1
|
The Effects of Alpha-Glycerylphosphorylcholine on Heart Rate Variability and Hemodynamic Variables Following Sprint Interval Exercise in Overweight and Obese Women. Nutrients 2022; 14:nu14193970. [PMID: 36235623 PMCID: PMC9572742 DOI: 10.3390/nu14193970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The current study examined the effects of Alpha-Glycerylphosphorylcholine (A-GPC) on heart rate variability (HRV) and hemodynamic responses following a sprint interval exercise (SIE) in women who were overweight or obese. Participants (n = 12, 31.0 ± 4.6 years; 29.4 ± 2.1 kg/m2) consumed 1000 mg of A-GPC or a placebo after eating breakfast in a randomized, double-blind cross-over design. After 60 min, participants performed two bouts of the SIE (30 s Wingate) interspersed with 4 min of active recovery (40 rpm). Hemodynamic variables and HRV domains were measured before and 60 min after the A-GPC consumption, immediately after SIE, and every 15 min up to 120 min during recovery. A-GPC consumption increased resting levels of both the time domain (Standard Deviation of RR wave intervals [SDNN] and percentage of interval differences of adjacent RR intervals greater than 50 ms [pNN50%]) and frequency domain (high frequency [HF] and low frequency [LF]) variables of HRV (p < 0.05). Moreover, HRV variables (except for LF/HF) decreased (p < 0.05) immediately after SIE in the A-GPC and placebo sessions. Systolic and diastolic blood pressure increased (p < 0.05) immediately after SIE in both trials. Both HRV and hemodynamic variables recovered (p < 0.05) faster in the A-GPC compared to the placebo session. We concluded that A-GPC consumption recovers HRV and blood pressure faster following strenuous exercise in overweight and obese women, and that it might favorably modify cardiac autonomic function.
Collapse
|
2
|
Kong Q, Gu J, Lu R, Huang C, Hu X, Wu W, Lin D. NMR-Based Metabolomic Analysis of Sera in Mouse Models of CVB3-Induced Viral Myocarditis and Dilated Cardiomyopathy. Biomolecules 2022; 12:biom12010112. [PMID: 35053260 PMCID: PMC8773787 DOI: 10.3390/biom12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Viral myocarditis (VMC) is an inflammatory heart condition which can induce dilated cardiomyopathy (DCM). However, molecular mechanisms underlying the progression of VMC into DCM remain exclusive. Here, we established mouse models of VMC and DCM by infecting male BALB/c mice with Coxsackievirus B3 (CVB3), and performed NMR-based metabonomic analyses of mouse sera. The mouse models covered three pathological stages including: acute VMC (aVMC), chronic VMC (cVMC) and DCM. We recorded 1D 1H-NMR spectra on serum samples and conducted multivariate statistical analysis on the NMR data. We found that metabolic profiles of these three pathological stages were distinct from their normal controls (CON), and identified significant metabolites primarily responsible for the metabolic distinctions. We identified significantly disturbed metabolic pathways in the aVMC, cVMC and DCM stages relative to CON, including: taurine and hypotaurine metabolism; pyruvate metabolism; glycine, serine and threonine metabolism; glycerolipid metabolism. Additionally, we identified potential biomarkers for discriminating a VMC, cVMC and DCM from CON including: taurine, valine and acetate for aVMC; glycerol, valine and leucine for cVMC; citrate, glycine and isoleucine for DCM. This work lays the basis for mechanistically understanding the progression from acute VMC to DCM, and is beneficial to exploitation of potential biomarkers for prognosis and diagnosis of heart diseases.
Collapse
Affiliation(s)
- Qing Kong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China;
| | - Jinping Gu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (J.G.); (R.L.); (X.H.)
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (J.G.); (R.L.); (X.H.)
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361024, China;
| | - Xiaomin Hu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (J.G.); (R.L.); (X.H.)
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China;
- Correspondence: (W.W.); (D.L.); Tel.: +86-771-5358955 (W.W.); +86-592-2186078 (D.L.)
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (J.G.); (R.L.); (X.H.)
- Correspondence: (W.W.); (D.L.); Tel.: +86-771-5358955 (W.W.); +86-592-2186078 (D.L.)
| |
Collapse
|
3
|
Tuboly E, Gáspár R, Ibor MO, Gömöri K, Kiss B, Strifler G, Hartmann P, Ferdinandy P, Bartekova M, Boros M, Görbe A. L-Alpha-glycerylphosphorylcholine can be cytoprotective or cytotoxic in neonatal rat cardiac myocytes: a double-edged sword phenomenon. Mol Cell Biochem 2019; 460:195-203. [PMID: 31280435 PMCID: PMC6745025 DOI: 10.1007/s11010-019-03580-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
l-Alpha-glycerylphosphorylcholine (GPC) is a widely used food supplement. GPC has been shown to exert beneficial effects in several organs; however, the cardiac effects of GPC have yet to be investigated. The aim of the present study was therefore to map out the effects of GPC on cardiac myocytes, with or without ischemia–reperfusion insult. Neonatal rat cardiac myocytes were treated with GPC at 1, 10, 80, and 100 µM concentrations for 15 min, 3 h, or 24 h, respectively. Cell viability by calcein assay and the degree of oxidative stress by DHE (superoxide level) and H2DCF (total ROS accumulation) staining were measured. In separate experiments, cardiomyocytes were pre-treated with the optimal concentration of GPC for 3 h and then cells were exposed to 4 h of simulated ischemia followed by 2 h of reperfusion (SI/R). Cell viability was measured at the end of the SI/R protocol. In normoxic conditions, the 15-min and the 3-h GPC treatment did not affect cell viability, total ROS, and superoxide levels. Under SI/R conditions, the 3-h GPC treatment protected the cardiac myocytes from SI/R-induced cell death and did not alter the level of oxidative stress. The 24-h GPC treatment in normoxic conditions resulted in significant cell death and increased oxidative stress at each concentration. Here we provide the first evidence for the cytoprotective effect of short-term GPC treatment. However, long-term administration of GPC may exert cytotoxicity in a wide concentration range in cardiac myocytes. These results may draw attention to a comprehensive cardiac safety protocol for the testing of GPC.
Collapse
Affiliation(s)
- Eszter Tuboly
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Miguel Olias Ibor
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bernadett Kiss
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Gerda Strifler
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Petra Hartmann
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Monika Bartekova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Mihály Boros
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary.
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- Pharmahungary Group, Szeged, Hungary.
| |
Collapse
|
4
|
Faitot F, Besch C, Battini S, Ruhland E, Onea M, Addeo P, Woehl-Jaeglé ML, Ellero B, Bachellier P, Namer IJ. Impact of real-time metabolomics in liver transplantation: Graft evaluation and donor-recipient matching. J Hepatol 2018; 68:699-706. [PMID: 29191459 DOI: 10.1016/j.jhep.2017.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS There is an emerging need to assess the metabolic state of liver allografts especially in the novel setting of machine perfusion preservation and donor in cardiac death (DCD) grafts. High-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS-NMR) could be a useful tool in this setting as it can extemporaneously provide untargeted metabolic profiling. The purpose of this study was to evaluate the potential value of HR-MAS-NMR metabolomic analysis of back-table biopsies for the prediction of early allograft dysfunction (EAD) and donor-recipient matching. METHOD The metabolic profiles of back-table biopsies obtained by HR-MAS-NMR, were compared according to the presence of EAD using partial least squares discriminant analysis. Network analysis was used to identify metabolites which changed significantly. The profiles were compared to native livers to identify metabolites for donor-recipient matching. RESULTS The metabolic profiles were significantly different in grafts that caused EAD compared to those that did not. The constructed model can be used to predict the graft outcome with excellent accuracy. The metabolites showing the most significant differences were lactate level >8.3 mmol/g and phosphocholine content >0.646 mmol/g, which were significantly associated with graft dysfunction with an excellent accuracy (AUROClactates = 0.906; AUROCphosphocholine = 0.816). Native livers from patients with sarcopenia had low lactate and glycerophosphocholine content. In patients with sarcopenia, the risk of EAD was significantly higher when transplanting a graft with a high-risk graft metabolic score. CONCLUSION This study underlines the cost of metabolic adaptation, identifying lactate and choline-derived metabolites as predictors of poor graft function in both native livers and liver grafts. HR-MAS-NMR seems a valid technique to evaluate graft quality and the consequences of cold ischemia on the graft. It could be used to assess the efficiency of graft resuscitation on machine perfusion in future studies. LAY SUMMARY Real-time metabolomic profiles of human grafts during back-table can accurately predict graft dysfunction. High lactate and phosphocholine content are highly predictive of graft dysfunction whereas low lactate and phosphocholine content characterize patients with sarcopenia. In these patients, the cost of metabolic adaptation may explain the poor outcomes.
Collapse
Affiliation(s)
- Francois Faitot
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France; Laboratoire ICube, UMR7357, University of Strasbourg, France
| | - Camille Besch
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | | | - Elisa Ruhland
- Laboratoire ICube, UMR7357, University of Strasbourg, France
| | - Mihaela Onea
- Pathology Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | - Pietro Addeo
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | - Marie-Lorraine Woehl-Jaeglé
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | - Bernard Ellero
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | - Philippe Bachellier
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | - Izzie-Jacques Namer
- Laboratoire ICube, UMR7357, University of Strasbourg, France; Nuclear Medicine Department, Hôpital de Hautepierre, CHU de Strasbourg, France.
| |
Collapse
|
5
|
Jia HM, Yu M, Ma LY, Zhang HW, Zou ZM. Chaihu-Shu-Gan-San regulates phospholipids and bile acid metabolism against hepatic injury induced by chronic unpredictable stress in rat. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:14-21. [DOI: 10.1016/j.jchromb.2017.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
|
6
|
Excessive alcohol consumption induces methane production in humans and rats. Sci Rep 2017; 7:7329. [PMID: 28779149 PMCID: PMC5544731 DOI: 10.1038/s41598-017-07637-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/30/2017] [Indexed: 12/04/2022] Open
Abstract
Various studies have established the possibility of non-bacterial methane (CH4) generation in oxido-reductive stress conditions in plants and animals. Increased ethanol input is leading to oxido-reductive imbalance in eukaryotes, thus our aim was to provide evidence for the possibility of ethanol-induced methanogenesis in non-CH4 producer humans, and to corroborate the in vivo relevance of this pathway in rodents. Healthy volunteers consumed 1.15 g/kg/day alcohol for 4 days and the amount of exhaled CH4 was recorded by high sensitivity photoacoustic spectroscopy. Additionally, Sprague-Dawley rats were allocated into control, 1.15 g/kg/day and 2.7 g/kg/day ethanol-consuming groups to detect the whole-body CH4 emissions and mitochondrial functions in liver and hippocampus samples with high-resolution respirometry. Mitochondria-targeted L-alpha-glycerylphosphorylcholine (GPC) can increase tolerance to liver injury, thus the effects of GPC supplementations were tested in further ethanol-fed groups. Alcohol consumption was accompanied by significant CH4 emissions in both human and rat series of experiments. 2.7 g/kg/day ethanol feeding reduced the oxidative phosphorylation capacity of rat liver mitochondria, while GPC significantly decreased the alcohol-induced CH4 formation and hepatic mitochondrial dysfunction as well. These data demonstrate a potential for ethanol to influence human methanogenesis, and suggest a biomarker role for exhaled CH4 in association with mitochondrial dysfunction.
Collapse
|
7
|
Strifler G, Tuboly E, Görbe A, Boros M, Pécz D, Hartmann P. Targeting Mitochondrial Dysfunction with L-Alpha Glycerylphosphorylcholine. PLoS One 2016; 11:e0166682. [PMID: 27861548 PMCID: PMC5115775 DOI: 10.1371/journal.pone.0166682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We hypothesized that L-alpha-glycerylphosphorylcholine (GPC), a deacylatedphosphatidylcholine derivative, can influence the mitochondrial respiratory activity and in this way, may exert tissue protective effects. METHODS Rat liver mitochondria were examined with high-resolution respirometry to analyze the effects of GPC on the electron transport chain in normoxic and anoxic conditions. Besides, Sprague-Dawley rats were subjected to sham operation or standardized liver ischemia-reperfusion (IR), with or without GPC administration. The reduced glutathione (GSH) and oxidized glutathione disulfide (GSSG), the tissue myeloperoxidase, xanthine oxidoreductase and NADPH oxidases activities were measured. Tissue malondialdehyde and nitrite/nitrate formation, together with blood superoxide and hydrogen-peroxide production were assessed. RESULTS GPC increased the efficacy of complex I-linked mitochondrial oxygen consumption, with significantly lower in vitro leak respiration. Mechanistically, liver IR injury was accompanied by deteriorated mitochondrial respiration and enhanced ROS production and, as a consequence, by significantly increased inflammatory enzyme activities. GPC administration decreased the inflammatory activation in line with the reduced oxidative and nitrosative stress markers. CONCLUSION GPC, by preserving the mitochondrial complex I function respiration, reduced the biochemical signs of oxidative stress after an IR episode. This suggests that GPC is a mitochondria-targeted compound that indirectly suppresses the activity of major intracellular superoxide-generating enzymes.
Collapse
Affiliation(s)
- Gerda Strifler
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Eszter Tuboly
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Anikó Görbe
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Daniella Pécz
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Methane Attenuates Hepatic Ischemia/Reperfusion Injury in Rats Through Antiapoptotic, Anti-Inflammatory, and Antioxidative Actions. Shock 2016; 44:181-7. [PMID: 26009821 DOI: 10.1097/shk.0000000000000385] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury, which occurs in various diseases, introduces severe tissue damage and liver dysfunction. However, no promising therapies for such a significant condition currently exist. Methane has been suggested to exert a protective effect against intestinal I/R injury. In this study, we introduced methane to treat hepatic I/R injury to show its promising protective effect. Also, intraperitoneal injection with methane-rich saline, which could have potential clinical applications, was applied as a new method. Partial liver warm ischemia was applied in Sprague-Dawley rats for 60 min followed by succedent reperfusion. In the test for effective dosage, methane-rich saline was administrated intraperitoneally to the rats at doses of 1, 5, 20, or 40 mL/kg at onset of reperfusion. In the test for protective effect, rats received methane-rich saline intraperitoneally at a dose of 10 mL/kg before the initiation of reperfusion. We found that methane-rich saline significantly decreased serum alanine aminotransferase, aspartate aminotransferase activity, and the occurrence of necrosis. Moreover, methane-rich saline reduced the amount of caspase-3 and the number of apoptotic cells. In addition, methane-rich saline increased the level of superoxide dismutase and decreased the level of malondialdehyde and 8-hydroxyguanosine. Furthermore, research indicated that methane-rich saline markedly decreased gene expression and content of tumor necrosis factor-α and interleukin-6. Also, reduced CD68-positive cells showed decreased inflammatory cells in the liver. Our results suggest that methane protects the liver against I/R injury through antiapoptotic, antioxidative, and anti-inflammatory actions.
Collapse
|
9
|
Strifler G, Tuboly E, Szél E, Kaszonyi E, Cao C, Kaszaki J, Mészáros A, Boros M, Hartmann P. Inhaled Methane Limits the Mitochondrial Electron Transport Chain Dysfunction during Experimental Liver Ischemia-Reperfusion Injury. PLoS One 2016; 11:e0146363. [PMID: 26741361 PMCID: PMC4720186 DOI: 10.1371/journal.pone.0146363] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Methanogenesis can indicate the fermentation activity of the gastrointestinal anaerobic flora. Methane also has a demonstrated anti-inflammatory potential. We hypothesized that enriched methane inhalation can influence the respiratory activity of the liver mitochondria after an ischemia-reperfusion (IR) challenge. METHODS The activity of oxidative phosphorylation system complexes was determined after in vitro methane treatment of intact liver mitochondria. Anesthetized Sprague-Dawley rats subjected to standardized 60-min warm hepatic ischemia inhaled normoxic air (n = 6) or normoxic air containing 2.2% methane, from 50 min of ischemia and throughout the 60-min reperfusion period (n = 6). Measurement data were compared with those on sham-operated animals (n = 6 each). Liver biopsy samples were subjected to high-resolution respirometry; whole-blood superoxide and hydrogen peroxide production was measured; hepatocyte apoptosis was detected with TUNEL staining and in vivo fluorescence laser scanning microscopy. RESULTS Significantly decreased complex II-linked basal respiration was found in the normoxic IR group at 55 min of ischemia and a lower respiratory capacity (~60%) and after 5 min of reperfusion. Methane inhalation preserved the maximal respiratory capacity at 55 min of ischemia and significantly improved the basal respiration during the first 30 min of reperfusion. The IR-induced cytochrome c activity, reactive oxygen species (ROS) production and hepatocyte apoptosis were also significantly reduced. CONCLUSIONS The normoxic IR injury was accompanied by significant functional damage of the inner mitochondrial membrane, increased cytochrome c activity, enhanced ROS production and apoptosis. An elevated methane intake confers significant protection against mitochondrial dysfunction and reduces the oxidative damage of the hepatocytes.
Collapse
Affiliation(s)
- Gerda Strifler
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Eszter Tuboly
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Edit Szél
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Enikő Kaszonyi
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Chun Cao
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - József Kaszaki
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - András Mészáros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
10
|
Molecular pathways in protecting the liver from ischaemia/reperfusion injury: a 2015 update. Clin Sci (Lond) 2015; 129:345-62. [PMID: 26014222 DOI: 10.1042/cs20150223] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischaemia/reperfusion injury is an important cause of liver damage during surgical procedures such as hepatic resection and liver transplantation, and represents the main cause of graft dysfunction post-transplantation. Molecular processes occurring during hepatic ischaemia/reperfusion are diverse, and continuously include new and complex mechanisms. The present review aims to summarize the newest concepts and hypotheses regarding the pathophysiology of liver ischaemia/reperfusion, making clear distinction between situations of cold and warm ischaemia. Moreover, the most updated therapeutic strategies including pharmacological, genetic and surgical interventions, as well as some of the scientific controversies in the field are described.
Collapse
|