in Rats. ACTA ACUST UNITED AC 2011; 70:1192-7. [DOI: 10.1097/ta.0b013e318217879a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|