1
|
Lai Z, Niu X, Chen X, Lu F, Zhang Y, Yuan Y. Composite Microparticles of Fat Graft and GFR Matrigel Improved Volume Retention by Promoting Cell Migration and Vessel Regeneration. Aesthetic Plast Surg 2024; 48:1993-2001. [PMID: 38302709 DOI: 10.1007/s00266-022-03145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/09/2022] [Indexed: 02/03/2024]
Abstract
BACKGROUND The retention volume of autologous fat grafts decreases after transplantation due to limited nutrition infiltration and insufficient blood supply. Structural fat grafts and the 3M (multipoint, multitunnel, and multilayer) injection technique have been considered to improve the survival of grafts; however, it is difficult for surgeons to practice in the clinic because grafts tend to gather into a cluster, especially in large volume fat grafting. Therefore, we hypothesize that prefabricated microparticle fat grafts (PFMG) may improve the retention rate. METHODS The C57BL/6 mouse fat particles were embedded in growth factor-reduced (GFR)-Matrigel to detect cell migration by immunofluorescence staining in vitro. PFMG was prepared by mixing mouse fat particles and GFR Matrigel in a 1:1 volume ratio and injected subcutaneously into C57BL/6 mice. Fat particles mixed with PBS in equal volume served as control group. The grafts were harvested at 1, 4, 8, and 12 weeks after sacrifice. The retention rate of grafts at each time point was measured, and the structural alterations were detected by SEM. Fat necrosis and blood vessel density were evaluated by histological analysis. RESULTS CD34+ cells are migrated from the PFMG and formed a tree-like tubular network in the in vitro study. The retention rate was higher in the PFMG group than in the control group at week 12 (38% vs. 30%, p < 0.05). After transplantation, the dissociated structure of fat particles was maintained in PFMG by SEM analysis. Histological analysis of PFMG confirmed less fat necrosis and more blood vessel density in the PFMG group at the early stage than in the control group. The GFR Matrigel was displaced by adipose tissue with time. CONCLUSIONS In this study, we developed a novel fat grafting method, PFMG that dispersed fat grafts and maintained the structure after transplantation. High volume retention volume of PFMG was achieved by promoting cell migration and vessel regeneration. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Zhuhao Lai
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, 219 Moganshan Road, 310005, Hangzhou, People's Republic of China
| | - Xingtang Niu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xihang Chen
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yuchen Zhang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yi Yuan
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Sueters J, Groenman FA, Bouman MB, Roovers JPW, de Vries R, Smit TH, Huirne JAF. Tissue Engineering Neovagina for Vaginoplasty in Mayer-Rokitansky-Küster-Hauser Syndrome and Gender Dysphoria Patients: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:28-46. [PMID: 35819292 DOI: 10.1089/ten.teb.2022.0067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Vaginoplasty is a surgical solution to multiple disorders, including Mayer-Rokitansky-Küster-Hauser syndrome and male-to-female gender dysphoria. Using nonvaginal tissues for these reconstructions is associated with many complications, and autologous vaginal tissue may not be sufficient. The potential of tissue engineering for vaginoplasty was studied through a systematic bibliography search. Cell types, biomaterials, and signaling factors were analyzed by investigating advantages, disadvantages, complications, and research quantity. Search Methods: A systematic search was performed in Medline, EMBASE, Web of Science, and Scopus until March 8, 2022. Term combinations for tissue engineering, guided tissue regeneration, regenerative medicine, and tissue scaffold were applied, together with vaginoplasty and neovagina. The snowball method was performed on references and a Google Scholar search on the first 200 hits. Original research articles on human and/or animal subjects that met the inclusion (reconstruction of vaginal tissue and tissue engineering method) and no exclusion criteria (not available as full text; written in foreign language; nonoriginal study article; genital surgery other than neovaginal reconstruction; and vaginal reconstruction with autologous or allogenic tissue without tissue engineering or scaffold) were assessed. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist, the Newcastle-Ottawa Scale, and the Gold Standard Publication Checklist were used to evaluate article quality and bias. Outcomes: A total of 31 out of 1569 articles were included. Data extraction was based on cell origin and type, biomaterial nature and composition, host species, number of hosts and controls, neovaginal size, replacement fraction, and signaling factors. An overview of used tissue engineering methods for neovaginal formation was created, showing high variance of cell types, biomaterials, and signaling factors and the same topics were rarely covered multiple times. Autologous vaginal cells and extracellular matrix-based biomaterials showed preferential properties, and stem cells carry potential. However, quality confirmation of orthotopic cell-seeded acellular vaginal matrix by clinical trials is needed as well as exploration of signaling factors for vaginoplasty. Impact statement General article quality was weak to sufficient due to unreported cofounders and incomplete animal study descriptions. Article quality and heterogenicity made identification of optimal cell types, biomaterials, or signaling factors unreliable. However, trends showed that autologous cells prevent complications and compatibility issues such as healthy cell destruction, whereas stem cells prevent cross talk (interference of signaling pathways by signals from other cell types) and rejection (but need confirmation testing beyond animal trials). Natural (orthotopic) extracellular matrix biomaterials have great preferential properties that encourage future research, and signaling factors for vascularization are important for tissue engineering of full-sized neovagina.
Collapse
Affiliation(s)
- Jayson Sueters
- Department of Gynaecology and Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Freek A Groenman
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Centre of Expertise on Gender Dysphoria, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Mark-Bram Bouman
- Centre of Expertise on Gender Dysphoria, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Jan Paul W Roovers
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Ralph de Vries
- Medical Library, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theo H Smit
- Department of Gynaecology and Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Judith A F Huirne
- Department of Gynaecology and Amsterdam Reproduction and Development, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Research Institute Reproduction and Development, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Vos EL, Nakauchi M, Capanu M, Park BJ, Coit DG, Molena D, Yoon SS, Jones DR, Strong VE. Phase II Trial Evaluating Esophageal Anastomotic Reinforcement with a Biologic, Degradable, Extracellular Matrix after Total Gastrectomy and Esophagectomy. J Am Coll Surg 2022; 234:910-917. [PMID: 35426405 PMCID: PMC9128801 DOI: 10.1097/xcs.0000000000000113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND A biologic, degradable extracellular matrix (ECM) has been shown to support esophageal tissue remodeling, which could reduce the risk of anastomotic leak following total gastrectomy and esophagectomy. We evaluated the safety and efficacy of reinforcing the anastomosis with ECM in reducing anastomotic leak as compared to a matched cohort. STUDY DESIGN In this single-center, nonrandomized phase II trial, gastric or esophageal adenocarcinoma patients undergoing total gastrectomy or esophagectomy were recruited from November 2013 through December 2018. ECM was surgically wrapped circumferentially around the anastomosis. Anastomotic leak was assessed clinically and by contrast study and defined as clinically significant if requiring invasive treatment (grade 3 or higher). Anastomotic stenosis, other adverse events, symptoms, and dysphagia score were collected by standardized forms at regular follow-up visits at approximately postoperative days (POD) 21 and 90. Patients receiving ECM were compared to a cohort matched for surgery type and age. RESULTS ECM placement was not feasible in 9 of 75 patients (12%), resulting in 66 patients receiving ECM. Total gastrectomy was performed in 50 patients (76%) and esophagectomy in 16 (24%). Clinically significant anastomotic leak was diagnosed in 6 of 66 patients (9.1%) (3/50 [6.0%] after gastrectomy, 3/16 [18.8%] after esophagectomy); this rate did not differ from that in the matched cohort (p = 0.57). Stenosis requiring invasive treatment occurred in 8 patients (12.5%), and 10 patients (15.6%) reported not being able to eat a normal diet at POD 90. No adverse events related to ECM were reported. CONCLUSIONS Esophageal anastomotic reinforcement after total gastrectomy or esophagectomy with a biologic, degradable ECM was mostly feasible and safe, but was not associated with a statistically significant decrease in anastomotic leak.
Collapse
Affiliation(s)
- Elvira L Vos
- From the Gastric and Mixed Tumor Service (Vos, Nakauchi, Coit, Yoon, Strong), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Masaya Nakauchi
- From the Gastric and Mixed Tumor Service (Vos, Nakauchi, Coit, Yoon, Strong), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marinela Capanu
- Department of Surgery, Department of Epidemiology & Biostatistics (Capanu), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bernard J Park
- Thoracic Service (Park, Molena, Jones), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel G Coit
- From the Gastric and Mixed Tumor Service (Vos, Nakauchi, Coit, Yoon, Strong), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniela Molena
- Thoracic Service (Park, Molena, Jones), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Samuel S Yoon
- From the Gastric and Mixed Tumor Service (Vos, Nakauchi, Coit, Yoon, Strong), Memorial Sloan Kettering Cancer Center, New York, NY
| | - David R Jones
- Thoracic Service (Park, Molena, Jones), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vivian E Strong
- From the Gastric and Mixed Tumor Service (Vos, Nakauchi, Coit, Yoon, Strong), Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
4
|
Schizas D, Frountzas M, Sgouromallis E, Spartalis E, Mylonas KS, Papaioannou TG, Dimitroulis D, Nikiteas N. Esophageal defect repair by artificial scaffolds: a systematic review of experimental studies and proportional meta-analysis. Dis Esophagus 2021; 34:5917398. [PMID: 33016317 DOI: 10.1093/dote/doaa104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The traditional technique of gastrointestinal reconstruction of the esophagus after esophagectomy presents plenty of complications. Hence, tissue engineering has been introduced as an effective artificial alternative with potentially fewer complications. Three types of esophageal scaffolds have been used in experimental studies so far. The aim of our meta-analysis is to present the postoperative outcomes after esophageal replacement with artificial scaffolds and the investigation of possible factors that affect these outcomes. METHODS The present proportional meta-analysis was designed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and A MeaSurement Tool to Assess systematic Reviews guidelines. We searched Medline, Scopus, Clinicaltrials.gov, EMBASE, Cochrane Central Register of Controlled Trials CENTRAL, and Google Scholar databases from inception until February 2020. RESULTS Overall, 32 studies were included that recruited 587 animals. The pooled morbidity after esophageal scaffold implantation was 53.4% (95% CI = 36.6-70.0%). The pooled survival interval was 111.1 days (95% CI = 65.5-156.8 days). Graft stenosis (46%), postoperative dysphagia (15%), and anastomotic leak (12%) were the most common complications after esophageal scaffold implantation. Animals that underwent an implantation of an artificial scaffold in the thoracic part of their esophagus presented higher survival rates than animals that underwent scaffold implantation in the cervical or abdominal part of their esophagus (P < 0.001 and P = 0.011, respectively). CONCLUSION Tissue engineering seems to offer an effective alternative for the repair of esophageal defects in animal models. Nevertheless, issues like graft stenosis and lack of motility of the esophageal scaffolds need to be addressed in future experimental studies before scaffolds can be tested in human trials.
Collapse
Affiliation(s)
- Dimitrios Schizas
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece.,Hellenic Minimally Invasive and Robotic Surgery Study Group, Athens, Greece
| | - Maximos Frountzas
- First Propaedeutic Department of Surgery, Medical School, National and Kapodistrian University of Athens, Hippocration General Hospital, Athens, Greece.,Hellenic Minimally Invasive and Robotic Surgery Study Group, Athens, Greece
| | - Emmanouil Sgouromallis
- Third Department of Surgery, Athens General Hospital "Georgios Gennimatas", Athens, Greece.,Hellenic Minimally Invasive and Robotic Surgery Study Group, Athens, Greece
| | | | - Konstantinos S Mylonas
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Theodore G Papaioannou
- First Department of Cardiology, Biomedical Engineering Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Hellenic Minimally Invasive and Robotic Surgery Study Group, Athens, Greece.,Second Propedeutic Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Nikiteas
- Hellenic Minimally Invasive and Robotic Surgery Study Group, Athens, Greece.,Second Propedeutic Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
5
|
Kanetaka K, Eguchi S. Regenerative medicine for the upper gastrointestinal tract. Regen Ther 2020; 15:129-137. [PMID: 33426211 PMCID: PMC7770370 DOI: 10.1016/j.reth.2020.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The main surgical strategy for gastrointestinal tract malignancy is en bloc resection, which consists of not only resection of the involved organs but also simultaneous resection of the surrounding or adjacent mesenteries that contain lymph vessels and nodes. After resection of the diseased organs, the defect of the gastrointestinal conduit is replaced with organs located downstream, such as the stomach and jejunum. However, esophageal and gastric reconstruction using these natural substitutes is associated with a diminished quality of life due to the loss of the reserve function, damage to the antireflux barrier, and dumping syndrome. Thus, replacement of the deficit after resection with the patient's own regenerated tissue to compensate for the lost function and tissue using regenerative medicine will be an ideal treatment. Many researchers have been trying to construct artificial organs through tissue engineering techniques; however, none have yet succeeded in growing a whole organ because of the complicated functions these organs perform, such as the processing and absorption of nutrients. While exciting results have been reported with regard to tissue engineering techniques concerning the upper gastrointestinal tract, such as the esophagus and stomach, most of these achievements have been observed in animal models, and few successful approaches in the clinical setting have been reported for the replacement of mucosal defects. We review the recent progress in regenerative medicine in relation to the upper gastrointestinal tract, such as the esophagus and stomach. We also focus on the functional capacity of regenerated tissue and its role as a culture system to recapitulate the mechanisms underlying infectious disease. With the emergence of technology such as the fabrication of decellularized constructs, organoids and cell sheet medicine, collaboration between gastrointestinal surgery and regenerative medicine is expected to help establish novel therapeutic modalities in the future.
Collapse
Affiliation(s)
- Kengo Kanetaka
- Tissue Engineering and Regenerative Therapeutics in Gastrointestinal Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
6
|
Amigo N, Zubieta C, Riganti JM, Ramirez M, Renda P, Lovera R, Pascaner A, Vigliano C, Craiem D, Young DA, Gilbert TW, Nieponice A. Biomechanical Features of Reinforced Esophageal Hiatus Repair in a Porcine Model. J Surg Res 2020; 246:62-72. [DOI: 10.1016/j.jss.2019.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
|
7
|
Saldin LT, Patel S, Zhang L, Huleihel L, Hussey GS, Nascari DG, Quijano LM, Li X, Raghu D, Bajwa AK, Smith NG, Chung CC, Omstead AN, Kosovec JE, Jobe BA, Turner NJ, Zaidi AH, Badylak SF. Extracellular Matrix Degradation Products Downregulate Neoplastic Esophageal Cell Phenotype. Tissue Eng Part A 2019; 25:487-498. [PMID: 30259795 DOI: 10.1089/ten.tea.2018.0105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPACT STATEMENT Extracellular matrix (ECM) biomaterials were used to treat esophageal cancer patients after cancer resection and promoted regrowth of normal mucosa without recurrence of cancer. The present study investigates the mechanisms by which these materials were successful to prevent the cancerous phenotype. ECM downregulated neoplastic esophageal cell function (proliferation, metabolism), but normal esophageal epithelial cells were unaffected in vitro, and suggests a molecular basis (downregulation of PI3K-Akt, cell cycle) for the promising clinical results. The therapeutic effect appeared to be enhanced using homologous esophageal ECM. This study suggests that ECM can be further investigated to treat cancer patients after resection or in combination with targeted therapy.
Collapse
Affiliation(s)
- Lindsey T Saldin
- 1 Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shil Patel
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Li Zhang
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Luai Huleihel
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George S Hussey
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David G Nascari
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lina M Quijano
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue Li
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Divya Raghu
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anant K Bajwa
- 1 Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicholas G Smith
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher C Chung
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ashten N Omstead
- 3 Esophageal and Lung Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Juliann E Kosovec
- 3 Esophageal and Lung Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Blair A Jobe
- 3 Esophageal and Lung Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Neill J Turner
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,4 Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ali H Zaidi
- 3 Esophageal and Lung Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,4 Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Zakhem E, Raghavan S, Suhar RA, Bitar KN. Bioengineering and regeneration of gastrointestinal tissue: where are we now and what comes next? Expert Opin Biol Ther 2019; 19:527-537. [PMID: 30880502 DOI: 10.1080/14712598.2019.1595579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The field of tissue engineering and regenerative medicine has been applied to the gastrointestinal (GI) tract for a couple decades. Several achievements have been accomplished that provide promising tools for treating diseases of the GI tract. AREAS COVERED The work described in this review covers the traditional aspect of using cells and scaffolds to replace parts of the tract. Several studies investigated different types of biomaterials and different types of cells. A more recent approach involved the use of gut-derived organoid units that can differentiate into all gut cell layers. The most recent approach introduced the use of organ-on-a-chip concept to understand the physiology and pathophysiology of the GI system. EXPERT OPINION The different approaches tackle the diseases of the GI tract from different perspectives. While all these different approaches provide a promising and encouraging future for this field, the translational aspect is yet to be studied.
Collapse
Affiliation(s)
- Elie Zakhem
- a Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine , Winston Salem , NC , USA.,b Section on Gastroenterology , Wake Forest School of Medicine , Winston Salem , NC , USA
| | - Shreya Raghavan
- c Department of Materials Science and Engineering , University of Michigan , Ann Arbor , MI , USA
| | - Riley A Suhar
- d Department of Materials Science and Engineering , Stanford University , Stanford , CA , USA
| | - Khalil N Bitar
- a Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine , Winston Salem , NC , USA.,b Section on Gastroenterology , Wake Forest School of Medicine , Winston Salem , NC , USA.,e Virginia Tech-Wake Forest School of Biomedical Engineering Sciences , Winston-Salem , NC , USA
| |
Collapse
|
9
|
Chung EJ. Bioartificial Esophagus: Where Are We Now? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:313-332. [DOI: 10.1007/978-981-13-0445-3_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Kanetaka K, Kobayashi S, Eguchi S. Regenerative medicine for the esophagus. Surg Today 2017; 48:739-747. [PMID: 29214351 DOI: 10.1007/s00595-017-1610-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022]
Abstract
Advances in tissue engineering techniques have made it possible to use human cells as biological material. This has enabled pharmacological studies to be conducted to investigate drug effects and toxicity, to clarify the mechanisms underlying diseases, and to elucidate how they compensate for impaired organ function. Many researchers have tried to construct artificial organs using these techniques, but none has succeeded in growing a whole organ. Unlike other digestive organs with complicated functions, such as the processing and absorption of nutrients, the esophagus has the relatively simple function of transporting content, which can be replicated easily by a substitute. In regenerative medicine, various combinations of materials have been applied, including scaffolding, cell sources, and bioreactors. Exciting results of tissue engineering techniques for the esophagus have been reported. In animal models, replacing full-thickness and full-circumferential defects remains challenging because of stenosis and leakage after implantation. Although many reports have manipulated various scaffolds, most have emphasized the importance of both epithelial and mesenchymal cells for the prevention of stenosis. However, the results of repair of partial full-thickness defects and mucosal defects have been promising. Two successful approaches for the replacement of mucosal defects in a clinical setting have been reported, although in contrast to the many animal models, there are few pilot studies in humans. We review the recent results and evaluate the future of regenerative medicine for the esophagus.
Collapse
Affiliation(s)
- Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shinichiro Kobayashi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
11
|
Trecartin A, Grikscheit T. Tissue Engineering Functional Gastrointestinal Regions: The Importance of Stem and Progenitor Cells. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025700. [PMID: 28320829 DOI: 10.1101/cshperspect.a025700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The intestine shows extraordinary regenerative potential that might be harnessed to alleviate numerous morbid and lethal human diseases. The intestinal stem cells regenerate the epithelium every 5 days throughout an individual's lifetime. Understanding stem-cell signaling affords power to influence the niche environment for growing intestine. The manifold approaches to tissue engineering may be organized by variations of three basic components required for the transplantation and growth of stem/progenitor cells: (1) cell delivery materials or scaffolds; (2) donor cells including adult stem cells, induced pluripotent stem cells, and in vitro expansion of isolated or cocultured epithelial, smooth muscle, myofibroblasts, or nerve cells; and (3) environmental modulators or biopharmaceuticals. Tissue engineering has been applied to the regeneration of every major region of the gastrointestinal tract from esophagus to colon, with scientists around the world aiming to carry these techniques into human therapy.
Collapse
Affiliation(s)
- Andrew Trecartin
- Department of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Tracy Grikscheit
- Department of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California 90027
| |
Collapse
|
12
|
Turner NJ, Johnson SA, Foster LJR, Badylak SF. Sutureless nerve repair with ECM bioscaffolds and laser-activated chitosan adhesive. J Biomed Mater Res B Appl Biomater 2017; 106:1698-1711. [DOI: 10.1002/jbm.b.33975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/21/2017] [Accepted: 07/29/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Neill J. Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania 15219
- Department of Surgery; University of Pittsburgh; Pittsburgh Pennsylvania 15219
| | - Scott A. Johnson
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania 15219
| | - Leslie J. R. Foster
- Biopolymer Research Group; School of Biotechnology and Bimolecular Sciences, The University of New South Wales; Sydney Australia
- Save Sight Institute, Faculty of Medicine, University of Sydney; Sydney Australia
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania 15219
- Department of Surgery; University of Pittsburgh; Pittsburgh Pennsylvania 15219
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania 15260
| |
Collapse
|
13
|
Liang R, Knight K, Easley D, Palcsey S, Abramowitch S, Moalli PA. Towards rebuilding vaginal support utilizing an extracellular matrix bioscaffold. Acta Biomater 2017; 57:324-333. [PMID: 28487243 PMCID: PMC5639927 DOI: 10.1016/j.actbio.2017.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/15/2022]
Abstract
As an alternative to polypropylene mesh, we explored an extracellular matrix (ECM) bioscaffold derived from urinary bladder matrix (MatriStem™) in the repair of vaginal prolapse. We aimed to restore disrupted vaginal support simulating application via transvaginal and transabdominal approaches in a macaque model focusing on the impact on vaginal structure, function, and the host immune response. In 16 macaques, after laparotomy, the uterosacral ligaments and paravaginal attachments to pelvic side wall were completely transected (IACUC# 13081928). 6-ply MatriStem was cut into posterior and anterior templates with a portion covering the vagina and arms simulating uterosacral ligaments and paravaginal attachments, respectively. After surgically exposing the correct anatomical sites, in 8 animals, a vaginal incision was made on the anterior and posterior vagina and the respective scaffolds were passed into the vagina via these incisions (transvaginal insertion) prior to placement. The remaining 8 animals underwent the same surgery without vaginal incisions (transabdominal insertion). Three months post implantation, firm tissue bands extending from vagina to pelvic side wall appeared in both MatriStem groups. Experimental endpoints examining impact of MatriStem on the vagina demonstrated that vaginal biochemical and biomechanical parameters, smooth muscle thickness and contractility, and immune responses were similar in the MatriStem no incision group and sham-operated controls. In the MatriStem incision group, a 41% decrease in vaginal stiffness (P=0.042), a 22% decrease in collagen content (P=0.008) and a 25% increase in collagen subtypes III/I was observed vs. Sham. Active MMP2 was increased in both Matristem groups vs. Sham (both P=0.002). This study presents a novel application of ECM bioscaffolds as a first step towards the rebuilding of vaginal support. STATEMENT OF SIGNIFICANCE Pelvic organ prolapse is a common condition related to failure of the supportive soft tissues of the vagina; particularly at the apex and mid-vagina. Few studies have investigated methods to regenerate these failed structures. The overall goal of the study was to determine the feasibility of utilizing a regenerative bioscaffold in prolapse applications to restore apical (level I) and lateral (level II) support to the vagina without negatively impacting vaginal structure and function. The significance of our findings is two fold: 1. Implantation of properly constructed extracellular matrix grafts promoted rebuilding of level I and level II support to the vagina and did not negatively impact the overall functional, morphological and biochemical properties of the vagina. 2. The presence of vaginal incisions in the transvaginal insertion of bioscaffolds may compromise vaginal structural integrity in the short term.
Collapse
Affiliation(s)
- Rui Liang
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology, Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Katrina Knight
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Deanna Easley
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Stacy Palcsey
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Steven Abramowitch
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Pamela A Moalli
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology, Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Abstract
The gastrointestinal (GI) tract is responsible for conducting multiple functions including motility, digestion and absorption. In gastrointestinal disorders, some of those functions are weakened or lost. Excision of the diseased segment of the GI tract is a common treatment; however, patients suffer from complications and low quality of life. Functional replacements are therefore needed to restore, repair or replace damaged parts of the tract. Tissue engineering and regenerative medicine provide an alternative approach to reconstruct different segments of the GI tract. The GI tract is a complex system with multiple cell types and layers. In previous years, bioengineering approaches focused on identifying an optimal cell source and scaffolding material to engineer GI tissues. In this editorial, we address some of our thoughts with regard to the recent discoveries in bioengineering the GI tract.
Collapse
Affiliation(s)
- Khalil N Bitar
- a Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine , Winston Salem , NC , USA.,b Department of Molecular Medicine and Translational Sciences , Wake Forest School of Medicine , Winston Salem , NC , USA.,c Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences , Winston Salem , NC , USA
| | - Elie Zakhem
- a Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine , Winston Salem , NC , USA.,b Department of Molecular Medicine and Translational Sciences , Wake Forest School of Medicine , Winston Salem , NC , USA
| |
Collapse
|
15
|
Abstract
Functions of the gastrointestinal tract include motility, digestion and absorption of nutrients. These functions are mediated by several specialized cell types including smooth muscle cells, neurons, interstitial cells and epithelial cells. In gastrointestinal diseases, some of the cells become degenerated or fail to accomplish their normal functions. Surgical resection of the diseased segments of the gastrointestinal tract is considered the gold-standard treatment in many cases, but patients might have surgical complications and quality of life can remain low. Tissue engineering and regenerative medicine aim to restore, repair, or regenerate the function of the tissues. Gastrointestinal tissue engineering is a challenging process given the specific phenotype and alignment of each cell type that colonizes the tract - these properties are critical for proper functionality. In this Review, we summarize advances in the field of gastrointestinal tissue engineering and regenerative medicine. Although the findings are promising, additional studies and optimizations are needed for translational purposes.
Collapse
Affiliation(s)
- Khalil N Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way NE, Winston Salem, North Carolina 27101, USA.,Department of Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston Salem, North Carolina 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, 391 Technology Way NE, Winston Salem, North Carolina 27101, USA
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way NE, Winston Salem, North Carolina 27101, USA.,Department of Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston Salem, North Carolina 27157, USA
| |
Collapse
|
16
|
Swinehart IT, Badylak SF. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn 2016; 245:351-60. [PMID: 26699796 DOI: 10.1002/dvdy.24379] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
During normal morphogenesis the extracellular matrix (ECM) influences cell motility, proliferation, apoptosis, and differentiation. Tissue engineers have attempted to harness the cell signaling potential of ECM to promote the functional reconstruction, if not regeneration, of injured or missing adult tissues that otherwise heal by the formation of scar tissue. ECM bioscaffolds, derived from decellularized tissues, have been used to promote the formation of site appropriate, functional tissues in many clinical applications including skeletal muscle, fibrocartilage, lower urinary tract, and esophageal reconstruction, among others. These scaffolds function by the release or exposure of growth factors and cryptic peptides, modulation of the immune response, and recruitment of progenitor cells. Herein, we describe this process of ECM induced constructive remodeling and examine similarities to normal tissue morphogenesis.
Collapse
Affiliation(s)
- Ilea T Swinehart
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Sicari BM, Dziki JL, Badylak SF. Strategies for functional bioscaffold-based skeletal muscle reconstruction. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:256. [PMID: 26605302 DOI: 10.3978/j.issn.2305-5839.2015.09.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue engineering and regenerative medicine-based strategies for the reconstruction of functional skeletal muscle tissue have included cellular and acellular approaches. The use of acellular biologic scaffold material as a treatment for volumetric muscle loss (VML) in five patients has recently been reported with a generally favorable outcome. Further studies are necessary for a better understanding of the mechanism(s) behind acellular bioscaffold-mediated skeletal muscle repair, and for combination cell-based/bioscaffold based approaches. The present overview highlights the current thinking on bioscaffold-based remodeling including the associated mechanisms and the future of scaffold-based skeletal muscle reconstruction.
Collapse
Affiliation(s)
- Brian M Sicari
- 1 McGowan Institute for Regenerative Medicine, 2 Department of Surgery, 3 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenna L Dziki
- 1 McGowan Institute for Regenerative Medicine, 2 Department of Surgery, 3 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, 2 Department of Surgery, 3 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 2015; 84:25-34. [DOI: 10.1016/j.ymeth.2015.03.005] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
|
19
|
Abstract
There is an increasing worldwide shortage of organs and cells for transplantation in patients with end-stage organ failure or cellular dysfunction. This shortage could be resolved by the transplantation of organs or cells from pigs into humans. What competing approaches might provide support for the patient with end-stage organ or cell failure? Four main approaches are receiving increasing attention - (i) implantable mechanical devices, although these are currently limited almost entirely to devices aimed at supporting or replacing the heart, (ii) stem cell technology, at present directed mainly to replace absent or failing cells, but which is also fundamental to progress in (iii) tissue engineering and regenerative medicine, in which the ultimate aim is to replace an entire organ. A final novel potential approach is (iv) blastocyst complementation. These potential alternative approaches are briefly reviewed, and comments added on their current status and whether they are now (or will soon become) realistic alternative therapies to xenotransplantation.
Collapse
|
20
|
Londono R, Badylak SF. Regenerative Medicine Strategies for Esophageal Repair. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:393-410. [PMID: 25813694 DOI: 10.1089/ten.teb.2015.0014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pathologies that involve the structure and/or function of the esophagus can be life-threatening. The esophagus is a complex organ comprising nonredundant tissue that does not have the ability to regenerate. Currently available interventions for esophageal pathology have limited success and are typically associated with significant morbidity. Hence, there is currently an unmet clinical need for effective methods of esophageal repair. The present article presents a review of esophageal disease along with the anatomic and functional consequences of each pathologic process, the shortcomings associated with currently available therapies, and the latest advancements in the field of regenerative medicine with respect to strategies for esophageal repair from benchtop to bedside.
Collapse
Affiliation(s)
- Ricardo Londono
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng 2014; 43:577-92. [PMID: 25213186 DOI: 10.1007/s10439-014-1103-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022]
Abstract
Successful regenerative medicine strategies for functional tissue reconstruction include the in situ placement of acellular materials composed of the extracellular matrix (ECM) or individual components of the ECM. The composition and ultrastructure of these materials vary depending on multiple factors including the tissue source and species from which the materials are harvested, the methods of manufacture, the efficiency of decellularization, post-processing modifications such as chemical cross-linking or solubilization, and the methods of terminal sterilization. Appropriately configured materials have the ability to modulate different stages of the healing response by inducing a shift from a process of inflammation and scar tissue formation to one of constructive remodeling and functional tissue restoration. The events that facilitate such a dramatic change during the biomaterial-host interaction are complex and necessarily involve both the immune system and mechanisms of stem cell recruitment, growth, and differentiation. The present manuscript reviews the composition of biologic scaffolds, the methods and recommendations for manufacture, the mechanisms of the biomaterial-host interaction, and the clinical application of this regenerative medicine approach.
Collapse
|
22
|
Sicari BM, Zhang L, Londono R, Badylak SF. An assay to quantify chemotactic properties of degradation products from extracellular matrix. Methods Mol Biol 2013; 1202:103-10. [PMID: 24155230 DOI: 10.1007/7651_2013_37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The endogenous chemotaxis of cells toward sites of tissue injury and/or biomaterial implantation is an important component of the host response. Implanted biomaterials capable of recruiting host stem/progenitor cells to a site of interest may obviate challenges associated with cell transplantation. An assay for the identification and quantification of chemotaxis induced by surgically placed biologic scaffolds composed of extracellular matrix is described herein.
Collapse
Affiliation(s)
- Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|