1
|
Zhang Q, Zhang J, Zhang Y, Sui Y, Du Y, Yang L, Yin Y. Antifungal and anti-biofilm activities of patchouli alcohol against Candida albicans. Int J Med Microbiol 2024; 314:151596. [PMID: 38128407 DOI: 10.1016/j.ijmm.2023.151596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
The opportunistic fungal pathogen Candida albicans could cause severe clinical outcomes which could be exacerbated by the scarcity of antifungals. The capacity of C. albicans to form biofilms on medical devices that are hard to eradicate, further deepen the need to develop antifungal agents. In this study, we, for the first time, showed that patchouli alcohol (PA) can inhibit the growth of multiple C. albicans strains, as well as four other Candida species, with MICs of 64 μg/mL and MFCs from 64 to 128 μg/mL. The biofilm formation and development, adhesion, yeast-to-hyphal transition and extracellular polysaccharide of C. albicans can be inhibited by PA in a concentration-dependent manner. Confocal microscopy analyses of cells treated with PA showed that PA can increase the membrane permeability and intracellular reactive oxygen species (ROS) production. In C. elegans, PA did not influence the survival below 64 μg/mL. In this study PA demonstrated antifungal and antibiofilm activity against C. albicans and our results showed the potential of developing PA to fight Candida infections.
Collapse
Affiliation(s)
- Qiulei Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jingxiao Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yu Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun 130041, China
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, 265# Ziqiang Street, Changchun 130041, China
| | - Yang Du
- Eye Center, The Second Hospital of Jilin University, #4026 Yatai Street, Changchun 130024, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, 265# Ziqiang Street, Changchun 130041, China.
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
2
|
Bano H, Khan JA. Development of reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of viruses infecting patchouli (Pogostemon cablin). Arch Microbiol 2024; 206:75. [PMID: 38261081 DOI: 10.1007/s00203-023-03798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Patchouli (Pogostemon cablin), a highly valued medicinal plant, suffers significant economic losses following infection with Broad bean wilt virus 2 (BBWV-2) and Peanut stripe virus (PStV). In this study, a field-based isothermal technique called reverse transcription loop-mediated isothermal amplification (RT-LAMP) was established for an early and specific detection of BBWV-2 and PStV. The oligo primers were designed to target the coat protein genes of PStV and BBWV-2. The reaction conditions, such as temperature and time duration, were optimized to 65 °C for 60 min. The LAMP amplicons positive for PStV and BBWV-2 revealed characteristic ladder-type bands following agarose gel electrophoresis. Further, a colorimetric assay using a metal ion-based indicator (Hydroxy-naphthol blue, HNB) was conducted to visualize the amplified products with the naked eye, thus facilitating accessibility to field practices. The assay developed in this study was found to be virus specific, and was 100 times more sensitive than RT-PCR. Thus, the RT-LAMP assay established in this study is quick, reliable, and cost-effective for the accurate identification of BBWV-2 and PStV. It will facilitate the screening of patchouli planting materials. Further, it may reduce the risk of virus spread and could be helpful in phytosanitary programs.
Collapse
Affiliation(s)
- Humaira Bano
- Plant Virus Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Jawaid A Khan
- Plant Virus Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| |
Collapse
|
3
|
Meng T, Ding J, Shen S, Xu Y, Wang P, Song X, Li Y, Li S, Xu M, Tian Z, He Q. Xuanfei Baidu decoction in the treatment of coronavirus disease 2019 (COVID-19): Efficacy and potential mechanisms. Heliyon 2023; 9:e19163. [PMID: 37809901 PMCID: PMC10558324 DOI: 10.1016/j.heliyon.2023.e19163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and become a major global public health concern. Although novel investigational COVID-19 antiviral candidates such as the Pfizer agent PAXLOVID™, molnupiravir, baricitinib, remdesivir, and favipiravir are currently used to treat patients with COVID-19, there is still a critical need for the development of additional treatments, as the recommended therapeutic options are frequently ineffective against SARS-CoV-2. The efficacy and safety of vaccines remain uncertain, particularly with the emergence of several variants. All 10 versions of the National Health Commission's diagnosis and treatment guidelines for COVID-19 recommend using traditional Chinese medicine. Xuanfei Baidu Decoction (XFBD) is one of the "three Chinese medicines and three Chinese prescriptions" recommended for COVID-19. This review summarizes the clinical evidence and potential mechanisms of action of XFBD for COVID-19 treatment. With XFBD, patients with COVID-19 experience improved clinical symptoms, shorter hospital stay, prevention of the progression of their symptoms from mild to moderate and severe symptoms, and reduced mortality in critically ill patients. The mechanisms of action may be associated with its direct antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antimicrobial properties. High-quality clinical and experimental studies are needed to further explore the clinical efficacy and underlying mechanisms of XFBD in COVID-19 treatment.
Collapse
Affiliation(s)
- Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Shujie Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100089, China
| | - Yingzhi Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Peng Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
- Department of Traditional Chinese Medicine, Beijing Jiangong Hospital, Beijing, 100032, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yixiang Li
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shangjin Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Ziyu Tian
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| |
Collapse
|
4
|
Peitu Shengjin Recipe Attenuates Airway Inflammation via the TLR4/NF-kB Signaling Pathway on Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2090478. [PMID: 35990849 PMCID: PMC9391104 DOI: 10.1155/2022/2090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a common respiratory disease, but there is no specific medicine for COPD. In this study, we aimed to evaluate the effects of Peitu Shengjin Recipe (PSR) and Biostime Probiotic Powder on COPD rats. Methods UPLC-Q/TOF-MS was used to detect the chemical constituents in PSR. The COPD rat model was established by cigarette smoke combined with tracheal injection of lipopolysaccharide. We assessed lung function by calculating FEV0.3/FVC%, dynamic lung compliance (Cdyn), and resistance of inspiration (RI). Histological analysis was performed by HE staining. The levels of TNF-α, IFN-γ, IL-1β, IL-4, and IL-10 were detected by the ELISA. The mRNA and protein expressions of the TLR4/NF-kB signaling pathway were detected by the qRT-PCR and western blotting, respectively. Results There were 53 ESI+ and 50 ESI− components in PSR. After high-dose PSR treatment, FEV0.3/FVC% and Cdyn increased significantly, while RI decreased. Compared with the COPD model, the RI of the Biostime Probiotic Powder group was significantly lower. HE staining showed that the inflammatory cell infiltration was reduced to varying degrees, the bronchial tube wall was not thickened, and the alveoli were relatively intact after treatment with PSR and Biostime Probiotic Powder. Compared with the model group, the levels of TNF-α, IFN-γ, IL-1β, IL-4, and IL-10 in the PSR group and the Biostime Probiotic Powder group were reversed. The mRNA and protein expressions of TLR4 and NF-kB were significantly decreased after PSR and Biostime Probiotic Powder treatment. Conclusion Our findings suggest that PSR and Biostime Probiotic Powder have protective effects on COPD rats, which may be achieved by modulating the TLR4/NF-kB signaling pathway.
Collapse
|
5
|
Pyun DH, Kim TJ, Park SY, Lee HJ, Abd El-Aty AM, Jeong JH, Jung TW. Patchouli alcohol ameliorates skeletal muscle insulin resistance and NAFLD via AMPK/SIRT1-mediated suppression of inflammation. Mol Cell Endocrinol 2021; 538:111464. [PMID: 34601002 DOI: 10.1016/j.mce.2021.111464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023]
Abstract
Obesity-induced chronic low-grade inflammation and thus causes various metabolic diseases, such as insulin resistance and non-alcoholic fatty liver disease (NAFLD). Patchouli alcohol (PA), an active component extracted from patchouli, displayed anti-inflammatory effects on different cell types. However, the impact of PA on skeletal muscle insulin signaling and hepatic lipid metabolism remains unclear. This study aimed to investigate whether PA would affect insulin signaling impairment in myocytes and lipid metabolism in hepatocytes. Treatment with PA ameliorated palmitate-induced inflammation and aggravation of insulin signaling in C2C12 myocytes and lipid accumulation in HepG2 hepatocytes. Treatment of C2C12 myocytes and HepG2 cells with PA augmented AMP-activated protein kinase (AMPK) phosphorylation and Sirtuin 1 (SIRT1) expression in a dose-dependent manner. siRNA-mediated suppression of AMPK or SIRT1 mitigated the effects of PA on palmitate-induced inflammation and insulin resistance in C2C12 myocytes and lipid accumulation in HepG2 cells. Animal experiments demonstrated that PA administration increased AMPK phosphorylation and SIRT1 expression, and ameliorated inflammation, thereby attenuating skeletal muscle insulin resistance and hepatic steatosis in high-fat diet-fed mice. These results denote that PA alleviates skeletal muscle insulin resistance and hepatic steatosis through AMPK/SIRT1-dependent signaling. This study might provide a novel therapeutic approach for treating obesity-related insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea; Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Timalsina D, Pokhrel KP, Bhusal D. Pharmacologic Activities of Plant-Derived Natural Products on Respiratory Diseases and Inflammations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1636816. [PMID: 34646882 PMCID: PMC8505070 DOI: 10.1155/2021/1636816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | | | - Deepti Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
7
|
Yun-Liang X, Bo Z. Protective Effect of Patchouli Alcohol Against SH-SY5Y Cell Injury Induced by Aβ 25-35 via the Reduction of Oxidative Stress and Apoptosis. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211031715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Patchouli alcohol (PA) has multiple pharmacological activities, but its protective effect against SH-SY5Y cell injury induced by Aβ25-35 has not been reported. It has been recorded that phosphatidylinositol 3-hydroxykinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays an important role in neuroprotection. The purpose of this study was to investigate the protective effect of PA against SH-SY5Y cell injury induced by Aβ25-35 and its underlying mechanism. The results showed that compared with that in the Aβ25-35-induced injury group, the survival rate of SH-SY5Y cells increased ( P < .01) in the different PA-treated groups and the lactic dehydrogenase activity decreased significantly ( P < .01) in the 10, 20, and 40 μg/mL PA groups; compared with those in the Aβ25-35-induced injury group, the malonyldialdehyde contents in SH-SY5Y cells decreased ( P < .05 or P < .01), while the superoxide dismutase, glutathione peroxidase, and catalase activities increased significantly ( P < .05 or P < .01) in the different PA-treated groups; compared with those in the Aβ25-35-induced injury group, the apoptosis rates, and the mRNA and protein levels of Caspase-3 and Bax in SH-SY5Y cells decreased ( P < .05 or P < .01), while the mRNA and protein levels of Bcl-2, and phosphorylated Akt (p-Akt) and phosphorylated mTOR protein levels increased significantly ( P < .05 or P < .01) in the different PA-treated groups. The above results indicate that PA can inhibit the oxidative stress and apoptosis of SH-SY5Y cells induced by Aβ25-35 by regulating the PI3K/Akt/mTOR pathway, to protect the SH-SY5Y cells from the injury induced by Aβ25-35.
Collapse
Affiliation(s)
- Xie Yun-Liang
- People’s Hospital of Suzhou New District, Suzhou, P. R. China
| | - Zhang Bo
- Affiliated Hospital of Beihua University, Jilin City, P. R. China
| |
Collapse
|
8
|
Liu Z, Chen S, Zhang X, Liu F, Yang K, Du G, Rui X. Dasatinib protects against acute respiratory distress syndrome via Nrf2-regulated M2 macrophages polarization. Drug Dev Res 2021; 82:1247-1257. [PMID: 34105172 DOI: 10.1002/ddr.21839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023]
Abstract
Dasatinib, a tyrosine kinase inhibitor, has a protective effect on experimental acute respiratory distress syndrome (ARDS). This study investigated the effect and mechanism of dasatinib in ARDS. C57BL/6 mice were administered with dasatinib (1 and 10 mg/kg) after lipopolysaccharide (LPS) treatment to evaluate the effect of dasatinib on white blood cells (WBC), neutrophils, lymphocytes and macrophages in bronchoalveolar lavage fluid (BALF). The levels and mRNA expressions of inflammation-related cytokines in lung tissues and RAW 264.7 cells were detected by enzyme-linked immunosorbent assay and quantitative real-time PCR, respectively. The protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO1) were determined by Western blot. MTT assay was performed to detect the viability of RAW 264.7 cell. Rescue experiments were used to assess the effect of Nrf2 silencing on the LPS- and dasatinib-treated mice. Under LPS treatment, levels of the WBC, neutrophils, lymphocytes and macrophages in BALF and mRNA expressions of IL-6, TNF-α and IL-10 as well as expression of iNOS were increased, but the expression of arginase-1 was inhibited, while no obvious changes of the protein expressions of Nrf2 and HO1 were observed. Dasatinib partially reversed the effects of LPS above, and further promoted the mRNA expression of IL-10 and the protein expressions of Nrf2 and HO1, while Nrf2 silencing counteracted the effect of dasatinib. Dasatinib induced the polarization of M2 subtype of macrophages and alleviated LPS-induced ARDS through activating Nrf2 signaling pathway, which may provide a new strategy for the treatment of ARDS.
Collapse
Affiliation(s)
- Zishuang Liu
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Shanshan Chen
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Xinfeng Zhang
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Fangfang Liu
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Kai Yang
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Ge Du
- Geriatric Rehabilitation Centre intensive Care Unit, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Xi Rui
- Intensive Care Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Junren C, Xiaofang X, Mengting L, Qiuyun X, Gangmin L, Huiqiong Z, Guanru C, Xin X, Yanpeng Y, Fu P, Cheng P. Pharmacological activities and mechanisms of action of Pogostemon cablin Benth: a review. Chin Med 2021; 16:5. [PMID: 33413544 PMCID: PMC7791836 DOI: 10.1186/s13020-020-00413-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Patchouli ("Guanghuoxiang") or scientifically known as Pogostemon cablin Benth, belonging to the family Lamiaceae, has been used in traditional Chinse medicine (TCM) since the time of the Eastern Han dynasty. In TCM theory, patchouli can treat colds, nausea, fever, headache, and diarrhea. Various bioactive compounds have been identified in patchouli, including terpenoids, phytosterols, flavonoids, organic acids, lignins, glycosides, alcohols, pyrone, and aldehydes. Among the numerous compounds, patchouli alcohol, β-patchoulene, patchoulene epoxide, pogostone, and pachypodol are of great importance. The pharmacological impacts of these compounds include anti-peptic ulcer effect, antimicrobial effect, anti-oxidative effect, anti-inflammatory effect, effect on ischemia/reperfusion injury, analgesic effect, antitumor effect, antidiabetic effect, anti-hypertensive effect, immunoregulatory effect, and others.For this review, we examined publications from the previous five years collected from PubMed, Web of Science, Springer, and the Chinese National Knowledge Infrastructure databases. This review summarizes the recent progress in phytochemistry, pharmacology, and mechanisms of action and provides a reference for future studies focused on clinical applications of this important plant extract.
Collapse
Affiliation(s)
- Chen Junren
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xie Xiaofang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Li Mengting
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xiong Qiuyun
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Li Gangmin
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Zhang Huiqiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Chen Guanru
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Xu Xin
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Yin Yanpeng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China
| | - Peng Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China.
- West China School of Pharmacy, Sichuan University, 17 South Renmin Rd, 610065, Chengdu, China.
| | - Peng Cheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 610075, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu District, Chengdu, 611137, China.
| |
Collapse
|
10
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
11
|
Lee HS, Lee J, Smolensky D, Lee SH. Potential benefits of patchouli alcohol in prevention of human diseases: A mechanistic review. Int Immunopharmacol 2020; 89:107056. [PMID: 33039955 PMCID: PMC7543893 DOI: 10.1016/j.intimp.2020.107056] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 12/18/2022]
Abstract
Patchouli alcohol (PA) is a bioactive component in essential oil extracted from Pogostemon cablin. The present review provides the scientific mechanisms for health beneficial activities of PA in diverse disease models. PA possesses diverse health beneficial activities.
Patchouli alcohol (PA), a tricyclic sesquiterpene, is a dominant bioactive component in oil extracted from the aerial parts of Pogostemon cablin (patchouli). Diverse beneficial activities have been reported, including anti-influenza virus, anti-depressant, anti-nociceptive, vasorelaxation, lung protection, brain protection, anti-ulcerogenic, anti-colitis, pre-biotic-like, anti-inflammatory, anti-cancer and protective activities against metabolic diseases. However, detailed mechanistic studies are required to explore the possibility of developing PA as a functional food material or promising drug for the prevention and treatment of human diseases. This review highlights multiple molecular targets and working mechanisms by which PA mediates health benefits.
Collapse
Affiliation(s)
- Hee-Seop Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Jihye Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Dmitriy Smolensky
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
12
|
Zhang G, Liu M, Song M, Wang J, Cai J, Lin C, Li Y, Jin X, Shen C, Chen Z, Cai D, Gao Y, Zhu C, Lin C, Liu C. Patchouli alcohol activates PXR and suppresses the NF-κB-mediated intestinal inflammatory. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112302. [PMID: 31614203 DOI: 10.1016/j.jep.2019.112302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The pregnane-X-receptor (PXR) is involved in inflammatory bowel disease (IBD). Patchouli alcohol (PA) has anti-inflammatory effects; however, the effect of PA on IBD pathogenesis remains largely unknown. AIM OF THE STUDY The aim of the present study was to investigate the anti-inflammatory effect of PA, primarily focused on crosstalk between PA-mediated PXR activation and NF-κB inhibition. MATERIALS AND METHODS We evaluated the anti-inflammatory effect of PA with respect to PXR/NF-κB signalling using in vitro and in vivo models. In vitro, PA, identified as a PXR agonist, was evaluated by hPXR transactivation assays and through assessing for CYP3A4 expression and activity. NF-κB inhibition was analysed based on NF-κB luciferase assays, NF-κB-mediated pro-inflammatory gene expression, and NF-κB nuclear translocation after activation of PXR by PA. In vivo, colonic mPXR and NF-κB signalling were analysed to assess PA-mediated the protective effect against dextran sulphate sodium (DSS)-induced colitis. Furthermore, pharmacological inhibition of PXR was further evaluated by examining PA protection against DSS-induced colitis. RESULTS PA induced CYP3A4 expression and activity via an hPXR-dependent mechanism. PA-mediated PXR activation attenuated inflammation by inhibiting NF-κB activity and nuclear translocation. The anti-inflammatory effect of PA on NF-κB was abolished by PXR knockdown. PA prevented DSS-induced inflammation by regulating PXR/NF-κB signalling, whereas pharmacological PXR inhibition abated PA-mediated suppressive effects on NF-κB inflammation signalling. CONCLUSIONS PA activates PXR signalling and suppresses NF-κB signalling, consequently causing amelioration of inflammation. Our results highlight the importance of PXR-NF-κB crosstalk in colitis and suggest a novel therapeutic reagent.
Collapse
Affiliation(s)
- Guohui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Zhuhai Precision Medicine Center, Zhuhai People(')s Hospital, Zhuhai, China
| | - Meijing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jueyu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiazhong Cai
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuanquan Lin
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanwu Li
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Jin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuangpeng Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhao Chen
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 500095, China
| | - Dake Cai
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 500095, China
| | - Yong Gao
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
13
|
Wu X, Xu N, Li M, Huang Q, Wu J, Gan Y, Chen L, Luo H, Li Y, Huang X, Su Z, Liu Y. Protective Effect of Patchouli Alcohol Against High-Fat Diet Induced Hepatic Steatosis by Alleviating Endoplasmic Reticulum Stress and Regulating VLDL Metabolism in Rats. Front Pharmacol 2019; 10:1134. [PMID: 31632274 PMCID: PMC6779828 DOI: 10.3389/fphar.2019.01134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic hepatic disorder worldwide. The earliest stage of NAFLD is simple steatosis, which is characterized by the accumulation of triglycerides in hepatocytes. Inhibition of steatosis is a potential treatment for NAFLD. Patchouli alcohol (PA) is an active component of Pogostemon cablin (Blanco) Benth. (Labiatae), which is a medicinal food in Asia countries and proved to possess hepatoprotective effect. This research aimed to investigate the effectiveness of PA against high fat diet (HFD)-induced hepatic steatosis in rats. In this study, male Sprague Dawley rats were fed a HFD for 4 weeks to induce NAFLD. Oral administration with PA significantly reduced pathological severity of steatosis in HFD-fed rats. It was associated with suppressing endoplasmic reticulum (ER) stress and regulating very low-density lipoprotein (VLDL) metabolism. Our data showed that PA treatment effectively attenuated ER stress by inhibiting the activation of protein kinase-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1 (IRE1), and activating transcription factor 6 (ATF6). Moreover, PA decreased hepatic VLDL uptake by suppressing very low-density lipoprotein receptor (VLDLR) expression. It also restored VLDL synthesis and export by increasing apolipoprotein B100 (apoB 100) secretion and microsomal triglyceride-transfer protein (MTP) activity. Taken together, PA exerted a protective effect on the treatment of NAFLD in HFD-fed rats and may be potential therapeutic agent acting on hepatic steatosis.
Collapse
Affiliation(s)
- Xue Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Xu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyao Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qionghui Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhen Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuxuan Gan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liping Chen
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Luo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yucui Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqi Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Alternative and Natural Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2476824. [PMID: 29862257 PMCID: PMC5976962 DOI: 10.1155/2018/2476824] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/08/2018] [Indexed: 01/17/2023]
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a complex clinical syndrome characterized by acute inflammation, microvascular damage, and increased pulmonary vascular and epithelial permeability, frequently resulting in acute respiratory failure and death. Current best practice for ARDS involves “lung-protective ventilation,” which entails low tidal volumes and limiting the plateau pressures in mechanically ventilated patients. Although considerable progress has been made in understanding the pathogenesis of ARDS, little progress has been made in the development of specific therapies to combat injury and inflammation. Areas Covered In recent years, several natural products have been studied in experimental models and have been shown to inhibit multiple inflammatory pathways associated with acute lung injury and ARDS at a molecular level. Because of the pleiotropic effects of these agents, many of them also activate antioxidant pathways through nuclear factor erythroid-related factor 2, thereby targeting multiple pathways. Several of these agents are prescribed for treatment of inflammatory conditions in the Asian subcontinent and have shown to be relatively safe. Expert Commentary Here we review natural remedies shown to attenuate lung injury and inflammation in experimental models. Translational human studies in patients with ARDS may facilitate treatment of this devastating disease.
Collapse
|
15
|
Wei LL, Chen Y, Yu QY, Wang Y, Liu G. Patchouli alcohol protects against ischemia/reperfusion-induced brain injury via inhibiting neuroinflammation in normal and obese mice. Brain Res 2018; 1682:61-70. [DOI: 10.1016/j.brainres.2017.12.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/27/2022]
|
16
|
Huang QH, Wu X, Chen XH, Wu JZ, Su ZR, Liang JL, Li YC, Lai XP, Chen JN, Liu YH. Patchouli oil isolated from the leaves of Pogostemon cablin ameliorates ethanol-induced acute liver injury in rats via inhibition of oxidative stress and lipid accumulation. RSC Adv 2018; 8:24399-24410. [PMID: 35539211 PMCID: PMC9082196 DOI: 10.1039/c8ra02422g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/14/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Excessive alcohol consumption can cause serious hepatic injury which is associated with oxidative stress and fatty metabolic disturbance. Patchouli oil (PO) is a sort of food supplement with high medicinal value in hepatoprotection, but its ability against ethanol-induced liver failure has not been demonstrated. Thus, this study aimed to investigate the potential hepatoprotection of PO through an ethanol-induced hepatotoxicity rat model. Our results showed that PO pretreatment could dramatically decrease the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in serum, paralleled by an improvement of histopathology alterations. Additionally, PO could markedly suppress the content of reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), free fatty acid (FFA), and triglyceride (TG), while enhancing the activities of glutathione (GSH), glutathione reductase (GR), and superoxide dismutase (SOD) as well as the ratio of glutathione to oxidized glutathione (GSH/GSSG) in liver. The protective effect of PO against oxidative stress was interrelated with restraining the mRNA and protein expression of hepatic microsomal enzyme cytochrome P450 2E1 (CYP2E1). What's more, PO pretreatment could also accelerate lipometabolism via up-regulating expressions of adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPAR-α), and carnitine palmitoyltransferase 1 (CPT-1) and down-regulating expressions of nuclear factor-kappaB (NF-κB) p65, sterol regulatory element-binding protein 1 (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD-1). To conclude, PO showed potent effect against ethanol-induced hepatotoxicity by relieving oxidative stress and preventing lipid accumulation. Excessive alcohol consumption can cause serious hepatic injury which is associated with oxidative stress and fatty metabolic disturbance.![]()
Collapse
|
17
|
Anti-nociceptive effect of patchouli alcohol: Involving attenuation of cyclooxygenase 2 and modulation of mu-opioid receptor. Chin J Integr Med 2017; 25:454-461. [PMID: 28795389 DOI: 10.1007/s11655-017-2952-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels. METHODS The acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA's target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA. RESULTS PA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (P<0.01) and allodynia after intra-plantar formalin (P<0.01) in mice. PA also up-regulated COX2 mRNA and protein (P<0.05) with a down-regulation of MOR (P<0.05) both in in vivo and in vitro experiments, which devote to the analgesic effect of PA. A decrease in the intracellular calcium level (P<0.05) induced by PA may play an important role in its anti-nociceptive effect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect. CONCLUSIONS Both COX2 and MOR are involved in the mechanism of PA's anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA's effect on MOR.
Collapse
|
18
|
Availability, Pharmaceutics, Security, Pharmacokinetics, and Pharmacological Activities of Patchouli Alcohol. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4850612. [PMID: 28421121 PMCID: PMC5379095 DOI: 10.1155/2017/4850612] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/12/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
Patchouli alcohol (PA), a tricyclic sesquiterpene, is one of the critical bioactive ingredients and is mainly isolated from aerial part of Pogostemon cablin (known as guanghuoxiang in China) belonging to Labiatae. So far, PA has been widely applied in perfume industries. This review was written with the use of reliable information published between 1974 and 2016 from libraries and electronic researches including NCKI, PubMed, Reaxys, ACS, ScienceDirect, Springer, and Wiley-Blackwell, aiming at presenting comprehensive outline of security, pharmacokinetics, and bioactivities of PA and at further providing a potential guide in exploring the PA and its use in various medical fields. We found that PA maybe was a low toxic drug that was acquired numerously through vegetable oil isolation and chemical synthesis and its stability and low water dissolution were improved in pharmaceutics. It also possessed specific pharmacokinetic characteristics, such as two-compartment open model, first-order kinetic elimination, and certain biometabolism and biotransformation process, and was shown to have multiple biological activities, that is, immunomodulatory, anti-inflammatory, antioxidative, antitumor, antimicrobial, insecticidal, antiatherogenic, antiemetic, whitening, and sedative activity. However, the systematic evaluations of preparation, pharmaceutics, toxicology, pharmacokinetics, and bioactivities underlying molecular mechanisms of action also required further investigation prior to practices of PA in clinic.
Collapse
|
19
|
Kim HP, Lim H, Kwon YS. Therapeutic Potential of Medicinal Plants and Their Constituents on Lung Inflammatory Disorders. Biomol Ther (Seoul) 2017; 25:91-104. [PMID: 27956716 PMCID: PMC5340533 DOI: 10.4062/biomolther.2016.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Acute bronchitis and chronic obstructive pulmonary diseases (COPD) are essentially lung inflammatory disorders. Various plant extracts and their constituents showed therapeutic effects on several animal models of lung inflammation. These include coumarins, flavonoids, phenolics, iridoids, monoterpenes, diterpenes and triterpenoids. Some of them exerted inhibitory action mainly by inhibiting the mitogen-activated protein kinase pathway and nuclear transcription factor-κB activation. Especially, many flavonoid derivatives distinctly showed effectiveness on lung inflammation. In this review, the experimental data for plant extracts and their constituents showing therapeutic effectiveness on animal models of lung inflammation are summarized.
Collapse
Affiliation(s)
- Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Yong Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| |
Collapse
|
20
|
Molecular Role of EGFR-MAPK Pathway in Patchouli Alcohol-Induced Apoptosis and Cell Cycle Arrest on A549 Cells In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4567580. [PMID: 27830146 PMCID: PMC5086517 DOI: 10.1155/2016/4567580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/20/2016] [Indexed: 11/17/2022]
Abstract
Nowadays, chemotherapy is still the main effective treatment for cancer. Herb prescriptions containing Pogostemon cablin Benth (also known as "Guang-Huo-Xiang") have been widely used in Chinese medicine today. In our research, we found that patchouli alcohol, a compound isolated from the oil of Pogostemon cablin Benth, exerted antitumor ability against human lung cancer A549 cells ability both in vitro and in vivo. MTT assay was used to assess cell viability. Hoechst 33342 staining and TUNEL cover glass staining provided the visual evidence of apoptosis. Caspase activity measurement showed that patchouli alcohol activated caspase 9 and caspase 3 of mitochondria-mediated apoptosis. Consistently, patchouli alcohol inhibited the xenograft tumor in vivo. Further investigation of the underlying molecular mechanism showed that MAPK and EGFR pathway might contribute to the antitumor effect of patchouli alcohol. Our study proved that patchouli alcohol might be able to serve as a novel antitumor compound in the clinical treatment of lung cancer.
Collapse
|
21
|
Wang HT, Wang ZZ, Wang ZC, Wang SM, Cai XJ, Su GH, Yuan ZY. Patchouli alcohol attenuates experimental atherosclerosis via inhibiting macrophage infiltration and its inflammatory responses. Biomed Pharmacother 2016; 83:930-935. [DOI: 10.1016/j.biopha.2016.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 01/28/2023] Open
|
22
|
Li Z, Xiao X, Yang M. Asiatic Acid Inhibits Lipopolysaccharide-Induced Acute Lung Injury in Mice. Inflammation 2016; 39:1642-8. [DOI: 10.1007/s10753-016-0398-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Li KC, Ho YL, Chen CY, Hsieh WT, Chang YS, Huang GJ. Lobeline improves acute lung injury via nuclear factor-κB-signaling pathway and oxidative stress. Respir Physiol Neurobiol 2015; 225:19-30. [PMID: 26702732 DOI: 10.1016/j.resp.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) is a severe, life-threatening medical condition whose pathogenesis is linked to neutrophil infiltration of the lung. Activation and recruitment of neutrophils to the lung is mostly attributed to the production of chemokines NO, IL-6, for instance. This study aims to investigate lobeline ability in reducing NO production, and nitric oxide synthase (iNOs) expression. Lobeline was tested by inhibiting phosphorylation of mitogen-activated protein kinases (MAPKs), NF-κB and IκBα in LPS-stimulated RAW 264.7 cells. When RAW 264.7 macrophages were given lobeline with LPS, a significant concentration-dependent inhibition of NO production was detected. In vivo tests, mice were either treated with normal saline, 10mg/kg dexmethasone or 5, 10, 20mg/kg lobeline intraperitoneally, and after an hour, the administration of 5mg/kg of LPS was given intratracheally. External performance, cytokines, MAPK pathways and antioxidative enzymes (AOEs) were also carried out to evaluate the effects of these drugs. This is the first investigation in which lobeline was found to effectively inhibit acute lung edema, which may provide a potential target for treating ALI. Lobeline may utilize MAPKs pathways as well as AOEs activity to attenuate LPS-induced nonspecific pulmonary inflammation.
Collapse
Affiliation(s)
- Kun-Cheng Li
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Cing-Yu Chen
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan; Chinese Crude Drug Pharmacy, China Medical University Hospital, Taichung 404, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
24
|
A Standardized Traditional Chinese Medicine Preparation Named Yejuhua Capsule Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Downregulating Toll-Like Receptor 4/Nuclear Factor-κB. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:264612. [PMID: 25878714 PMCID: PMC4386677 DOI: 10.1155/2015/264612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/11/2023]
Abstract
A standardized traditional Chinese medicine preparation named Yejuhua capsule (YJH) has been clinically used in treatments of various acute respiratory system diseases with high efficacy and low toxicity. In this study, we were aiming to evaluate potential effects and to elucidate underlying mechanisms of YJH against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice. Moreover, the chemical analysis and chromatographic fingerprint study were performed for quality evaluation and control of this drug. ALI was induced by intratracheal instillation of LPS (5 mg/kg) into the lung in mice and dexamethasone (5 mg/kg, p.o.) was used as a positive control drug. Results demonstrated that pretreatments with YJH (85, 170, and 340 mg/kg, p.o.) effectively abated LPS-induced histopathologic changes, attenuated the vascular permeability enhancement and edema, inhibited inflammatory cells migrations and protein leakages, suppressed the ability of myeloperoxidase, declined proinflammatory cytokines productions, and downregulated activations of nuclear factor-κB (NF-κB) and expressions of toll-like receptor 4 (TLR4). This study demonstrated that YJH exerted potential protective effects against LPS-induced ALI in mice and supported that YJH was a potential therapeutic drug for ALI in clinic. And its mechanisms were at least partially associated with downregulations of TLR4/NF-κB pathways.
Collapse
|