1
|
Murata K, Murao A, Tan C, Wang P, Aziz M. B-1a cells scavenge NETs to attenuate sepsis. J Leukoc Biol 2024; 116:632-643. [PMID: 38484156 PMCID: PMC11367732 DOI: 10.1093/jleuko/qiae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 09/03/2024] Open
Abstract
B-1a cells, a regulatory subset of B lymphocytes, produce natural IgM and interleukin-10. Neutrophil extracellular traps (NETs) play a crucial role in pathogen defense, but their excessive formation during sepsis can cause further inflammation and tissue damage. In sepsis, extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released to induce NET formation. We hypothesize that B-1a cells clear NETs to prevent sepsis-induced injury. Sepsis in mice was induced by injecting 1 × 107 and 5 × 107 colony-forming units of Escherichia coli intraperitoneally. After 4 and 20 h, we assessed the number of B-1a cells in the peritoneal cavity using flow cytometry. Our results showed that the number of peritoneal B-1a cells was significantly decreased in E. coli sepsis mice. Importantly, replenishing B-1a cells via intraperitoneal injection in sepsis mice significantly decreased NETs in peritoneal neutrophils. We also observed a decrease in serum inflammation and injury markers and a significant increase in the overall survival rate in B-1a cell-treated septic mice. To understand the mechanism, we cocultured bone marrow-derived neutrophils with peritoneal B-1a cells in a contact or noncontact condition using an insert and stimulated them with eCIRP. After 4 h, we found that eCIRP significantly increased NET formation in bone marrow-derived neutrophils. Interestingly, we observed that B-1a cells inhibited NETs by 67% in a contact-dependent manner. Surprisingly, when B-1a cells were cultured in inserts, there was no significant decrease in NET formation, suggesting that direct cell-to-cell contact is crucial for this inhibitory effect. We further determined that B-1a cells promoted NET phagocytosis, and this was mediated through natural IgM, as blocking the IgM receptor attenuated the engulfment of NETs by B-1a cells. Finally, we identified that following their engulfment, NETs were localized into the lysosomal compartment for lysis. Thus, our study suggests that B-1a cells decrease NET content in eCIRP-treated neutrophils and E. coli sepsis mice.
Collapse
Affiliation(s)
- Kensuke Murata
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
| | - Chuyi Tan
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY 11030, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY 11030, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY 11030, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY 11030, United States
| |
Collapse
|
2
|
Chen X, Su S, Yan Y, Yin L, Liu L. Anti- Pseudomonas aeruginosa activity of natural antimicrobial peptides when used alone or in combination with antibiotics. Front Microbiol 2023; 14:1239540. [PMID: 37731929 PMCID: PMC10508351 DOI: 10.3389/fmicb.2023.1239540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
The World Health Organization has recently published a list of 12 drug-resistant bacteria that posed a significant threat to human health, and Pseudomonas aeruginosa (P. aeruginosa) was among them. In China, P. aeruginosa is a common pathogen in hospital acquired pneumonia, accounting for 16.9-22.0%. It is a ubiquitous opportunistic pathogen that can infect individuals with weakened immune systems, leading to hospital-acquired acute and systemic infections. The excessive use of antibiotics has led to the development of various mechanisms in P. aeruginosa to resist conventional drugs. Thus, there is an emergence of multidrug-resistant strains, posing a major challenge to conventional antibiotics and therapeutic approaches. Antimicrobial peptides are an integral component of host defense and have been found in many living organisms. Most antimicrobial peptides are characterized by negligible host toxicity and low resistance rates, making them become promising for use as antimicrobial products. This review particularly focuses on summarizing the inhibitory activity of natural antimicrobial peptides against P. aeruginosa planktonic cells and biofilms, as well as the drug interactions when these peptides used in combination with conventional antibiotics. Moreover, the underlying mechanism of these antimicrobial peptides against P. aeruginosa strains was mainly related to destroy the membrane structure through interacting with LPS or increasing ROS levels, or targeting cellular components, leaded to cell lysis. Hopefully, this analysis will provide valuable experimental data on developing novel compounds to combat P. aeruginosa.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Shan Su
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yan Yan
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Limei Yin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Our Experience over 20 Years: Antimicrobial Peptides against Gram Positives, Gram Negatives, and Fungi. Pharmaceutics 2022; 15:pharmaceutics15010040. [PMID: 36678669 PMCID: PMC9862542 DOI: 10.3390/pharmaceutics15010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance is rapidly increasing, and new anti-infective therapies are urgently needed. In this regard, antimicrobial peptides (AMPs) may represent potential candidates for the treatment of infections caused by multiresistant microorganisms. In this narrative review, we reported the experience of our research group over 20 years. We described the AMPs we evaluated against Gram-positive, Gram-negative, and fungi. In conclusion, our experience shows that AMPs can be a key option for treating multiresistant infections and overcoming resistance mechanisms. The combination of AMPs allows antibiotics and antifungals that are no longer effective to exploit the synergistic effect by restoring their efficacy. A current limitation includes poor data on human patients, the cost of some AMPs, and their safety, which is why studies on humans are needed as soon as possible.
Collapse
|
4
|
Harriett AJ, Esher Righi S, Lilly EA, Fidel P, Noverr MC. Efficacy of Candida dubliniensis and Fungal β-Glucans in Inducing Trained Innate Immune Protection Against Inducers of Sepsis. Front Cell Infect Microbiol 2022; 12:898030. [PMID: 35770067 PMCID: PMC9234138 DOI: 10.3389/fcimb.2022.898030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Fungal-bacterial intra-abdominal infections (IAI) can lead to sepsis with significant morbidity and mortality. We have established a murine model of Candida albicans (Ca) and Staphylococcus aureus (Sa) IAI that results in acute lethal sepsis. Prior intraperitoneal or intravenous inoculation with low virulence Candida dubliniensis (Cd) confers high level protection against lethal Ca/Sa IAI and sepsis. Protection via Cd immunization is associated with decreased pro-inflammatory cytokines and mediated by Gr-1+ putative myeloid-derived suppressor cells (MDSCs) representing a novel form of trained innate immunity (TII). The objective of these studies was to determine the extent of Cd-mediated TII against sepsis of broad origin and explore the potential of fungal cell wall components as abiotic immunogen alternatives to induce TII, including zymosan depleted of TLR2 activity (d-zymosan), or purified preparations of β-glucan. Immunized mice were challenged 14 days post-immunization with a lethal array of live or abiotic inducers of sepsis, including Ca/Sa, Ca/Escherichia coli (Ca/Ec), LPS or untreated zymosan. Results showed that live Cd immunization was protective against sepsis induced by Ca/Ec and zymosan, but not LPS. Similar to protection against Ca/Sa, survival was dependent on Gr-1+ cells with no role for macrophages. Among the fungal cell wall compounds as immunogens, immunization with d-zymosan and an alkali-treated form of β-glucan also resulted in significant protection against sepsis induced by Ca/Sa or Ca/Ec, but not LPS sepsis. Again, there was a strong dependence on Gr-1+ cells for protection with one exception, an added role for macrophages in the case of protection induced by alkali-treated β-glucan. Overall, these results demonstrate that immunization with Cd as well as abiotic fungal cell components are capable of Gr-1+ cell-mediated trained innate immune protection against sepsis of broad microbial origin. In addition, abiotic β-glucans represent potential alternatives to live Cd for protection against lethal polymicrobial sepsis.
Collapse
Affiliation(s)
- Amanda J. Harriett
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shannon Esher Righi
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Elizabeth A. Lilly
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Paul Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, United States
| | - Mairi C. Noverr
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Mairi C. Noverr,
| |
Collapse
|
5
|
Ciandrini E, Morroni G, Cirioni O, Kamysz W, Kamysz E, Brescini L, Baffone W, Campana R. Synergistic combinations of antimicrobial peptides against biofilms of methicillin-resistant Staphylococcus aureus (MRSA) on polystyrene and medical devices. J Glob Antimicrob Resist 2019; 21:203-210. [PMID: 31678322 DOI: 10.1016/j.jgar.2019.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Antimicrobial research is being focused to look for more effective therapeutics against antibiotic-resistant infections such as those caused by methicillin-resistant Staphylococcus aureus (MRSA). In this regard, antimicrobial peptides (AMPs) appear to be a promising solution. The aim of the present study was to investigate the potential activity of temporin A, citropin 1.1, CA(1-7)M(2-9)NH2 and Pal-KGK-NH2 in synergistic activity against MRSA biofilms developed on polystyrene surface (PSS) and central venous catheter (CVC). METHODS The study was subdivided into distinct phases to assess the ability of AMPs to inhibit biofilm formation, to identify possible synergy between AMPs, and to eradicate preformed biofilms on PSS and CVC using AMPs alone or in combination. RESULTS Activity of the AMPs was particularly evident in the inhibition of biofilm formation on PSS and CVC, whilst the eradication of preformed biofilms was more difficult and was reached only after 24h of contact. The synergistic activity of AMP combinations, selected by their fractional inhibitory concentration index (FICI), led to an improvement in the performance of all of the molecules in the removal of different biofilms. CONCLUSION Overall, AMPs could represent the next generation of antimicrobial agents for a prophylactic or therapeutic tool to control biofilms of antibiotic-resistant bacteria and/or biofilm-associated infections on different medical devices.
Collapse
Affiliation(s)
- Eleonora Ciandrini
- Department of Biomolecular Science, Division of Toxicological, Hygiene and Environmental Science, University of Urbino Carlo Bo, Via S. Chiara 27, 61029 Urbino, Italy
| | - Gianluca Morroni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Wojciech Kamysz
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Lucia Brescini
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Wally Baffone
- Department of Biomolecular Science, Division of Toxicological, Hygiene and Environmental Science, University of Urbino Carlo Bo, Via S. Chiara 27, 61029 Urbino, Italy
| | - Raffaella Campana
- Department of Biomolecular Science, Division of Toxicological, Hygiene and Environmental Science, University of Urbino Carlo Bo, Via S. Chiara 27, 61029 Urbino, Italy.
| |
Collapse
|
6
|
Xu X, Lai R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 2015; 115:1760-846. [PMID: 25594509 DOI: 10.1021/cr4006704] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xueqing Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China
| | | |
Collapse
|
7
|
Bowie JH, Separovic F, Tyler MJ. Host-defense peptides of Australian anurans. Part 2. Structure, activity, mechanism of action, and evolutionary significance. Peptides 2012; 37:174-88. [PMID: 22771617 DOI: 10.1016/j.peptides.2012.06.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 01/01/2023]
Abstract
A previous review summarized research prior to 2004 carried out on the bioactive host-defense peptides contained in the skin secretions of Australian anurans (frogs and toads). This review covers the extension of that research from 2004 to 2012, and includes membrane-active peptides (including antibacterial, anticancer, antifungal and antiviral peptides) together with the mechanisms by which these peptides interact with model membranes, peptides that may be classified as "neuropeptides" (including smooth muscle active peptides, opioids and immunomodulators) and peptides which inhibit the formation of nitric oxide from neuronal nitric oxide synthase. The review discusses the outcome of cDNA sequencing of signal-spacer-active peptides from an evolutionary viewpoint, and also lists those peptides for which activities have not been found to this time.
Collapse
Affiliation(s)
- John H Bowie
- Department of Chemistry, School of Chemistry and Physics, The University of Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|