1
|
Sympathetic System in Wound Healing: Multistage Control in Normal and Diabetic Skin. Int J Mol Sci 2023; 24:ijms24032045. [PMID: 36768369 PMCID: PMC9916402 DOI: 10.3390/ijms24032045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In this review, we discuss sympathetic regulation in normal and diabetic wound healing. Experimental denervation studies have confirmed that sympathetic nerve endings in skin have an important and complex role in wound healing. Vasoconstrictor neurons secrete norepinephrine (NE) and neuropeptide Y (NPY). Both mediators decrease blood flow and interact with inflammatory cells and keratinocytes. NE acts in an ambiguous way depending on receptor type. Beta2-adrenoceptors could be activated near sympathetic endings; they suppress inflammation and re-epithelialization. Alpha1- and alpha2-adrenoceptors induce inflammation and activate keratinocytes. Sudomotor neurons secrete acetylcholine (ACh) and vasoactive intestinal peptide (VIP). Both induce vasodilatation, angiogenesis, inflammation, keratinocytes proliferation and migration. In healthy skin, all effects are important for successful healing. In treatment of diabetic ulcers, mediator balance could be shifted in different ways. Beta2-adrenoceptors blockade and nicotinic ACh receptors activation are the most promising directions in treatment of diabetic ulcers with neuropathy, but they require further research.
Collapse
|
2
|
Huang JJ, Xia CJ, Wei Y, Yao Y, Dong MW, Lin KZ, Yu LS, Gao Y, Fan YY. Annexin A1-derived peptide Ac2-26 facilitates wound healing in diabetic mice. Wound Repair Regen 2020; 28:772-779. [PMID: 32856346 DOI: 10.1111/wrr.12860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
Impaired wound healing is a common complication of diabetes. In diabetic wounds, macrophages present dysfunctional efferocytosis and abnormal phenotypes, which could result in excessive neutrophil accumulation and prolonged inflammation, thereby eventually hindering wound repair. ANXA1 N-terminal peptide Ac2-26 exhibits a high potential in mitigating inflammation and improving repair; however, its efficacy in diabetic wound repair remains unclear. In this study, a cutaneous excisional wound model was built in genetically diabetic mice. Ac2-26 or a vehicle solution was employed locally in wound sites. Subsequently, wound zones were measured and sampled at different time intervals post-wounding. Using hematoxylin-eosin and Masson's trichrome staining, we observed the histopathological variations and collagen deposition in wound samples. Based on immunohistochemistry and immunofluorescence, the numbers of neutrophils, macrophages, and CD206-positive macrophages in the wound samples were determined. Cytokine expression in wound samples was studied by immunoblot assay. Results showed that Ac2-26 treatment could facilitate diabetic wound closure, down-regulate the number of neutrophils, and improve angiogenesis and collagen deposition. In addition, Ac2-26 application expedited macrophage recruitment and up-regulated the percentage of macrophages expressing CD206, which is a marker for M2 macrophages. Moreover, Ac2-26 inhibited the expressions of TNF-α and IL-6 and up-regulated the expressions of IL-10, TGF-β, and VEGFA during diabetic wound healing. Hence, based on the aforementioned findings, Ac2-26 application in diabetic wounds could exert anti-inflammatory and pro-repair effects by reducing neutrophil accumulation and facilitating M2 macrophage development.
Collapse
Affiliation(s)
- Jun-Jie Huang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Chong-Jian Xia
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Ying Wei
- Taizhou Municipal Hospital of Zhejiang Province, Taizhou, PR China
| | - Yi Yao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Miao-Wu Dong
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Ke-Zhi Lin
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Lin-Sheng Yu
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yuan Gao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yan-Yan Fan
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
3
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
4
|
Jiang S, Li SC, Huang C, Chan BP, Du Y. Physical Properties of Implanted Porous Bioscaffolds Regulate Skin Repair: Focusing on Mechanical and Structural Features. Adv Healthc Mater 2018; 7:e1700894. [PMID: 29334185 DOI: 10.1002/adhm.201700894] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/23/2017] [Indexed: 01/07/2023]
Abstract
Porous bioscaffolds are applied to facilitate skin repair since the early 1990s, but a perfect regeneration outcome has yet to be achieved. Until now, most efforts have focused on modulating the chemical properties of bioscaffolds, while physical properties are traditionally overlooked. Recent advances in mechanobiology and mechanotherapy have highlighted the importance of biomaterials' physical properties in the regulation of cellular behaviors and regenerative processes. In skin repair, the mechanical and structural features of porous bioscaffolds are two major physical properties that determine therapeutic efficacy. Here, first an overview of natural skin repair with an emphasis on the major biophysically sensitive cell types involved in this multistage process is provided, followed by an introduction of the four roles of bioscaffolds as skin implants. Then, how the mechanical and structural features of bioscaffolds influence these four roles is discussed. The mechanical and structural features of porous bioscaffolds should be tailored to balance the acceleration of wound closure and functional improvements of the repaired skin. This study emphasizes that decoupling and precise control of the mechanical and structural features of bioscaffolds are significant aspects that should be considered in future biomaterial optimization, which can build a foundation to ultimately achieve perfect skin regeneration outcomes.
Collapse
Affiliation(s)
- Shumeng Jiang
- Department of Biomedical Engineering School of Medicine Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| | - Sabrina Cloud Li
- Department of Biomedical Engineering School of Medicine Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| | - Chenyu Huang
- Beijing Tsinghua Changgung Hospital Tsinghua University Beijing 102218 China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory Department of Mechanical Engineering The University of Hong Kong Hong Kong Special Administrative Region China
| | - Yanan Du
- Department of Biomedical Engineering School of Medicine Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
5
|
Zdanowski R, Leśniak M, Karczmarczyk U, Saracyn M, Bilski M, Kiepura A, Kubiak JZ, Lewicki S. The Effects of Isopropyl Methylphosphono-Fluoridate (IMPF) Poisoning on Tumor Growth and Angiogenesis in BALB/C Mice. Ann Transplant 2018; 23:105-111. [PMID: 29422483 PMCID: PMC6248063 DOI: 10.12659/aot.906548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Acetylcholinesterase (AChE) and cholinergic receptors have an important role in the immune system and angiogenesis. This work evaluated the effects of isopropyl methylphosphonofluoridate (IMPF), an irreversible inhibitor of AChE, on tumor growth and selected parameters associated with tumor angiogenesis. Material/Methods Experiments were performed on male BALB/c mice exposed to IMPF (study group) or saline buffer (control group) and inoculated with L-1 sarcoma; the number of new blood vessels (TIA test) and the level of αvβ3 integrin (131I-MAb-antiβ3 assay) were analyzed at seven, 14, or 21 days after implantation of the tumor cells. Results The IMPF poisoning affected tumor angiogenesis (TIA test). There was a statistically significant increase in the number of newly forming blood vessels in the group subjected to IMPF and inoculated with tumor cells. Conclusions This study showed that IMPF had a significant effect on the regulation of lymphocyte-induced angiogenesis and the modulation of angiogenic and pro-inflammatory cytokines secretion. The observed effects suggest involvement of neuronal and/or non-neuronal cholinergic signaling pathway.
Collapse
Affiliation(s)
- Robert Zdanowski
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Monika Leśniak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Urszula Karczmarczyk
- National Centre For Nuclear Research, Radioisotope Centre Polatom, Otwock, Poland
| | - Marek Saracyn
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw, Poland
| | - Marek Bilski
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw, Poland
| | - Anna Kiepura
- Department of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Jacek Z Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland.,CNRS UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, Rennes, France.,University Rennes 1, Faculty of Medicine, Rennes, France
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
6
|
Li JY, Jiang SK, Wang LL, Zhang MZ, Wang S, Jiang ZF, Liu YL, Cheng H, Zhang M, Zhao R, Guan DW. α7-nAChR Activation Has an Opposite Effect on Healing of Covered and Uncovered Wounds. Inflammation 2017; 41:474-484. [PMID: 29196961 DOI: 10.1007/s10753-017-0703-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Ho J, Walsh C, Yue D, Dardik A, Cheema U. Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 2017; 6:191-209. [PMID: 28616360 PMCID: PMC5467128 DOI: 10.1089/wound.2016.0723] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
Significance: With an aging population leading to an increase in diabetes and associated cutaneous wounds, there is a pressing clinical need to improve wound-healing therapies. Recent Advances: Tissue engineering approaches for wound healing and skin regeneration have been developed over the past few decades. A review of current literature has identified common themes and strategies that are proving successful within the field: The delivery of cells, mainly mesenchymal stem cells, within scaffolds of the native matrix is one such strategy. We overview these approaches and give insights into mechanisms that aid wound healing in different clinical scenarios. Critical Issues: We discuss the importance of the biomimetic niche, and how recapitulating elements of the native microenvironment of cells can help direct cell behavior and fate. Future Directions: It is crucial that during the continued development of tissue engineering in wound repair, there is close collaboration between tissue engineers and clinicians to maintain the translational efficacy of this approach.
Collapse
Affiliation(s)
- Jasmine Ho
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| | - Claire Walsh
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| | - Dominic Yue
- Department of Plastic and Reconstructive Surgery, Royal Stoke University Hospital, Stoke-on-Trent, United Kingdom
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Umber Cheema
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| |
Collapse
|
8
|
Sakamoto M, Morimoto N, Ogino S, Jinno C, Taira T, Suzuki S. Efficacy of gelatin gel sheets in sustaining the release of basic fibroblast growth factor for murine skin defects. J Surg Res 2015; 201:378-87. [PMID: 27020822 DOI: 10.1016/j.jss.2015.11.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gelatin has been used as a material sustaining the release of basic fibroblast growth factor (bFGF), which promotes fibroblast proliferation and capillary formation and accelerates wound healing. In the application of these materials, bFGF is impregnated immediately before application, and it is difficult to conform the shape to the wound. In this study, we prepared a pliable and plastic gelatin gel sheet (GGS) that sustains bFGF and conforms to the shape of the wound as a result of cross-linking just before application. In addition, we examined the sustained release profile of bFGF from GGS and its effect on wound healing in murine skin defects. MATERIALS AND METHODS A 13-wt% gelatin solution was mixed with bFGF before cross-linking with 1% glutaraldehyde solution. GGSs impregnated with 7 μg/cm(2) of bFGF were incubated in phosphate-buffered saline and collagenase solution, and GGS degradation and bFGF release were evaluated. In the murine experiments, GGSs treated without bFGF and GGSs impregnated with 1, 3.5, 7, or 14 μg/cm(2) of bFGF were applied to full-thickness skin defects created on the backs of C57BL/6JJcl mice, and the wound closure, epithelial length, extent of granulation tissue and capillary formation were compared. RESULTS bFGF was released according to the degradation of GGS in phosphate-buffered saline, and the remaining bFGF was released in collagenase solution. In the animal studies, epithelialization was accelerated in the GGSs treated with 1 and 3.5 μg/cm(2) of bFGF, and granulation tissue formation and angiogenesis were promoted based on the amount of bFGF impregnated into the GGS. CONCLUSIONS GGS impregnated with bFGF is capable of sustaining the release of bFGF, with consequent accelerated epithelialization, granulation tissue formation, and angiogenesis in vivo. GGS is a novel and promising wound dressing that sustains bFGF and can be adapted to the shape of various wounds in the treatment of both acute and chronic wounds.
Collapse
Affiliation(s)
- Michiharu Sakamoto
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Osaka, Japan.
| | - Shuichi Ogino
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Chizuru Jinno
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | | | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
9
|
Ogino S, Morimoto N, Sakamoto M, Jinno C, Taira T, Suzuki S. Efficacy of gelatin gel sheets sustaining epidermal growth factor for murine skin defects. J Surg Res 2015; 201:446-54. [PMID: 27020831 DOI: 10.1016/j.jss.2015.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/05/2015] [Accepted: 11/18/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epidermal growth factor (EGF) plays an important role in wound healing. However, EGF must be applied daily due to rapid inactivation in vivo. We investigated the sustained release of EGF from gelatin gel sheets (GGSs) and the efficacy of GGSs impregnated with EGF for promoting wound healing. MATERIALS AND METHODS GGSs impregnated with EGF were prepared by cross-linking via glutaraldehyde to gelatin solution containing EGF. The sustained release of EGF and the bioactivity of released EGF were evaluated. Then, three kinds of GGSs containing NSS (normal saline solution; NSS group), 2.5 μg of EGF (EGF-L group), or 25 μg of EGF (EGF-H group) were applied to full-thickness skin defects created on the backs of mice. The wounds covered with polyurethane film without GGS were used as a control (PUF group). The wound area, neoepithelium length, regenerated granulation tissue, and newly formed capillaries were evaluated. RESULTS EGF was sustained and released from GGS as it degraded. The bioactivity of released EGF was confirmed. EGF-L group promoted the neoepithelium length, regenerated granulation tissue, and newly formed capillaries compared with those in the PUF and NSS groups. The area of regenerated granulation tissue in the NSS group (week 1: 2.6 + 0.2 mm(2), week 2: 2.8 + 0.3 mm(2)) was larger than that in the PUF group (week 1: 0.6 + 0.1 mm(2), week 2: 1.0 + 0.1 mm(2)). The area of newly formed capillaries in the EGF-L group (9967 + 1903 μm(2)) was larger than that of the EGF-H group (3485 + 1050 μm(2)). CONCLUSIONS GGSs impregnated with EGF-L showed promising results regarding wound healing.
Collapse
Affiliation(s)
- Shuichi Ogino
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Japan.
| | - Michiharu Sakamoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Jinno
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Exploration of the wound healing effect of topical administration of nicotine in combination with collagen scaffold in a rabbit model. J Artif Organs 2015; 19:167-74. [PMID: 26497310 DOI: 10.1007/s10047-015-0873-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Nicotine has been reported to prolong the wound healing; however, we showed that the topical application of 10(-4) M nicotine promoted murine wound healing. The objective of this study was to explore the wound healing effects of nicotine in combination with collagen scaffold using skin defects in rabbit. Three full-thickness skin defects 8 mm in diameter were made on the rabbit auricle. Artificial dermis was applied to the defects, and 10 μl of nicotine solution (10(-5), 10(-4), and10(-3) M), bFGF solution (0.5 μg/10 μl), and both bFGF and 10(-4) M nicotine solutions were injected into the artificial dermis once daily for 7 days. Rabbits were sacrificed on day 10, 15, or 20, and the wound healing process was evaluated. bFGF was superior in the formation of the dermis-like tissue and capillaries. In nicotine groups, the epithelial length and the dermis-like tissue formations in the 10(-4) M group were superior, in contrast, those were inhibited in the 10(-3) M group. The synergistic effect of bFGF and 10(-4) M nicotine was not confirmed. This study suggests that the topical application of 10(-4) M nicotine promoted wound healing in rabbit, but the effect was not apparent compared with murine models.
Collapse
|
11
|
Qi C, Yan X, Huang C, Melerzanov A, Du Y. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 2015; 6:638-53. [PMID: 26088192 PMCID: PMC4537472 DOI: 10.1007/s13238-015-0179-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/11/2015] [Indexed: 01/24/2023] Open
Abstract
Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, improvement in treatment efficiency has been demonstrated in numerous animal models of degenerative diseases compared with routine free cell-based therapy. Emerging clinical applications of biomaterial assisted cell therapies further highlight their great promise in regenerative therapy and even cure for complex diseases, which have been failed to realize by conventional therapeutic approaches.
Collapse
Affiliation(s)
- Chunxiao Qi
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Xiaojun Yan
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Chenyu Huang
- />Department of Plastic and Reconstructive Surgery, Beijing Tsinghua Changgung Hospital; Medical Center, Tsinghua University, Beijing, 102218 China
| | - Alexander Melerzanov
- />Cellular and Molecular Technologies Laboratory, MIPT, Dolgoprudny, 141701 Russia
| | - Yanan Du
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
- />Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003 China
| |
Collapse
|
12
|
Chernyavsky AI, Shchepotin IB, Grando SA. Mechanisms of growth-promoting and tumor-protecting effects of epithelial nicotinic acetylcholine receptors. Int Immunopharmacol 2015; 29:36-44. [PMID: 26071223 DOI: 10.1016/j.intimp.2015.05.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 01/14/2023]
Abstract
Although the role of nicotine as a carcinogen is debatable, it is widely accepted that it contributes to cancer by promoting growth and survival of mutated cell clones and protecting them from the chemo- and radiotherapy-induced apoptosis. On the cell membrane (cm), the nicotinic acetylcholine (ACh) receptors (nAChRs) implement upregulation of proliferative and survival genes. Nicotine also can permeate cells and activate mitochondrial (mt)-nAChRs coupled to inhibition of the mitochondrial permeability transition pore (mPTP) opening, thus preventing apoptosis. In this study, we sought to pin down principal mechanisms mediating the tumor-promoting activities of nicotine resulting from activation of cm- and mt-nAChRs in oral and lung cancer cells, SCC25 and SW900, respectively. Activated cm-nAChRs were found to form complexes with receptors for EGF and VEGEF via the α7 and β2 nAChR subunits, respectively, whereas activated mt-nAChRs physically associated with the intramitochondrial protein kinases PI3K and Src via the α7 and β4 subunits. This was associated with upregulated expression of cyclin D1/activation of ERK1/2 and inhibition of mPTP opening, respectively, as well as upregulated proliferation and resistance to H(2)O(2)-induced apoptosis. The molecular synergy between cm-nAChRs and growth factor receptors helps explain how one biological mediator, such as ACh, can modulate activity of the other, such as a growth factor, and vice versa. Establishment of functional coupling of mt-nAChRs to regulation of mPTP opening provides a novel mechanism of nicotine-dependent protection from cell death. Further elucidation of this novel mechanism of tumor-promoting activities of nicotine should have a strong translational impact, because extraneuronal nAChRs may provide a novel molecular target to prevent, reverse, or retard progression of both nicotine-related and unrelated cancers.
Collapse
Affiliation(s)
| | | | - Sergei A Grando
- Department of Dermatology, University of California, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, CA, USA; Cancer Center and Research Institute, University of California, Irvine, CA, USA.
| |
Collapse
|
13
|
Chernyavsky AI, Shchepotin IB, Galitovkiy V, Grando SA. Mechanisms of tumor-promoting activities of nicotine in lung cancer: synergistic effects of cell membrane and mitochondrial nicotinic acetylcholine receptors. BMC Cancer 2015; 15:152. [PMID: 25885699 PMCID: PMC4369089 DOI: 10.1186/s12885-015-1158-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/04/2015] [Indexed: 12/20/2022] Open
Abstract
Background One of the major controversies of contemporary medicine is created by an increased consumption of nicotine and growing evidence of its connection to cancer, which urges elucidation of the molecular mechanisms of oncogenic effects of inhaled nicotine. Current research indicates that nicotinergic regulation of cell survival and death is more complex than originally thought, because it involves signals emanating from both cell membrane (cm)- and mitochondrial (mt)-nicotinic acetylcholine receptors (nAChRs). In this study, we elaborated on the novel concept linking cm-nAChRs to growth promotion of lung cancer cells through cooperation with the growth factor signaling, and mt-nAChRs — to inhibition of intrinsic apoptosis through prevention of opening of mitochondrial permeability transition pore (mPTP). Methods Experiments were performed with normal human lobar bronchial epithelial cells, the lung squamous cell carcinoma line SW900, and intact and NNK-transformed immortalized human bronchial cell line BEP2D. Results We demonstrated that the growth-promoting effect of nicotine mediated by activation of α7 cm-nAChR synergizes mainly with that of epidermal growth factor (EGF), α3 — vascular endothelial growth factor (VEGF), α4 — insulin-like growth factor I (IGF-I) and VEGF, whereas α9 with EGF, IGF-I and VEGF. We also established the ligand-binding abilities of mt-nAChRs and demonstrated that quantity of the mt-nAChRs coupled to inhibition of mPTP opening increases upon malignant transformation. Conclusions These results indicated that the biological sum of simultaneous activation of cm- and mt-nAChRs produces a combination of growth-promoting and anti-apoptotic signals that implement the tumor-promoting action of nicotine on lung cells. Therefore, nAChRs may be a promising molecular target to arrest lung cancer progression and re-open mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Alex I Chernyavsky
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| | | | - Valentin Galitovkiy
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| | - Sergei A Grando
- Department of Dermatology, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA. .,Department of Biological Chemistry, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA. .,Cancer Center and Research Institute, University of California, 134 Sprague Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
14
|
Notodihardjo PV, Morimoto N, Kakudo N, Matsui M, Sakamoto M, Liem PH, Suzuki K, Tabata Y, Kusumoto K. Gelatin hydrogel impregnated with platelet-rich plasma releasate promotes angiogenesis and wound healing in murine model. J Artif Organs 2014; 18:64-71. [DOI: 10.1007/s10047-014-0795-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
|
15
|
Abstract
This Opinion article discusses emerging evidence of direct contributions of nicotine to cancer onset and growth. The list of cancers reportedly connected to nicotine is expanding and presently includes small-cell and non-small-cell lung carcinomas, as well as head and neck, gastric, pancreatic, gallbladder, liver, colon, breast, cervical, urinary bladder and kidney cancers. The mutagenic and tumour-promoting activities of nicotine may result from its ability to damage the genome, disrupt cellular metabolic processes, and facilitate growth and spreading of transformed cells. The nicotinic acetylcholine receptors (nAChRs), which are activated by nicotine, can activate several signalling pathways that can have tumorigenic effects, and these receptors might be able to be targeted for cancer therapy or prevention. There is also growing evidence that the unique genetic makeup of an individual, such as polymorphisms in genes encoding nAChR subunits, might influence the susceptibility of that individual to the pathobiological effects of nicotine. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the evaluation of regulations on nicotine product manufacturing, distribution and marketing.
Collapse
Affiliation(s)
- Sergei A Grando
- Departments of Dermatology and Biological Chemistry, and Cancer Center and Research Institute, University of California, Irvine, California 92782, USA
| |
Collapse
|
16
|
Reuther WJ, Brennan PA. Is nicotine still the bad guy? Summary of the effects of smoking on patients with head and neck cancer in the postoperative period and the uses of nicotine replacement therapy in these patients. Br J Oral Maxillofac Surg 2013; 52:102-5. [PMID: 24315200 DOI: 10.1016/j.bjoms.2013.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/01/2013] [Indexed: 01/31/2023]
Abstract
Smoking has long been implicated in the development and progression of numerous postoperative complications. The cause is largely thought to be the presence of reactive oxygen species (ROS) in cigarette smoke, which attenuates inflammation and affects neutrophil function. Wound healing is further compromised by deficiencies in vitamins C and E, which result from a higher vitamin turnover secondary to the oxidative stress produced by smoking. However, studies recently have found that the effects of nicotine may benefit healing if used in isolation. We summarise the effects that smoking and abstaining from smoking can have on inflammation and wound healing, and describe the possible benefits that nicotine replacement and antioxidant supplements can give.
Collapse
Affiliation(s)
- William J Reuther
- Maxillofacial Department, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK.
| | - Peter A Brennan
- Maxillofacial Department, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
| |
Collapse
|
17
|
Treating a collagen scaffold with a low concentration of nicotine-promoted angiogenesis and wound healing. J Surg Res 2012; 185:543-4. [PMID: 23131903 DOI: 10.1016/j.jss.2012.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 10/14/2012] [Accepted: 10/16/2012] [Indexed: 11/23/2022]
|