1
|
Ikeno Y, Ghincea CV, Roda GF, Cheng L, Aftab M, Meng X, Weyant MJ, Cleveland JC, Fullerton DA, Reece TB. Direct and indirect activation of the adenosine triphosphate-sensitive potassium channel to induce spinal cord ischemic metabolic tolerance. J Thorac Cardiovasc Surg 2023; 165:e90-e99. [PMID: 34763893 DOI: 10.1016/j.jtcvs.2021.08.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The mitochondrial adenosine triphosphate-sensitive potassium channel is central to pharmacologically induced tolerance to spinal cord injury. We hypothesized that both direct and nitric oxide-dependent indirect activation of the adenosine triphosphate-sensitive potassium channel contribute to the induction of ischemic metabolic tolerance. METHODS Spinal cord injury was induced in adult male C57BL/6 mice through 7 minutes of thoracic aortic crossclamping. Pretreatment consisted of intraperitoneal injection 3 consecutive days before injury. Experimental groups were sham (no pretreatment or ischemia, n = 10), spinal cord injury control (pretreatment with normal saline, n = 27), Nicorandil 1.0 mg/kg (direct and indirect adenosine triphosphate-sensitive potassium channel opener, n = 20), Nicorandil 1 mg/kg + carboxy-PTIO 1 mg/kg (nitric oxide scavenger, n = 21), carboxy-PTIO (n = 12), diazoxide 5 mg/kg (selective direct adenosine triphosphate-sensitive potassium channel opener, n = 25), and DZ 5 mg/kg+ carboxy-PTIO 1 mg/kg, carboxy-PTIO (n = 23). Limb motor function was assessed using the Basso Mouse Score (0-9) at 12-hour intervals for 48 hours after ischemia. RESULTS Motor function was significantly preserved at all time points after ischemia in the Nicorandil pretreatment group compared with ischemic control. The addition of carboxy-PTIO partially attenuated Nicorandil's motor-preserving effect. Motor function in the Nicorandil + carboxy-PTIO group was significantly preserved compared with the spinal cord injury control group (P < .001), but worse than in the Nicorandil group (P = .078). Motor preservation in the diazoxide group was similar to the Nicorandil + carboxy-PTIO group. There was no significant difference between the diazoxide and diazoxide + carboxy-PTIO groups. CONCLUSIONS Both direct and nitric oxide-dependent indirect activation of the mitochondrial adenosine triphosphate-sensitive potassium channel play an important role in pharmacologically induced motor function preservation.
Collapse
Affiliation(s)
- Yuki Ikeno
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Christian V Ghincea
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Gavriel F Roda
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Linling Cheng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Michael J Weyant
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Joseph C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - David A Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - T Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo.
| |
Collapse
|
2
|
Kanemaru E, Miyazaki Y, Marutani E, Ezaka M, Goto S, Ohshima E, Bloch DB, Ichinose F. Intranasal administration of polysulfide prevents neurodegeneration in spinal cord and rescues mice from delayed paraplegia after spinal cord ischemia. Redox Biol 2023; 60:102620. [PMID: 36753926 PMCID: PMC9932672 DOI: 10.1016/j.redox.2023.102620] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Delayed paraplegia is a devastating complication of thoracoabdominal aortic surgery. Hydrogen sulfide (H2S) was reported to be protective in a mouse model of spinal cord ischemia and the beneficial effect of H2S has been attributed to polysulfides. The objective of this study was to investigate the effects of polysulfides on delayed paraplegia after spinal cord ischemia. METHODS AND RESULTS Spinal cord ischemia was induced in male and female C57BL/6J mice by clamping the aortic arch and the left subclavian artery. Glutathione trisulfide (GSSSG), glutathione (GSH), glutathione disulfide (GSSG), or vehicle alone was administered intranasally at 0, 8, 23, and 32 h after surgery. All mice treated with vehicle alone developed paraplegia within 48 h after surgery. GSSSG, but not GSH or GSSG, prevented paraplegia in 8 of 11 male mice (73%) and 6 of 8 female mice (75%). Intranasal administration of 34S-labeled GSSSG rapidly increased 34S-labeled sulfane sulfur species in the lumbar spinal cord. In mice treated with intranasal GSSSG, there were increased sulfane sulfur levels, and decreased neurodegeneration, microglia activation, and caspase-3 activation in the lumbar spinal cord. In vitro studies using murine primary cortical neurons showed that GSSSG increased intracellular levels of sulfane sulfur. GSSSG, but not GSH or GSSG, dose-dependently improved cell viability after oxygen and glucose deprivation/reoxygenation (OGD/R). Pantethine trisulfide (PTN-SSS) also increased intracellular sulfane sulfur and improved cell viability after OGD/R. Intranasal administration of PTN-SSS, but not pantethine, prevented paraplegia in 6 of 9 male mice (66%). CONCLUSIONS Intranasal administration of polysulfides rescued mice from delayed paraplegia after transient spinal cord ischemia. The neuroprotective effects of GSSSG were associated with increased levels of polysulfides and sulfane sulfur in the lumbar spinal cord. Targeted delivery of sulfane sulfur by polysulfides may prove to be a novel approach to the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Mariko Ezaka
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Shunsaku Goto
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Etsuo Ohshima
- Corporate Strategy Department, Kyowa Hakko Bio Co., Ltd., Tokyo, 164-0001, Japan.
| | - Donald B. Bloch
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Ahn JH, Lee TK, Kim DW, Shin MC, Cho JH, Lee JC, Tae HJ, Park JH, Hong S, Lee CH, Won MH, Kim YH. Therapeutic Hypothermia after Cardiac Arrest Attenuates Hindlimb Paralysis and Damage of Spinal Motor Neurons and Astrocytes through Modulating Nrf2/HO-1 Signaling Pathway in Rats. Cells 2023; 12:cells12030414. [PMID: 36766758 PMCID: PMC9913309 DOI: 10.3390/cells12030414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrest (CA) and return of spontaneous circulation (ROSC), a global ischemia and reperfusion event, lead to neuronal damage and/or death in the spinal cord as well as the brain. Hypothermic therapy is reported to protect neurons from damage and improve hindlimb paralysis after resuscitation in a rat model of CA induced by asphyxia. In this study, we investigated roles of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the lumbar spinal cord protected by therapeutic hypothermia in a rat model of asphyxial CA. Male Sprague-Dawley rats were subjected to seven minutes of asphyxial CA (induced by injection of 2 mg/kg vecuronium bromide) and hypothermia (four hours of cooling, 33 ± 0.5 °C). Survival rate, hindlimb motor function, histopathology, western blotting, and immunohistochemistry were examined at 12, 24, and 48 h after CA/ROSC. The rats of the CA/ROSC and hypothermia-treated groups had an increased survival rate and showed an attenuated hindlimb paralysis and a mild damage/death of motor neurons located in the anterior horn of the lumbar spinal cord compared with those of the CA/ROSC and normothermia-treated groups. In the CA/ROSC and hypothermia-treated groups, expressions of cytoplasmic and nuclear Nrf2 and HO-1 were significantly higher in the anterior horn compared with those of the CA/ROSC and normothermia-treated groups, showing that cytoplasmic and nuclear Nrf2 was expressed in both motor neurons and astrocytes. Moreover, in the CA/ROSC and hypothermia-treated group, interleukin-1β (IL-1β, a pro-inflammatory cytokine) expressed in the motor neurons was significantly reduced, and astrocyte damage was apparently attenuated compared with those found in the CA/ROSC and normothermia group. Taken together, our results indicate that hypothermic therapy after CA/ROSC attenuates CA-induced hindlimb paralysis by protecting motor neurons in the lumbar spinal cord via activating the Nrf2/HO-1 signaling pathway and attenuating pro-inflammation and astrocyte damage (reactive astrogliosis).
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam 50510, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk 54596, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
- Correspondence: (M.-H.W.); (Y.H.K.); Tel.: +82-33-258-2306 (Y.H.K.); Fax: +82-33-258-2169 (Y.H.K.)
| | - Yang Hee Kim
- Department of Surgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
- Correspondence: (M.-H.W.); (Y.H.K.); Tel.: +82-33-258-2306 (Y.H.K.); Fax: +82-33-258-2169 (Y.H.K.)
| |
Collapse
|
4
|
Awad H, Efanov A, Rajan J, Denney A, Gigax B, Kobalka P, Kelani H, Basso DM, Bozinovski J, Tili E. Histological Findings After Aortic Cross-Clamping in Preclinical Animal Models. J Neuropathol Exp Neurol 2021; 80:895-911. [PMID: 34534333 PMCID: PMC8783616 DOI: 10.1093/jnen/nlab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal cord ischemic injury and paralysis are devastating complications after open surgical repair of thoracoabdominal aortic aneurysms. Preclinical models have been developed to simulate the clinical paradigm to better understand the neuropathophysiology and develop therapeutic treatment. Neuropathological findings in the preclinical models have not been comprehensively examined before. This systematic review studies the past 40 years of the histological findings after open surgical repair in preclinical models. Our main finding is that damage is predominantly in the grey matter of the spinal cord, although white matter damage in the spinal cord is also reported. Future research needs to examine the neuropathological findings in preclinical models after endovascular repair, a newer type of surgical repair used to treat aortic aneurysms.
Collapse
Affiliation(s)
- Hamdy Awad
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Alexander Efanov
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Jayanth Rajan
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Andrew Denney
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Bradley Gigax
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Peter Kobalka
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Hesham Kelani
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - D Michele Basso
- Department of Neuroscience, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio, USA
| | - John Bozinovski
- Division of Cardiac Surgery, Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Esmerina Tili
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Nakai H, Fujita Y, Masuda S, Komatsu M, Tani A, Okita Y, Okada K, Kawamoto A. Intravenous injection of adult human bone marrow mesenchymal stromal cells attenuates spinal cord ischemia/reperfusion injury in a murine aortic arch crossclamping model. JTCVS OPEN 2021; 7:23-40. [PMID: 36003746 PMCID: PMC9390396 DOI: 10.1016/j.xjon.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/04/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE We sought to investigate the efficacy of human bone marrow mesenchymal stem/stromal cell (hBM-MSC) in a murine spinal cord ischemia/reperfusion (SCIR) model. METHODS C57BL/6J mice were subjected to SCIR by crossclamping the aortic arch and left subclavian artery for 5.5 minutes. Two hours after reperfusion, hBM-MSCs (hBM-MSC group) or phosphate-buffered saline (control group) were intravenously injected without immunosuppressant. Hindlimb motor function was assessed until day 28 after reperfusion using the Basso Mouse Scale (BMS). The lumbar spinal cord was harvested at hour 24 and day 28, and the histologic number of NeuN-positive motor neurons in 3 cross-sections of each lumbar spinal cord and the gene expression were evaluated. RESULTS BMS score was 0 throughout the study period in all control mice. BMS score was significantly greater in the hBM-MSC group than the control group from hour 8 (P < .05) to day 28 (P < .01). The numbers of motor neurons at hour 24 (P < .01) and day 28 (P < .05) were significantly preserved in the hBM-MSC group than the control group. mRNA expression levels of proinflammatory cytokines were significantly lower (P < .05), and those of insulin-like growth factor-1 (P < .01) and proangiogenic factors (P < .05) were significantly greater in the hBM-MSC group than the control group at hour 24. CONCLUSIONS hBM-MSC therapy may attenuate SCIR injury by preserving motor neurons, at least in part, through inhibition of proinflammatory cytokines and upregulation of proangiogenic factors in the reperfusion-injured spinal cord.
Collapse
Key Words
- BM, bone marrow
- BMS, Basso Mouse Scale
- EV, extracellular vesicle
- IGF-1, insulin-like growth factor-1
- IL-10, interleukin-10
- LSA, left subclavian artery
- PBS, phosphate-buffered saline
- SCI, spinal cord ischemia
- SCIR, spinal cord ischemia/reperfusion
- hBM-MSC, human bone marrow mesenchymal stem/stromal cell
- human bone marrow mesenchymal stromal cells
- mRNA, messenger RNA
- paraplegia
- spinal cord ischemia
- spinal cord reperfusion injury
- thoracic aortic surgery
Collapse
Affiliation(s)
- Hidekazu Nakai
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Fujita
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Satoru Masuda
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Miki Komatsu
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Ayumi Tani
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yutaka Okita
- Cardiovascular Center, Takatsuki General Hospital, Takatsuki, Japan
| | - Kenji Okada
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsuhiko Kawamoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
6
|
Ikeno Y, Ghincea CV, Roda GF, Cheng L, Aftab M, Meng X, Weyant MJ, Cleveland JC, Fullerton DA, Reece TB. Optimizing Nicorandil for Spinal Cord Protection in a Murine Model of Complex Aortic Intervention. Semin Thorac Cardiovasc Surg 2021; 34:28-38. [PMID: 33444762 DOI: 10.1053/j.semtcvs.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/05/2021] [Indexed: 01/07/2023]
Abstract
There are currently no clinically utilized pharmacological agents for the induction of metabolic tolerance to spinal cord ischemia-reperfusion injury in the setting of complex aortic intervention. Nicorandil, a nitric oxide donor and ATP-sensitive potassium (KATP) channel opener, has shown promise in neuroprotection. However, the optimized clinical application of the drug and its mechanism of neuroprotection remains unclear. We hypothesized that 3-days pretreatment would confer the most effective neuroprotection, mediated by mitochondrial KATP channel activation. Spinal cord injury was induced by 7 minutes of thoracic aortic cross-clamping in adult male C57BL/6 mice. Time course: mice received 0.1 mg/kg nicorandil for 10 min, 4 hours, and 3 consecutive days prior to ischemia compared with control. Dose challenge: mice received 3-days nicorandil pretreatment comparing 0.1 mg/kg, 1.0 mg/kg, 5.0 mg/kg, and saline administration. Mitochondrial KATP channel blocker 5-hydroxy-decanoate (5HD) was co-administered to elucidate mechanism. Limb motor function was evaluated, and viable anterior horn neurons quantified. Nicorandil pretreatment at 4 hours and 3 days before ischemia demonstrated significant motor function preservation; administration 10 minutes before ischemia showed no neuroprotection. All nicorandil doses showed significant motor function preservation. Three days administration of Nicorandil 1.0 mg/kg was most potent. Neuroprotection was completely abolished by 5HD co-administration. Histological analysis showed significant neuron preservation with nicorandil pretreatment, which was attenuated by 5HD co-administration. Three days administration of Nicorandil 1.0 mg/kg showed near-total motor function preservation in a murine spinal cord ischemia-reperfusion model, mediated by the mitochondrial KATP channel.
Collapse
Affiliation(s)
- Yuki Ikeno
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Christian V Ghincea
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Gavriel F Roda
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Linling Cheng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Michael J Weyant
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Joseph C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - David A Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Thomas Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado.
| |
Collapse
|
7
|
Reactive Oxygen Species Mediate Nicorandil-induced Metabolic Tolerance to Spinal Cord Injury. Ann Thorac Surg 2020; 112:38-44. [PMID: 33902895 DOI: 10.1016/j.athoracsur.2020.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Spinal cord injury remains a devastating complication of thoracoabdominal aortic surgery. We previously demonstrated that pretreatment with nicorandil preserved motor function in a murine spinal cord injury model through mitochondrial adenosine triphosphate-sensitive potassium channel activation. We hypothesized that the neuroprotective effect of nicorandil is mediated by downstream generation of reactive oxygen species. METHODS Spinal cord injury was induced by 7 minutes of thoracic aortic cross-clamping in adult male C57BL/6 mice. Five groups were evaluated: ischemic control (n = 19); nicorandil 1.0 mg/kg (n = 17); nicorandil 1.0 mg/kg plus N acetyl L-cysteine (NAC [reactive oxygen species scavenger, n = 18)]) 150 mg/kg; NAC 150 mg/kg (n = 13); and sham (n = 10). Limb motor function and the number of viable neurons within the anterior horn of the spinal cord were evaluated. RESULTS Mice in the sham group showed no functional deficits after surgery. Compared with ischemic control, motor function was significantly preserved in the nicorandil pretreatment group at every timepoint after ischemia. In the nicorandil plus NAC group, the motor-preserving effect of nicorandil was completely abolished (P < .001). Viable neuron quantification showed significant neuron preservation in the nicorandil group (29.± 2.6) compared with the ischemic control group (18.5 ± 2.1, P = .024) and nicorandil plus NAC group (14 ± 8.3, P = .001); no significant difference was observed between the ischemic control group and nicorandil plus NAC group (P = 0.768). CONCLUSIONS Reactive oxygen species generation plays a key role in the nicorandil-induced metabolic tolerance to spinal cord injury. Manipulation of mitochondrial adenosine triphosphate-sensitive potassium channels may lead to improvement in preventing spinal cord injury after thoracoabdominal aortic interventions.
Collapse
|
8
|
Yamanaka K, Eldeiry M, Aftab M, Ryan TJ, Meng X, Weyant MJ, Fullerton DA, Reece TB. Synergetic Induction of NGF With Diazoxide and Erythropoietin Attenuates Spinal Cord Ischemic Injury. J Surg Res 2019; 233:124-131. [DOI: 10.1016/j.jss.2018.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/25/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022]
|
9
|
Yamanaka K, Eldeiry M, Aftab M, Ryan TJ, Roda G, Meng X, Weyant MJ, Cleveland JC, Fullerton DA, Reece TB. Pretreatment With Diazoxide Attenuates Spinal Cord Ischemia-Reperfusion Injury Through Signaling Transducer and Activator of Transcription 3 Pathway. Ann Thorac Surg 2018; 107:733-739. [PMID: 30395862 DOI: 10.1016/j.athoracsur.2018.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/15/2018] [Accepted: 09/14/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Delayed paraplegia remains a feared complication of thoracoabdominal aortic intervention. Pharmacologic preconditioning with diazoxide (DZ), an adenosine 5'-triphosphate-sensitive potassium channel opener, results in neuroprotection against ischemic insult. However, the effects of DZ in spinal cord ischemia-reperfusion injury have not been fully elucidated. We hypothesized that DZ attenuates spinal cord ischemia-reperfusion injury through the signaling transducer and activator of transcription (STAT) 3 pathway. METHODS Adult male C57/BL6 mice received DZ (20 mg/kg) by oral gavage. Spinal cords were harvested at 0, 12, 24, 36, 48, and 60 hours after administration of DZ. The expression of phosphorylated STAT3 was assessed by Western blot analysis. Five groups were studied: DZ (DZ pretreatment, n = 8), ischemic control (phosphate-buffered saline pretreatment, n = 11), DZ + STAT3 inhibitor LY5 (DZ pretreatment + LY5, n = 8), LY5 (phosphate-buffered saline pretreatment + LY5, n = 8), and sham (without cross-clamping, n = 5). Spinal cord ischemia was induced by 4 minutes of thoracic aortic cross-clamp. Functional scoring (Basso Mouse Score) was done at 12-hour intervals until 48 hours, and spinal cords were harvested for the evaluation of B-cell lymphoma 2 expression and histologic changes. RESULTS The expression of phosphorylated STAT3 was significantly upregulated 36 hours after the administration of DZ. The motor function in the DZ group was significantly preserved compared with all other groups. The expression of B-cell lymphoma 2 in the DZ group was significantly higher than in the ischemic control, DZ + LY5, and LY5 groups 48 hours after reperfusion. CONCLUSIONS DZ preserves motor function in spinal cord ischemia-reperfusion injury by the STAT3 pathway. DZ may be beneficial clinically for use in spinal protection in aortic intervention.
Collapse
Affiliation(s)
- Katsuhiro Yamanaka
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado.
| | - Mohamed Eldeiry
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Thomas J Ryan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Gavriel Roda
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Michael J Weyant
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Joseph C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - David A Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - T Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| |
Collapse
|
10
|
Synergistic Reduction of Apoptosis With Diazoxide and Erythropoietin in Spinal Cord Ischemic Injury. Ann Thorac Surg 2018; 106:1751-1758. [PMID: 30193997 DOI: 10.1016/j.athoracsur.2018.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/30/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Paraplegia remains a devastating complication of thoracoabdominal aortic intervention. Metabolic stress induces expression of beta common receptor subunit of erythropoietin (EPO) receptor (βcR) to exert a neuroprotective effect in spinal cord ischemia reperfusion injury (SCIR). Diazoxide (DZ) has been shown to induce ischemic tolerance. We previously reported that DZ upregulated βcR expression and enhanced the neuroprotective effects of EPO through the upregulation of βcR. We hypothesize that βcR expression induced by DZ before ischemia amplifies the antiapoptotic effects of EPO in a murine model of SCIR. METHODS Experimental groups included phosphate-buffered saline (PBS) pretreatment + PBS immediately before the operation, PBS+EPO, DZ+PBS, DZ+EPO, and sham. Spinal cord ischemia was induced by a 4-minute thoracic aortic cross-clamp. Functional scoring (Basso Mouse Score) was done at 12-hour intervals for 48 hours. Spinal cords were harvested for histologic analysis, and antiapoptotic factors (caspase 3, 8, and 9, B-cell lymphoma-2, and neuroglobin) were evaluated by Western blot analysis. RESULTS The motor function of DZ+EPO group was significantly preserved compared with all other groups. The levels of cleaved caspase 8 and 3 in DZ+EPO were significantly lower than in the other groups. Mice treated with DZ+EPO had significantly fewer terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling-positive cells than other groups. CONCLUSIONS Optimized upregulation of βcR by DZ can increase the extrinsic antiapoptotic effects of EPO. Better understanding of this synergetic mechanism may serve to help prevent ischemic complications caused by aortic intervention.
Collapse
|
11
|
Yamanaka K, Eldeiry M, Aftab M, Mares J, Ryan TJ, Meng X, Weyant MJ, Cleveland JC, Fullerton DA, Reece TB. Optimized induction of beta common receptor enhances the neuroprotective function of erythropoietin in spinal cord ischemic injury. J Thorac Cardiovasc Surg 2018. [PMID: 29523405 DOI: 10.1016/j.jtcvs.2017.12.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Paraplegia remains the most feared complication of complex thoracoabdominal aortic intervention. Although erythropoietin (EPO) has demonstrated neuroprotective effects in spinal cord ischemia, it does not work until expression of the beta common receptor subunit of the EPO receptor (βcR) is induced by ischemia. We hypothesized that the βcR can be induced by diazoxide (DZ), amplifying the neuroprotective effects of EPO in spinal cord ischemia-reperfusion injury. METHODS For the DZ time trial, adult male C57/BL6 mice received DZ (20 mg/kg) by oral gavage. Spinal cords were harvested after 0, 12, 24, 36, and 48 hours of administration. To evaluate optimal dosing, DZ was administered at 0, 5, 10, 20, and 40 mg/kg. The expression of βcR was assessed by Western blot analysis. Five groups were studied: PBS (pretreatment)+PBS (immediately before), PBS+EPO, DZ+PBS, DZ+EPO, and sham (without cross-clamping). Spinal cord ischemia was induced by 4 minutes of thoracic aortic cross-clamping. Functional scoring (Basso Mouse Score) was done at 12-hour intervals for 48 hours, and spinal cords were harvested for histological analysis. RESULTS Western blot analysis demonstrated that optimal βcR up-regulation occurred at 36 hours after DZ administration, and the optimal DZ dosage for βcR induction was 20 mg/kg. Motor function at 48 hours after treatment was significantly better preserved in the DZ+EPO group compared with all other groups, and was significantly better preserved in the DZ only and EPO only groups compared with control (PBS+PBS). CONCLUSIONS Pharmacologic up-regulation of βcR with DZ can increase the efficacy of EPO in preventing spinal cord ischemia and reperfusion injury. Improved understanding of this synergetic mechanism may serve to further prevent ischemic complications for high-risk aortic intervention.
Collapse
Affiliation(s)
- Katsuhiro Yamanaka
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo.
| | - Mohamed Eldeiry
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Joshua Mares
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Thomas J Ryan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Michael J Weyant
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - Joseph C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - David A Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| | - T Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colo
| |
Collapse
|
12
|
Foley LS, Fullerton DA, Mares J, Sungelo M, Weyant MJ, Cleveland JC, Reece TB. Erythropoietin's Beta Common Receptor Mediates Neuroprotection in Spinal Cord Neurons. Ann Thorac Surg 2017; 104:1909-1914. [PMID: 29100648 DOI: 10.1016/j.athoracsur.2017.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Paraplegia from spinal cord ischemia-reperfusion (SCIR) remains an elusive and devastating complication of complex aortic operations. Erythropoietin (EPO) attenuates this injury in models of SCIR. Upregulation of the EPO beta common receptor (βcR) is associated with reduced damage in models of neural injury. The purpose of this study was to examine whether EPO-mediated neuroprotection was dependent on βcR expression. We hypothesized that spinal cord neurons subjected to oxygen-glucose deprivation would mimic SCIR injury in aortic surgery and EPO treatment attenuates this injury in a βcR-dependent fashion. METHODS Lentiviral vectors with βcR knockdown sequences were tested on neuron cell cultures. The virus with greatest βcR knockdown was selected. Spinal cord neurons from perinatal wild-type mice were harvested and cultured to maturity. They were treated with knockdown or nonsense virus and transduced cells were selected. Three groups (βcR knockdown virus, nonsense control virus, no virus control; n = 8 each) were subjected to 1 hour of oxygen-glucose deprivation. Viability was assessed. βcR expression was quantified by immunoblot. RESULTS EPO preserved neuronal viability after oxygen-glucose deprivation (0.82 ± 0.04 versus 0.61 ± 0.01; p < 0.01). Additionally, EPO-mediated neuron preservation was similar in the nonsense virus and control mice (0.82 ± 0.04 versus 0.80 ± 0.05; p = 0.77). EPO neuron preservation was lost in βcR knockdown mice compared with nonsense control mice (0.46 ± 0.03 versus 0.80 ± 0.05; p < 0.01). CONCLUSIONS EPO attenuates neuronal loss after oxygen-glucose deprivation in a βcR-dependent fashion. This receptor holds immense clinical promise as a target for pharmacotherapies treating spinal cord ischemic injury.
Collapse
Affiliation(s)
- Lisa S Foley
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado.
| | - David A Fullerton
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| | - Joshua Mares
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| | - Mitchell Sungelo
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| | - Michael J Weyant
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| | - Joseph C Cleveland
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| | - T Brett Reece
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
13
|
Ethyl pyruvate modulates delayed paralysis following thoracic aortic ischemia reperfusion in mice. J Vasc Surg 2017; 64:1433-1443. [PMID: 27776698 DOI: 10.1016/j.jvs.2015.06.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Delayed paralysis is an unpredictable problem for patients undergoing complex repair of the thoracic/thoracoabdominal aorta. These experiments were designed to determine whether ethyl pyruvate (EP), a potent anti-inflammatory and antioxidant agent, might ameliorate delayed paralysis following thoracic aortic ischemia reperfusion (TAR). METHODS C57BL6 mice were subjected to 5 minutes of thoracic aortic ischemia followed by reperfusion for up to 48 hours. Mice received either 300 mg/kg EP or lactated ringers (LR) at 30 minutes before ischemia and 3 hours after reperfusion. Neurologic function was assessed using an established rodent scale. Spinal cord tissue was analyzed for markers of inflammation (keratinocyte chemoattractant [KC], interleukin-6 [IL-6]), microglial activation (ionized calcium-binding adapter molecule-1 [Iba-1]), and apoptosis (Bcl-2, Bax, and terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] staining) at 24 and 48 hours after TAR. Nissl body stained motor neurons were counted in the anterior horns sections from L1-L5 segments. RESULTS Ninety-three percent of the LR mice developed dense delayed paralysis between 40 and 48 hours after TAR, whereas only 39% of EP mice developed delayed paralysis (P < .01). Bcl-2 expression was higher (P < .05) and Iba-1 expression was lower (P < .05) in the EP group only at 24 hours reperfusion. At 48 hours, the number of motor neurons was higher (P < .01) and the number and TUNEL-positive cells was lower (P < .001) in the EP-treated mice. EP decreased the expression of KC (P < .01) and IL-6 (P < .001) at 48 hours after TAR. CONCLUSIONS The protection provided by EP against delayed paralysis correlated with preservation of motor neurons, higher expression of antiapoptotic molecules, decreased microglial cell activation, and decreased spinal cord inflammation. EP may be a treatment for humans at risk for delayed paralysis.
Collapse
|
14
|
Hybrid Treatment of Acute Abdominal Aortic Thrombosis Presenting with Paraplegia. Ann Vasc Surg 2016; 33:228.e5-8. [DOI: 10.1016/j.avsg.2015.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/24/2015] [Accepted: 10/24/2015] [Indexed: 11/22/2022]
|
15
|
Foley LS, Reece TB. Advances in spinal cord protection for complex aortic repairs. J Thorac Cardiovasc Surg 2016; 151:614-615. [DOI: 10.1016/j.jtcvs.2015.09.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 10/22/2022]
|
16
|
Freeman KA, Puskas F, Bell MT, Mares JM, Foley LS, Weyant MJ, Cleveland JC, Fullerton DA, Meng X, Herson PS, Reece TB. Alpha-2 agonist attenuates ischemic injury in spinal cord neurons. J Surg Res 2015; 195:21-8. [DOI: 10.1016/j.jss.2014.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 12/04/2014] [Accepted: 12/17/2014] [Indexed: 01/20/2023]
|
17
|
Freeman KA, Fullerton DA, Foley LS, Bell MT, Cleveland JC, Weyant MJ, Mares J, Meng X, Puskas F, Reece TB. Spinal cord protection via alpha-2 agonist-mediated increase in glial cell-line-derived neurotrophic factor. J Thorac Cardiovasc Surg 2014; 149:578-84; discussion 584-6. [PMID: 25454921 DOI: 10.1016/j.jtcvs.2014.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/22/2014] [Accepted: 10/04/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Delayed paraplegia secondary to ischemia-reperfusion injury is a devastating complication of thoracoabdominal aortic surgery. Alpha-2 agonists have been shown to attenuate ischemia-reperfusion injury, but the mechanism for protection has yet to be elucidated. A growing body of evidence suggests that astrocytes play a critical role in neuroprotection by release of neurotrophins. We hypothesize that alpha-2 agonism with dexmedetomidine increases glial cell-line-derived neurotrophic factor in spinal cord astrocytes to provide spinal cord protection. METHODS Spinal cords were isolated en bloc from C57BL/6 mice, and primary spinal cord astrocytes and neurons were selected for and grown separately in culture. Astrocytes were treated with dexmedetomidine, and glial cell-line-derived neurotrophic factor was tested for by enzyme-linked immunosorbent assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess neuronal viability. RESULTS Spinal cord primary astrocytes treated with dexmedetomidine at 1 μmol/L and 10 μmol/L had significantly increased glial cell-line-derived neurotrophic factor production compared with control (P < .05). Neurons subjected to oxygen glucose deprivation had significant preservation (P < .05) of viability with use of dexmedetomidine-treated astrocyte media. Glial cell-line-derived neurotrophic factor neutralizing antibody eliminated the protective effects of the dexmedetomidine-treated astrocyte media (P < .05). CONCLUSIONS Astrocytes have been shown to preserve neuronal viability via release of neurotrophic factors. Dexmedetomidine increases glial cell-derived neurotrophic factor from spinal cord astrocytes via the alpha-2 receptor. Treatment with alpha-2 agonist dexmedetomidine may be a clinical tool for use in spinal cord protection in aortic surgery.
Collapse
Affiliation(s)
| | | | - Lisa S Foley
- Department of Surgery, University of Colorado Denver, Denver, Colo
| | - Marshall T Bell
- Department of Surgery, University of Colorado Denver, Denver, Colo
| | | | - Michael J Weyant
- Department of Surgery, University of Colorado Denver, Denver, Colo
| | - Joshua Mares
- Department of Surgery, University of Colorado Denver, Denver, Colo
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Denver, Colo
| | - Ferenc Puskas
- Department of Anesthesiology, University of Colorado Denver, Denver, Colo
| | - T Brett Reece
- Department of Surgery, University of Colorado Denver, Denver, Colo
| |
Collapse
|
18
|
Smith PD, Puskas F, Meng X, Lee JH, Cleveland JC, Weyant MJ, Fullerton DA, Reece TB. The evolution of chemokine release supports a bimodal mechanism of spinal cord ischemia and reperfusion injury. Circulation 2012; 126:S110-7. [PMID: 22965970 DOI: 10.1161/circulationaha.111.080275] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Paraplegia remains a devastating complication of thoracic aortic surgery. The mechanism of the antecedent spinal cord ischemia and reperfusion injury (IR) remains poorly described. IR involves 2 injuries, an initial ischemic insult and subsequent inflammatory amplification of the injury. This mechanism is consistent with the clinical phenomenon of delayed onset paraplegia. This study sought to characterize the inflammatory response in the spinal cord after IR and hypothesized that this would support a bimodal mechanism of injury. METHODS AND RESULTS Male C57Bl/6 mice were subjected to 5 minutes of aortic arch and left subclavian occlusion with subsequent reperfusion to generate spinal cord ischemia. Functional outcomes were scored at 12-hour intervals. Spinal cords were harvested after 0, 6, 12, 18, 24, 36, and 48 hours of reperfusion. Cytokine levels were analyzed using a mouse magnetic bead-based multiplex immunoassay. Inflammatory chemokine concentrations (interleukin [IL]-1β, IL-6, keratinocyte-derived cytokine, macrophage inflammatory protein-1α, monocyte chemotactic protein-1, RANTES, and tumor necrosis factor-α) peaked at 6 hours and 36 to 48 hours after reperfusion. Functional scores reflected initial gain in function with subsequent decline, inversely proportional to cytokine levels. Immunofluorescent staining demonstrated microglia activation at 12 and 48 hours. CONCLUSIONS Spinal cord ischemia and reperfusion injury occurs in 2 phases, correlating to increases in inflammatory chemokines release and microglial activation. These observations chronologically parallel the too-common clinical syndrome of delayed-onset paraplegia. Understanding the molecular pathogenesis of this injury may allow future intervention to prevent this devastating complication.
Collapse
Affiliation(s)
- Phillip D Smith
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|