1
|
Reuter S, Kentrup D, Grabner A, Köhler G, Buscher K, Edemir B. C4d Deposition after Allogeneic Renal Transplantation in Rats Is Involved in Initial Apoptotic Cell Clearance. Cells 2021; 10:3499. [PMID: 34944007 PMCID: PMC8700759 DOI: 10.3390/cells10123499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
In the context of transplantation, complement activation is associated with poor prognosis and outcome. While complement activation in antibody-mediated rejection is well-known, less is known about complement activation in acute T cell-mediated rejection (TCMR). There is increasing evidence that complement contributes to the clearance of apoptotic debris and tissue repair. In this regard, we have analysed published human kidney biopsy transcriptome data clearly showing upregulated expression of complement factors in TCMR. To clarify whether and how the complement system is activated early during acute TCMR, experimental syngeneic and allogeneic renal transplantations were performed. Using an allogeneic rat renal transplant model, we also observed upregulation of complement factors in TCMR in contrast to healthy kidneys and isograft controls. While staining for C4d was positive, staining with a C3d antibody showed no C3d deposition. FACS analysis of blood showed the absence of alloantibodies that could have explained the C4d deposition. Gene expression pathway analysis showed upregulation of pro-apoptotic factors in TCMR, and apoptotic endothelial cells were detected by ultrastructural analysis. Monocytes/macrophages were found to bind to and phagocytise these apoptotic cells. Therefore, we conclude that early C4d deposition in TCMR may be relevant to the clearance of apoptotic cells.
Collapse
Affiliation(s)
- Stefan Reuter
- Department of Internal Medicine D, Experimental Nephrology, University Clinics Münster, 48143 Münster, Germany; (S.R.); (D.K.); (A.G.); (K.B.)
| | - Dominik Kentrup
- Department of Internal Medicine D, Experimental Nephrology, University Clinics Münster, 48143 Münster, Germany; (S.R.); (D.K.); (A.G.); (K.B.)
- Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alexander Grabner
- Department of Internal Medicine D, Experimental Nephrology, University Clinics Münster, 48143 Münster, Germany; (S.R.); (D.K.); (A.G.); (K.B.)
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gabriele Köhler
- Gerhard Domagk Institute of Pathology, University Clinics Münster, 48143 Münster, Germany;
| | - Konrad Buscher
- Department of Internal Medicine D, Experimental Nephrology, University Clinics Münster, 48143 Münster, Germany; (S.R.); (D.K.); (A.G.); (K.B.)
| | - Bayram Edemir
- Department of Internal Medicine D, Experimental Nephrology, University Clinics Münster, 48143 Münster, Germany; (S.R.); (D.K.); (A.G.); (K.B.)
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Rapid Lipid Modification of Endothelial Cell Membranes in Cardiac Ischemia/Reperfusion Injury: a Novel Therapeutic Strategy to Reduce Infarct Size. Cardiovasc Drugs Ther 2020; 35:113-123. [PMID: 33079319 DOI: 10.1007/s10557-020-07101-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Plasma membranes constitute a gathering point for lipids and signaling proteins. Lipids are known to regulate the location and activity of signaling proteins under physiological and pathophysiological conditions. Membrane lipid therapies (MLTs) that gradually modify lipid content of plasma membranes have been developed to treat chronic disease; however, no MLTs have been developed to treat acute conditions such as reperfusion injury following myocardial infarction (MI) and percutaneous coronary intervention (PCI). A fusogenic nanoliposome (FNL) that rapidly incorporates exogenous unsaturated lipids into endothelial cell (EC) membranes was developed to attenuate reperfusion-induced protein signaling. We hypothesized that administration of intracoronary (IC) FNL-MLT interferes with EC membrane protein signaling, leading to reduced microvascular dysfunction and infarct size (IS). METHODS Using a myocardial ischemia/reperfusion swine model, the efficacy of FNL-MLT in reducing IS following a 60-min coronary artery occlusion was tested. Animals were randomized to receive IC Ringer's lactate solution with or without 10 mg/mL/min of FNLs for 10 min prior to reperfusion (n = 6 per group). RESULTS The IC FNL-MLT reduced IS (25.45 ± 16.4% vs. 49.7 ± 14.1%, P < 0.02) and enhanced regional myocardial blood flow (RMBF) in the ischemic zone at 15 min of reperfusion (2.13 ± 1.48 mL/min/g vs. 0.70 ± 0.43 mL/min/g, P < 0.001). The total cumulative plasma levels of the cardiac injury biomarker cardiac troponin I (cTnI) were trending downward but were not significant (999.3 ± 38.7 ng/mL vs. 1456.5 ± 64.8 ng/mL, P = 0.1867). However, plasma levels of heart-specific fatty acid binding protein (hFABP), another injury biomarker, were reduced at 2 h of reperfusion (70.3 ± 38.0 ng/mL vs. 137.3 ± 58.2 ng/mL, P = 0.0115). CONCLUSION: The IC FNL-MLT reduced IS compared to vehicle in this swine model. The FNL-MLT maybe a promising adjuvant to PCI in the treatment of acute MI.
Collapse
|
3
|
Zhao F, Wang X, Liang T, Bao D, Wang Y, Du Y, Li H, Du J, Chen A, Fu Z, Xie Z, Liang G. Effect of Hyperbaric Oxygen on Tissue Damage and Expression of Adhesion Molecules and C3 in a Rat Model of Renal Ischemia-Reperfusion Injury After Kidney Transplantation. Ann Transplant 2020; 25:e919385. [PMID: 32499475 PMCID: PMC7297207 DOI: 10.12659/aot.919385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the protective effect and mechanism of hyperbaric oxygen (HBO) in a rat model of renal ischemia-reperfusion injury following kidney transplantation. MATERIAL AND METHODS Sprague Dawley rats were randomly divided into 3 groups (n=18): sham group, kidney transplantation group, and HBO treatment group. Six rats in each group were sacrificed at 1, 3, and 5 hours after reperfusion, and serum and renal tissue were then collected. The serum creatinine levels and histopathological changes of the renal tissue were detected. ICAM-1, VCAM-1, and C3 expression levels were also detected by immunohistochemical staining or real-time polymerase chain reaction. RESULTS Renal function was damaged in the kidney transplantation group and the HBO treatment group compared with sham group (P<0.05). Renal histopathological changes, including tubular cell swelling, tubular dilatation, and hyaline casts, were remarkably reduced in the HBO treatment group compared to the kidney transplantation group. In the immunohistochemical examination, the expression levels of ICAM-1, VCAM-1, and C3 were obviously increased in the kidney transplantation group and the HBO treatment group; moreover, the levels in the HBO treatment group were significantly lower than in the kidney transplantation group (P<0.05). In addition, the ICAM-1 and C3 mRNA levels were increased in the kidney transplantation group and HBO treatment group, but the levels of in the HBO treatment group them were significantly decreased compared to the kidney transplantation group that at 3 and 5 hours after reperfusion (P<0.05). CONCLUSIONS HBO treatment exerted a protective effect on renal function through inhibition of adhesion molecule overexpression and complement system activation in a rat model of renal ischemia-reperfusion injury after kidney transplantation.
Collapse
Affiliation(s)
- Faliang Zhao
- Medical College of Soochow University, Suzhou, Jiangsu, China (mainland).,Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Xin Wang
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Tiancai Liang
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Dingsu Bao
- Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Yuanliang Wang
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Yang Du
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Hao Li
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Jiang Du
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Anjian Chen
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Zifeng Fu
- Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Zhihui Xie
- Department of Hyperbaric Oxygen, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| | - Guobiao Liang
- Medical College of Soochow University, Suzhou, Jiangsu, China (mainland).,Urological Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China (mainland)
| |
Collapse
|
4
|
Ahmad S, Pandya C, Kindelin A, Bhatia K, Chaudhary R, Dwivedi AK, Eschbacher JM, Liu Q, Waters MF, Hoda MN, Ducruet AF. C3a receptor antagonist therapy is protective with or without thrombolysis in murine thromboembolic stroke. Br J Pharmacol 2020; 177:2466-2477. [PMID: 31975437 DOI: 10.1111/bph.14989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Intravenous thrombolysis (IVT) after stroke enhances C3a generation, which may abrogate the benefits of reperfusion. The C3aR antagonist SB290157 is neuroprotective following transient but not permanent middle cerebral artery occlusion (MCAo). SB290157 remains untested in thromboembolic (TE) models, which better approximate human stroke and also facilitate testing in combination with IVT. We hypothesized SB290157 would confer neuroprotection in TE stroke with and without "late" IVT. EXPERIMENTAL APPROACH We used two different models of TE stroke to examine the efficacy of SB290157 alone and in combination with late IVT. We evaluated the benefit of SB290157 in attenuating post-ischaemic behavioural deficits, infarction, brain oedema and haemorrhage. KEY RESULTS Plasma C3a was elevated 6 hr after TE stroke alongside increased cerebrovascular C3aR expression, which was sustained to 4 weeks. Increased C3aR expression also was visualized in human ischaemic brain. In a photothrombotic (PT) stroke model, which exhibits rapid spontaneous reperfusion, SB290157 given at 1 hr post-PT significantly improved neurofunction and reduced infarction at 48 hr. In an embolic (eMCAo) model, SB290157 administered at 2 hr improved histological and functional outcomes. Conversely, late IVT administered 4.5 hr post-eMCAo was ineffective likely due to increased haemorrhage and brain oedema. However, SB290157 administered prior to late IVT ameliorated haemorrhage and oedema and improved outcomes. CONCLUSIONS AND IMPLICATIONS We conclude that SB290157 is safe and effective with and without late IVT following TE stroke. Therefore, C3a receptor antagonist therapy represents a promising candidate for clinical translation in stroke, particularly as an adjuvant to IVT.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Chirayu Pandya
- Department of Psychiatry, Augusta University, Augusta, Georgia
| | - Adam Kindelin
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Kanchan Bhatia
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Rafay Chaudhary
- College of Science and Mathematics, Augusta University, Augusta, Georgia
| | - Alok Kumar Dwivedi
- Division of Biostatistics and Epidemiology, Texas Tech University Health Science Center, El Paso, Texas
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Qiang Liu
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona.,Department of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Michael F Waters
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona.,Department of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Md Nasrul Hoda
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona.,Department of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona.,Department of Neurology, Augusta University, Augusta, Georgia
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
5
|
Rezaei M, Figueroa B, Orfahli LM, Ordenana C, Brunengraber H, Dasarathy S, Rampazzo A, Bassiri Gharb B. Composite Vascularized Allograft Machine Preservation: State of the Art. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00263-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Dabrowska-Zamojcin E, Czerewaty M, Malinowski D, Tarnowski M, Słuczanowska-Głabowska S, Domanski L, Safranow K, Pawlik A. Ficolin-2 Gene rs7851696 Polymorphism is Associated with Delayed Graft Function and Acute Rejection in Kidney Allograft Recipients. Arch Immunol Ther Exp (Warsz) 2018; 66:65-72. [PMID: 28536887 PMCID: PMC5767214 DOI: 10.1007/s00005-017-0475-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/06/2017] [Indexed: 02/08/2023]
Abstract
Ficolin-2 is an activator of the complement system that acts via the lectin pathway. Complement activation plays a substantial role in the renal injury inherent to kidney transplantation. In this study, we examined the associations between ficolin-2 gene polymorphisms in exon 8 and kidney allograft function. This study comprised 270 Caucasian deceased-donor renal transplant recipients. The following parameters were recorded in each case: delayed graft function (DGF), acute rejection (AR), and chronic allograft dysfunction. Among patients with DGF, we observed a significantly increased frequency of rs7851696 GT and TT genotypes as well as T allele (TT + GT vs GG OR 1.98, 95% CI 1.12-3.48, p = 0.02; T vs G OR 2.08, 95% CI 1.27-3.41, p = 0.005). There was also an increased frequency of rs4521835 GG and TG genotypes as well as G alleles; however, these differences were on the borderline of statistical significance (GG + TG vs TT, OR 1.75, 95% CI 0.98-3.12, p = 0.07; G vs T OR 1.45, 95% CI 1.00-2.09, p = 0.050). In addition, we observed an increased frequency of acute allograft rejection in carriers of ficolin-2 rs7851696 T alleles on the borderline of statistical significance (TT + GT vs GG OR 1.75, 95% CI 0.97-3.16, p = 0.08), but the frequency of T allele was significantly higher in patients with AR (T vs G OR 1.71, 95% CI 1.02-2.87, p = 0.048). The results of our study suggest that ficolin-2 rs7851696 gene polymorphism influences kidney allograft functions, with T allele increasing the risk of DGF and AR.
Collapse
Affiliation(s)
- Ewa Dabrowska-Zamojcin
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Michal Czerewaty
- Department of Physiology, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | - Damian Malinowski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
- Department of Physiology, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | | | - Leszek Domanski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111, Szczecin, Poland.
| |
Collapse
|
7
|
Karimian N, Yeh H. Opportunities for Therapeutic Intervention During Machine Perfusion. CURRENT TRANSPLANTATION REPORTS 2017; 4:141-148. [PMID: 29109929 PMCID: PMC5669266 DOI: 10.1007/s40472-017-0144-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW There is a vast discrepancy between the number of patients waiting for organ transplantation and the available donor organs. Ex vivo machine perfusion (MP) has emerged in an effort to expand the donor pool, by improving organ preservation, providing diagnostic information, and more recently, acting as a platform for organ improvement. This article reviews the current status of MP with a focus on its role in organ preconditioning and therapeutic interventions prior to transplantation. RECENT FINDINGS MP has allowed longer organ preservation compared to conventional static cold storage and allowed the use of organs that might otherwise have been discarded. Moreover, experimental studies have investigated the role of MP in reducing ischemia reperfusion injury of lungs, kidneys and livers by applying mesenchymal stem cells (MSCs), anti-inflammatory agents, cytotopic anticoagulants, and defatting cocktails. SUMMARY MP has opened a new era in the field of organ transplantation and tissue medication.
Collapse
Affiliation(s)
- Negin Karimian
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Center for Engineering in Medicine, Harvard Medical School, Boston, USA
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
8
|
Attenuating Ischemia-Reperfusion Injury in Kidney Transplantation by Perfusing Donor Organs With siRNA Cocktail Solution. Transplantation 2016; 100:743-52. [DOI: 10.1097/tp.0000000000000960] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB. Gene Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol 2015; 230:259-71. [PMID: 25196387 DOI: 10.1002/jcp.24791] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Shilpa Bhatia
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
10
|
Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant 2015; 5:52-67. [PMID: 26131407 PMCID: PMC4478600 DOI: 10.5500/wjt.v5.i2.52] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/12/2015] [Accepted: 04/29/2015] [Indexed: 02/05/2023] Open
Abstract
Ischemia/reperfusion injury is an unavoidable relevant consequence after kidney transplantation and influences short term as well as long-term graft outcome. Clinically ischemia/reperfusion injury is associated with delayed graft function, graft rejection, chronic rejection and chronic graft dysfunction. Ischemia/reperfusion affects many regulatory systems at the cellular level as well as in the renal tissue that result in a distinct inflammatory reaction of the kidney graft. Underlying factors of ischemia reperfusion include energy metabolism, cellular changes of the mitochondria and cellular membranes, initiation of different forms of cell death-like apoptosis and necrosis together with a recently discovered mixed form termed necroptosis. Chemokines and cytokines together with other factors promote the inflammatory response leading to activation of the innate immune system as well as the adaptive immune system. If the inflammatory reaction continues within the graft tissue, a progressive interstitial fibrosis develops that impacts long-term graft outcome. It is of particular importance in kidney transplantation to understand the underlying mechanisms and effects of ischemia/reperfusion on the graft as this knowledge also opens strategies to prevent or treat ischemia/reperfusion injury after transplantation in order to improve graft outcome.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Ischaemic kidney injury occurs during organ procurement and can lead to delayed graft function or nonviable grafts. The innate immune system is a key trigger of inflammation in renal ischaemia. This review discusses the components of innate immunity known to be involved in renal ischaemic reperfusion injury (IRI). Understanding how inflammatory damage is initiated in renal IRI is important for the development of targeted therapies aimed at preserving the donor organ. RECENT FINDINGS Much remains to be determined about the role of innate immune signalling in renal ischaemia/reperfusion injury. Recently, discoveries about complement receptors, Toll-like receptors (TLRs), NOD-like receptors (NLRs) and inflammasomes have opened new avenues of exploration. We are also now learning that macrophages, complement and TLR activation may have additional roles in renal repair following IRI. SUMMARY A greater understanding of the mechanisms that contribute to innate immune-mediated renal ischaemic damage will allow for the development of therapeutics targeted to the donor organ. New data suggest that treatment limited to specific receptors on specific cells, or localized to specific regions within the kidney, may provide novel approaches to maximize our use of donor organs, particularly those that may have been discarded due to prolonged preimplantation ischaemia.
Collapse
Affiliation(s)
- Kitty P Cheung
- Division of Nephrology and Hypertension, Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
12
|
Fensterer TF, Keeling WB, Patibandla PK, Pushpakumar S, Perez-Abadia G, Bauer P, Soni CV, Anderson GL, Maldonado C. Stabilizing endothelium of donor hearts with fusogenic liposomes reduces myocardial injury and dysfunction. J Surg Res 2012; 182:331-8. [PMID: 23140789 DOI: 10.1016/j.jss.2012.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/27/2012] [Accepted: 10/12/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Myocardial injury after heart transplantation is a consequence of pathophysiologic events initiated by local ischemia/reperfusion injury that is further aggravated by the inflammatory response due to blood exposure to the pump's artificial surfaces during cardiopulmonary bypass. The purpose of the present study was to determine the effectiveness of fusogenic lipid vesicles (FLVs) in enhancing the cardioprotective effect of St. Thomas organ preservation solution (ST). We hypothesized that donor hearts preserved with ST+FLVs will stabilize the endothelium during reperfusion, which, in turn, will reduce both endothelial barrier dysfunction and myocardial damage. METHODS To examine the effect of ST+FLVs therapy in vitro, C3b deposition and adhesion molecule expression studies were performed on human umbilical vein endothelial cells challenged with plastic contact-activated plasma. To assess the therapy in vivo, a cervical heterotopic working heart transplantation model in rats was used. Donor hearts were preserved for 1 h at 27°C (15 min) and 4°C (45 min) and, after transplantation, were followed up for 2 h. Left ventricular function and the blood cardiac troponin I levels were quantified. RESULTS Human umbilical vein endothelial cells treated with ST+FLVs had reduced C3b deposition and expression of adhesion molecules compared with ST alone (P < 0.05). Donor hearts receiving ST+FLVs therapy had reduced left ventricular dysfunction and cardiac troponin I compared with ST alone. CONCLUSIONS We concluded that FLVs enhanced the cardioprotective effect of ST and reduced postischemic left ventricular dysfunction and myocardial damage. The mechanism of protection appears to be associated with the stabilization of endothelial cell membranes owing to incorporation of FLV-derived lipids.
Collapse
Affiliation(s)
- Tathyana F Fensterer
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Systemic delivery of oncolytic viruses: hopes and hurdles. Adv Virol 2012; 2012:805629. [PMID: 22400027 PMCID: PMC3287020 DOI: 10.1155/2012/805629] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/18/2011] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in both surgery and chemoradiotherapy, mortality rates for advanced cancer remain high. There is a pressing need for novel therapeutic strategies; one option is systemic oncolytic viral therapy. Intravenous administration affords the opportunity to treat both the primary tumour and any metastatic deposits simultaneously. Data from clinical trials have shown that oncolytic viruses can be systemically delivered safely with limited toxicity but the results are equivocal in terms of efficacy, particularly when delivered with adjuvant chemotherapy. A key reason for this is the rapid clearance of the viruses from the circulation before they reach their targets. This phenomenon is mainly mediated through neutralising antibodies, complement activation, antiviral cytokines, and tissue-resident macrophages, as well as nonspecific uptake by other tissues such as the lung, liver and spleen, and suboptimal viral escape from the vascular compartment. A range of methods have been reported in the literature, which are designed to overcome these hurdles in preclinical models. In this paper, the potential advantages of, and obstacles to, successful systemic delivery of oncolytic viruses are discussed. The next stage of development will be the commencement of clinical trials combining these novel approaches for overcoming the barriers with systemically delivered oncolytic viruses.
Collapse
|