1
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Mavrogenis AF, Altsitzioglou P, Tsukamoto S, Errani C. Biopsy Techniques for Musculoskeletal Tumors: Basic Principles and Specialized Techniques. Curr Oncol 2024; 31:900-917. [PMID: 38392061 PMCID: PMC10888002 DOI: 10.3390/curroncol31020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Biopsy is a pivotal component in the diagnostic process of bone and soft tissue tumors. The objective is to obtain adequate tissue without compromising local tumor dissemination and the patient's survival. This review explores contemporary principles and practices in musculoskeletal biopsies, emphasizing the critical role of diagnostic accuracy while also delving into the evolving landscape of liquid biopsies as a promising alternative in the field. A thorough literature search was done in PubMed and Google Scholar as well as in physical books in libraries to summarize the available biopsy techniques for musculoskeletal tumors, discuss the available methods, risk factors, and complications, and to emphasize the challenges related to biopsies in oncology. Research articles that studied the basic principles and specialized techniques of biopsy techniques in tumor patients were deemed eligible. Their advantages and disadvantages, technical and pathophysiological mechanisms, and possible risks and complications were reviewed, summarized, and discussed. An inadequately executed biopsy may hinder diagnosis and subsequently impact treatment outcomes. All lesions should be approached with a presumption of malignancy until proven otherwise. Liquid biopsies have emerged as a potent non-invasive tool for analyzing tumor phenotype, progression, and drug resistance and guiding treatment decisions in bone sarcomas and metastases. Despite advancements, several barriers remain in biopsies, including challenges related to costs, scalability, reproducibility, and isolation methods. It is paramount that orthopedic oncologists work together with radiologists and pathologists to enhance diagnosis, patient outcomes, and healthcare costs.
Collapse
Affiliation(s)
- Andreas F. Mavrogenis
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini, 157 72 Athens, Greece;
| | - Pavlos Altsitzioglou
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini, 157 72 Athens, Greece;
| | - Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Costantino Errani
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy;
| |
Collapse
|
3
|
Yang M, Zheng H, Su Y, Xu K, Yuan Q, Cai Y, Aihaiti Y, Xu P. Novel pyroptosis-related lncRNAs and ceRNAs predict osteosarcoma prognosis and indicate immune microenvironment signatures. Heliyon 2023; 9:e21503. [PMID: 38027935 PMCID: PMC10661155 DOI: 10.1016/j.heliyon.2023.e21503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To study pyroptosis-related biomarkers that are associated with the prognosis and immune microenvironment characteristics of osteosarcoma (OS). The goal is to establish a foundation for the prognosis and treatment of OS. Methods We retrieved transcriptome and clinical data from The Cancer Genome Atlas (TCGA) database for 88 OS patients. Using this data, we constructed a prognostic model to identify pyroptosis-related genes (PRGs) associated with OS prognosis. To further explore the biological function of these PRGs, we performed enrichment analysis. To identify pyroptosis-related long non-coding RNAs (PRLncs) associated with the prognosis of OS, we performed co-expression analysis. Subsequently, a risk prognostic model was constructed using these PRLncs to generate a risk score, termed as PRLncs-score, thereby obtaining PRLncs associated with the prognosis of OS. The accuracy of the prognostic model was verified through survival analysis, risk curve, independent prognostic analysis, receiver operating characteristic (ROC) curve, difference analysis between high- and low-risk groups, and clinical correlation analysis. And to determine whether PRLncs-score is independent prognostic factor for OS. In addition, we further conducted external and internal validation for the risk prognosis model. Further analyses of immune cell infiltration and tumor microenvironment were performed. A pyroptosis-related competitive endogenous RNA (PRceRNA) network was constructed to obtain PRceRNAs associated with the prognosis of OS and performed gene set enrichment analysis (GSEA) on PRceRNA genes. Results We obtained five PRGs (CHMP4C, BAK1, GSDMA, CASP1, and CASP6) that predicted OS prognosis and seven PRLncs (AC090559.1, AP003119.2, CARD8-AS1, AL390728.4, SATB2-AS1, AL133215.2, and AC009495.3) and one PRceRNA (CARD8-AS1-hsa-miR-21-5p-IL1B) that predicted OS prognosis and indicated characteristics of the OS immune microenvironment. The PRLncs-score, in combination with other clinical features, was established as an independent prognostic factor for OS patients. Subsequent scrutiny of the tumor microenvironment and immune infiltration indicated that patients with low-PRLncs-scores were associated with reduced metastatic risk, improved survival rates, heightened levels of immune cells and stroma, and increased immune activity compared to those with high-PRLncs-scores. Conclusion The study's findings offer insight into the prognosis of OS and its immune microenvironment, and hold promise for improving early diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Haishi Zheng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Qiling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| |
Collapse
|
4
|
Doghish AS, Hegazy M, Ismail A, El-Mahdy HA, Elsakka EGE, Elkhawaga SY, Elkady MA, Yehia AM, Abdelmaksoud NM, Mokhtar MM. A spotlight on the interplay of signaling pathways and the role of miRNAs in osteosarcoma pathogenesis and therapeutic resistance. Pathol Res Pract 2023; 245:154442. [PMID: 37031532 DOI: 10.1016/j.prp.2023.154442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Osteosarcoma (OS) is one of the most common bone cancers that constantly affects children, teenagers, and young adults. Numerous epigenetic elements, such as miRNAs, have been shown to influence OS features like progression, initiation, angiogenesis, and treatment resistance. The expression of numerous genes implicated in OS pathogenesis might be regulated by miRNAs. This effect is ascribed to miRNAs' roles in the invasion, angiogenesis, metastasis, proliferation, cell cycle, and apoptosis. Important OS-related mechanistic networks like the WNT/b-catenin signaling, PTEN/AKT/mTOR axis, and KRAS mutations are also affected by miRNAs. In addition to pathophysiology, miRNAs may influence how the OS reacts to therapies like radiotherapy and chemotherapy. With a focus on how miRNAs affect OS signaling pathways, this review seeks to show how miRNAs and OS are related.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
5
|
Chellini L, Palombo R, Riccioni V, Paronetto MP. Oncogenic Dysregulation of Circulating Noncoding RNAs: Novel Challenges and Opportunities in Sarcoma Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14194677. [PMID: 36230599 PMCID: PMC9562196 DOI: 10.3390/cancers14194677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Body fluids contain different classes of RNA molecules such as protein-coding messenger RNAs (mRNA) and noncoding RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). These circulating RNAs can travel naked or packed into extracellular vesicles and display valuable potential as non-invasive biomarkers of sarcoma malignancy. In this review, we summarize current knowledge on the possible functions of these circulating RNAs and discuss their possible exploitation as novel markers to improve sarcoma diagnosis and prognosis. Despite the recent advance in technological tools have improved protocols for the extraction and detection of circulating RNA, many aspects related to the biology of these molecules remain to be elucidated. In particular, the lack of standardization in the assessment of these markers makes difficult their adoption into clinical practice. Abstract Sarcomas comprise a heterogeneous group of rare mesenchymal malignancies. Sarcomas can be grouped into two categories characterized by different prognosis and treatment approaches: soft tissue sarcoma and primary bone sarcoma. In the last years, research on novel diagnostic, prognostic or predictive biomarkers in sarcoma management has been focused on circulating tumor-derived molecules as valuable tools. Liquid biopsies that measure various tumor components, including circulating cell-free DNA and RNA, circulating tumor cells, tumor extracellular vesicles and exosomes, are gaining attention as methods for molecular screening and early diagnosis. Compared with traditional tissue biopsies, liquid biopsies are minimally invasive and blood samples can be collected serially over time to monitor cancer progression. This review will focus on circulating noncoding RNA molecules from liquid biopsies that are dysregulated in sarcoma malignancies and discuss advantages and current limitations of their employment as biomarkers in the management of sarcomas. It will also explore their utility in the evaluation of the clinical response to treatments and of disease relapse. Moreover, it will explore state-of-the-art techniques that allow for the early detection of these circulating biomarkers. Despite the huge potential, current reports highlight poor sensitivity, specificity, and survival benefit of these methods, that are therefore still insufficient for routine screening purposes.
Collapse
Affiliation(s)
- Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Ramona Palombo
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Veronica Riccioni
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
Wang G, Zhang Q, Wang Q, Wang J, Chen L, Sun Q, Miao D. Long non-coding RNA DUXAP10 exerts oncogenic properties in osteosarcoma by recruiting HuR to enhance SOX18 mRNA stability. Hum Cell 2022; 35:1939-1951. [PMID: 36053455 PMCID: PMC9515053 DOI: 10.1007/s13577-022-00772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated that several long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of osteosarcoma (OS). However, more lncRNAs and their mechanisms in regulating growth and migration of OS cells remain to be investigated. In this study, we identified an lncRNA called DUXAP10 by analysis of GEO data, which was significantly up-regulated in OS tissues and cell lines. Experiments in vitro revealed that lncRNA DUXAP10 promoted proliferation, migration, and invasion of OS cells and inhibited their apoptosis. We also demonstrated that DUXAP10 promoted the formation and growth of OS by tumor formation assay. Furthermore, SOX18 was identified as a critical downstream target of DUXAP10 by transcriptome RNA-seq. Mechanistically, DUXAP10 mainly localized in cytoplasm and could specifically bind to HuR to increase the stability of SOX18 mRNA. Meanwhile, SOX18 knockdown largely reversed increased proliferation of OS cells induced by DUXAP10 overexpression. Findings from this study indicate that lncRNA DUXAP10 can act as an oncogene in osteosarcoma by binding HuR to up-regulate the expression of SOX18 at a post-transcriptional level, which may provide a new target for OS clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Guantong Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Qinjue Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Lulu Chen
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Qiang Sun
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
dos Santos MGP, Gatti da Silva GH, Nagasse HY, Fuziwara CS, Kimura ET, Coltri PP. hnRNP A1 and hnRNP C associate with miR-17 and miR-18 in thyroid cancer cells. FEBS Open Bio 2022; 12:1253-1264. [PMID: 35417090 PMCID: PMC9157402 DOI: 10.1002/2211-5463.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/03/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are essential players in the regulation of gene expression. The majority of the twenty different hnRNP proteins act through the modulation of pre-mRNA splicing. Most have been shown to regulate the expression of critical genes for the progression of tumorigenic processes and were also observed to be overexpressed in several types of cancer. Moreover, these proteins were described as essential components for the maturation of some microRNAs (miRNAs). In the human genome, over 70% of miRNAs are transcribed from introns; therefore, we hypothesized that regulatory proteins involved with splicing could be important for their maturation. Increased expression of the miR-17-92 cluster has already been shown to be related to the development of many cancers, such as thyroid, lung, and lymphoma. In this article, we show that overexpression of hnRNP A1 and hnRNP C in BCPAP thyroid cancer cells directly affects the expression of miR-17-92 miRNAs. Both proteins associate with the 5'-end of this cluster, strongly precipitate miRNAs miR-17 and miR-18a and upregulate the expression of miR-92a. Upon overexpression of these hnRNPs, BCPAP cells also show increased proliferation, migration, and invasion rates, suggesting upregulation of these proteins and miRNAs is related to an enhanced tumorigenic phenotype.
Collapse
Affiliation(s)
- Maria Gabriela Pereira dos Santos
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
- Present address:
National Center for Tumor Diseases (NCT) DresdenFetscherstraße 74Dresden01307Germany
| | | | - Helder Yudi Nagasse
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Cesar Seigi Fuziwara
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Edna T. Kimura
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| | - Patricia Pereira Coltri
- Departamento de Biologia Celular e do DesenvolvimentoInstituto de Ciências BiomédicasUniversidade de São PauloBrazil
| |
Collapse
|
8
|
Ni S, Li X, Yi X. Clinical Application of Artificial Intelligence: Auto-Discerning the Effectiveness of Lidocaine Concentration Levels in Osteosarcoma Femoral Tumor Segment Resection. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7069348. [PMID: 35388316 PMCID: PMC8979681 DOI: 10.1155/2022/7069348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
Adolescents and children worldwide are threatened by osteosarcoma, a tumor that predominantly affects the long bone epiphysis. Osteosarcoma is the most common and highly malignant bone tumor in youngsters. Early tumor detection is the key to effective treatment of this disease. The discovery of biomarkers and the growing understanding of molecules and their complex interactions have improved the outcome of clinical trials in osteosarcoma. This article describes biomarkers of osteosarcoma with the aim of positively influencing the progress of clinical treatment of osteosarcoma. Femoral bone tumor is a typical condition of osteosarcoma. Due to the wide range of femoral stem types, complexities in the distal femur, and tumors in the rotor part of femur, physicians following the traditional clinical approach face difficulties in removing the lesion and fixing the femur with resection of the tumor segment. In this paper, the effect of small doses of different concentrations of lidocaine anesthesia in patients undergoing lumpectomy for osteosarcoma femoral tumor segments is investigated. A computer-based artificial intelligence method for automated determination of different concentration levels of lidocaine anesthesia and amputation of osteosarcoma femoral tumor segment is proposed. Statistical analysis is carried on the empirical data including intraoperative bleeding, intraoperative and postoperative pain scores, surgical operation time, postoperative complications, patient satisfaction, and local anesthetic dose. The results showed that the patients in the study group had low intraoperative bleeding, short operation time, low postoperative hematoma formation rate, high patient satisfaction, higher dosage of anesthetic solution, and low dosage of lidocaine. Results revealed that mean arterial pressure and heart rate in extubating and intubating were significantly lower in the observation group than in the control group, and a significant difference (P < 0.05) was observed between the two groups. This proves that the proposed algorithm can adequately reduce bleeding, alleviate postoperative pain, shorten operation time, reduce complications, accelerate recovery, and ensure better treatment results.
Collapse
Affiliation(s)
- Shuqin Ni
- Department of Anesthesiology, Yantaishan Hospital, Yantai 264003, Shandong, China
| | - Xin Li
- Department of Surgery, Jinyintan Hospital, Wuhan, Hubei 430022, China
| | - Xiuna Yi
- Department of Anesthesiology, Yantaishan Hospital, Yantai 264003, Shandong, China
| |
Collapse
|
9
|
Adib A, Sahu R, Mohta S, Pollock RE, Casadei L. Cancer-Derived Extracellular Vesicles: Their Role in Sarcoma. Life (Basel) 2022; 12:life12040481. [PMID: 35454972 PMCID: PMC9029613 DOI: 10.3390/life12040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Soft tissue sarcomas (STS) are rare malignancies with limited responses to anticancer therapy. Extracellular vesicles (EVs) are a heterogeneous group of bi-lipid layer sacs secreted by cells into extracellular space. Investigations of tumor-derived EVs have revealed their functional capabilities, including cell-to-cell communication and their impact on tumorigenesis, progression, and metastasis; however information on the roles of EVs in sarcoma is currently limited. In this review we investigate the role of various EV cargos in sarcoma and the mechanisms by which those cargos can affect the recipient cell phenotype and the aggressivity of the tumor itself. The study of EVs in sarcoma may help establish novel therapeutic approaches that target specific sarcoma subtypes or biologies, thereby improving sarcoma therapeutics in the future.
Collapse
Affiliation(s)
- Anita Adib
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
- Correspondence: (A.A.); (R.S.)
| | - Ruhi Sahu
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
- Correspondence: (A.A.); (R.S.)
| | - Shivangi Mohta
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
| | - Raphael Etomar Pollock
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA;
| | - Lucia Casadei
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
| |
Collapse
|
10
|
Yao P, Lu Y, Cai Z, Yu T, Kang Y, Zhang Y, Wang X. Research Progress of Exosome-Loaded miRNA in Osteosarcoma. Cancer Control 2022; 29:10732748221076683. [PMID: 35179996 PMCID: PMC8859673 DOI: 10.1177/10732748221076683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Currently, although the improvement of surgical techniques and the development of chemotherapy drugs have brought a certain degree of development to the treatment of osteosarcoma, the treatment of osteosarcoma has many shortcomings, and its treatment is limited. MiRNAs and exosomes can be used as diagnostic tools, and they play an important role in the occurrence and chemotherapy resistance of osteosarcoma. Therefore, providing a new method for the treatment of osteosarcoma is the key to solving this problem. To systematically summarize the research status of exoskeleton drug-loaded miRNA in osteosarcoma, we identified and evaluated 208 studies and found that exosome-carrying miRNA can be used as an index for the diagnosis and prognosis of osteosarcoma and share a certain relationship with chemosensitivity. In addition, exosomes can also be used as a carrier of genetic drugs able to regulate the progression of osteosarcoma. Based on the above findings, we propose suggestions for the future development of this field, aiming to bring new ideas for the early diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peng Yao
- Joint Surgery Department, The Second People's Hospital of Zhangye City, Zhangye, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital, 144991Sun Yat-sen University, Guangzhou, China
| | - Zongyan Cai
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Tianci Yu
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yuchen Kang
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yu Zhang
- Joint Surgery Department, The Second People's Hospital of Zhangye City, Zhangye, China
| | - Xulong Wang
- Joint Surgery Department, The Second People's Hospital of Zhangye City, Zhangye, China
| |
Collapse
|
11
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Gao SS, Zhang GX, Zhang WT. MicroRNAs as prognostic biomarkers for survival outcome in osteosarcoma: A meta-analysis. World J Meta-Anal 2021; 9:568-584. [DOI: 10.13105/wjma.v9.i6.568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/08/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteosarcoma was considered to be one of the most prevalent malignant bone tumors in adolescents.
AIM To explore the prognostic significance of microRNA (miRNA) in osteosarcoma.
METHODS The literature was selected by searching online in PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, and Wanfang Database until July 1, 2021. The pooled hazard ratio (HR) with corresponding 95% confidence interval (CI) for the outcomes of overall survival (OS), disease-free survival (DFS), progression-free survival (PFS) and recurrence-free survival were calculated. Subgroup analyses were carried out to identify potential sources of heterogeneity. Publication bias was assessed by Egger’s bias indicator test.
RESULTS A total of 60 studies from 54 articles with 5824 osteosarcoma patients were included for this meta-analysis. The pooled HR for OS, DFS, PFS were 2.92 (95%CI: 2.43-3.41, P = 0.000), 3.70 (95%CI: 2.80-4.61, P = 0.000), and 3.57 (95%CI: 1.60-5.54, P = 0.000), respectively. The high miR-21 expression levels were related to poor OS in osteosarcoma (HR = 2.86, 95%CI: 1.20-4.53, P = 0.001). Subgroup analysis demonstrated that a high expression level of miRNA correlated with worse OS (HR: 3.56, 95%CI: 2.59-4.54, P = 0.000). In addition, miRNA from tissue (HR: 3.20, 95%CI: 2.16-4.23, P = 0.000) may be a stronger prognostic biomarker in comparison with that from serum and plasma.
CONCLUSION miRNA (especially miR-21) could be served as a potential prognostic biomarker for osteosarcoma. A high expression level of miRNA in tumor tissue correlated with worse OS of osteosarcoma.
Collapse
Affiliation(s)
- Shuai-Shuai Gao
- International Doctoral School, University of Seville, Seville 41004, Spain
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Xi'an 710016, Shaanxi Province, China
| | - Guo-Xun Zhang
- International Doctoral School, University of Seville, Seville 41004, Spain
| | - Wen-Ting Zhang
- International Doctoral School, University of Seville, Seville 41004, Spain
| |
Collapse
|
13
|
Gally TB, Aleluia MM, Borges GF, Kaneto CM. Circulating MicroRNAs as Novel Potential Diagnostic Biomarkers for Osteosarcoma: A Systematic Review. Biomolecules 2021; 11:biom11101432. [PMID: 34680065 PMCID: PMC8533382 DOI: 10.3390/biom11101432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Osteosarcoma (OS) is a fast-progressing bone tumor with high incidence in children and adolescents. The main diagnostic methods for OS are imaging exams and biopsies. In spite of the several resources available for detecting the disease, establishing an early diagnosis is still difficult, resulting in worse prognosis and lower survival rates for patients with OS. The identification of novel biomarkers would be helpful, and recently, circulating microRNAs (miRNAs) have been pointed to as possible non-invasive biomarkers. In order to assess the effectiveness of miRNA research, we performed a systematic review to assess the potential role of circulating miRNAs as biomarkers for OS diagnosis. We performed a search in various databases—PubMed, LILACS (Literatura Latino-americana e do Caribe em Ciências da Saúde), VHL (Virtual Health Library), Elsevier, Web of Science, Gale Academic One File—using the terms: “Circulating microRNAs” OR “plasma microRNAs” OR “serum microRNAs” OR “blood microRNAs” OR “cell-free microRNAs” OR “exosome microRNAs” OR “extracellular vesicles microRNAs” OR “liquid biopsy” AND “osteosarcoma” AND “diagnostic”. We found 35 eligible studies that were independently identified and had had their quality assessed according to Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) guidelines. Despite the useful number of publications on this subject and the fact that several microRNAs showed excellent diagnostic performance for OS, the lack of consistency in results suggests that additional prospective studies are needed to confirm the role of circulating miRNAs as non-invasive biomarkers in OS.
Collapse
Affiliation(s)
- Thaís Borges Gally
- Department of Health Sciences, Universidade Estadual de Santa Cruz, llhéus 45662-900, BA, Brazil;
| | - Milena Magalhães Aleluia
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil;
| | - Grasiely Faccin Borges
- Public Policies and Social Technologies Center, Federal University of Southern Bahia, Itabuna 45613-204, BA, Brazil;
| | - Carla Martins Kaneto
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil;
- Correspondence:
| |
Collapse
|
14
|
Kohama I, Asano N, Matsuzaki J, Yamamoto Y, Yamamoto T, Takahashi RU, Kobayashi E, Takizawa S, Sakamoto H, Kato K, Fujimoto H, Chikuda H, Kawai A, Ochiya T. Comprehensive serum and tissue microRNA profiling in dedifferentiated liposarcoma. Oncol Lett 2021; 22:623. [PMID: 34285721 PMCID: PMC8258628 DOI: 10.3892/ol.2021.12884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/30/2021] [Indexed: 12/02/2022] Open
Abstract
Sarcoma is a rare cancer with several subtypes; therefore, our understanding of the pathogenesis of sarcoma is limited, and designing effective treatments is difficult. Circulating microRNAs (miRNAs), including exosomal miRNAs, have attracted attention as biomarkers in cancer. However, the roles of miRNAs and exosomes in sarcoma remain unclear. The present analysis of tissue and serum miRNA expression in osteosarcoma, Ewing's sarcoma and dedifferentiated liposarcoma (DDLPS) identified miR-1246, −4532, −4454, −619-5p and −6126 as biomarkers for DDLPS. These miRNAs were highly expressed in human DDLPS cell lines and exosomes, suggesting that they are secreted from DDLPS tissues. The present results suggested that specific miRNAs may be used as biomarkers for early diagnosis or treatment targets in DDLPS.
Collapse
Affiliation(s)
- Isaku Kohama
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Naofumi Asano
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Tomofumi Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Division of Integrated Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Satoko Takizawa
- New Frontiers Research Institute, Toray Industries, Kamakura, Kanagawa 247-8555, Japan
| | - Hiromi Sakamoto
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hirotaka Chikuda
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
15
|
MicroRNA expression profile in serum reveals novel diagnostic biomarkers for endometrial cancer. Biosci Rep 2021; 41:228873. [PMID: 34076696 PMCID: PMC8209168 DOI: 10.1042/bsr20210111] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose: Circulating microRNAs (miRNAs) prove to be promising diagnostic biomarkers for various cancers, including endometrial cancer (EC). The present study aims to identify serum microRNAs that can serve as potential biomarkers for EC diagnosis. Patients and methods: A total of 92 EC and 102 normal control (NC) serum samples were analyzed using quantitative real-time polymerase chain reaction (qRT-PCR) in this four-phase experiment. The logistic regression method was used to construct a diagnostic model based on the differentially expressed miRNAs in serum. The receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value. To further validate the diagnostic capacity of the identified signature, the 6-miRNA marker was compared with previously reported biomarkers and verified in three public datasets. In addition, the expression characteristics of the identified miRNAs were further explored in tissue and serum exosomes samples. Results: Six miRNAs (miR-143-3p, miR-195-5p, miR-20b-5p, miR-204-5p, miR-423-3p, and miR-484) were significantly overexpressed in the serum of EC compared with NCs. Areas under the ROC of the 6-miRNA signatures were 0.748, 0.833, and 0.967 for the training, testing, and the external validation phases, respectively. The identified signature has a very stable diagnostic performance in the large cohorts of three public datasets. Compared with previously identified miRNA biomarkers, the 6-miRNA signature in the present study has superior performance in diagnosing EC. Moreover, the expression of miR-143-3p and miR-195-5p in tissues and the expression of miR-20b-5p in serum exosomes were consistent with those in serum. Conclusions: We established a 6-miRNA signature in serum and they could function as potential non-invasive biomarker for EC diagnosis.
Collapse
|
16
|
Lei J, He MY, Li J, Li H, Wang W, Gopinath SCB, Xu LZ. miRNA identification by nuclease digestion in ELISA for diagnosis of osteosarcoma. Biotechnol Appl Biochem 2021; 69:1365-1372. [PMID: 34081808 DOI: 10.1002/bab.2209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/01/2021] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is a bone cancer formed by the cells of the bone. Children, young adults, and teens are highly affected by osteosarcoma. Early identification of osteosarcoma is mandatory to improve the treatment and increase the lifespan of the patients. MicroRNA-195 (miR-195) was shown to be a suitable biomarker for osteosarcoma, and the present study describes a sensitive method of miR-195 identification by nuclease digestion in ELISA to detect and quantify the level of miR-195. S1 nuclease catalyzed endo- and exonucleolytic digestion of single-stranded (ss) RNA and DNA on ELISA polystyrene substrate, which helped to identify duplexed miR-195. This method selectively and specifically identified miR-195 without any biofouling interactions and reached the limit of detection at 10 fM within the range from 10 fM to 10 nM. Due to complete digestion of ssDNA, single- and triple-mismatched sequences failed to increase the ELISA signal, indicating specific miRNA detection. Furthermore, human serum spiked with miR-195 did not interfere with the detection, confirming selective identification. This method identified miR-195 at a lower level and will help to diagnose earlier stages of osteosarcoma.
Collapse
Affiliation(s)
- Jie Lei
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Meng-Yin He
- Department of Radiology, Wuhan Hospital Of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jie Li
- Department of Orthopedics, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Hao Li
- First Clinical Medical College of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Wei Wang
- First Clinical Medical College of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Liang-Zhou Xu
- Department of Radiology, Wuhan Hospital Of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
17
|
Xu Z, Zheng K, Du Z, Xin J, Luo M, Wang F. Colorimetric identification of miRNA-195 sequence for diagnosing osteosarcoma. Biotechnol Appl Biochem 2021; 69:974-980. [PMID: 33882171 DOI: 10.1002/bab.2169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/12/2021] [Indexed: 11/06/2022]
Abstract
Improving biosensing performance is mandatory for biomolecular recognition and disease identification. Gold nanoparticle (GNP)-based colorimetric assay is the easy and cost-effective identification method by a naked eye detection. In this research, osteosarcoma biomarker (miRNA-195) was identified by citrate-capped GNP-colorimetric assay. As salt-induced aggregation was used to observe the color changes of GNP, sodium chloride (NaCl) and capture DNA were optimized as 50 mM and ∼20 pmol, respectively. The capture DNA only on GNP could not stabilize under high NaCl, and the color of GNP turned into purple. At the same time, when capture DNA was hybridized with target, the condition can stabilize the GNP under higher NaCl, which retains the GNP color as red. This simple assay reaches the limit of detection of target miRNA-195 as ∼40 fmol. Control experiments with noncomplementary DNA turned the solution into purple, indicating the specific detection of target. The mixture of target in diluted serum retains the color of the GNP solution to be red, indicating the selective detection of target DNA. This simple assay helps to quantify the level of miRNA-195 target DNA and to diagnose the osteosarcoma.
Collapse
Affiliation(s)
- Zhendong Xu
- Department of Sports Medicine, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Kunlun Zheng
- Department of Orthopaedics, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhuang Du
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Jindang Xin
- Department of Orthopaedics, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meimei Luo
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Fengdan Wang
- The second Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Fernandes I, Melo-Alvim C, Lopes-Brás R, Esperança-Martins M, Costa L. Osteosarcoma Pathogenesis Leads the Way to New Target Treatments. Int J Mol Sci 2021; 22:E813. [PMID: 33467481 PMCID: PMC7831017 DOI: 10.3390/ijms22020813] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a rare condition with very poor prognosis in a metastatic setting. Basic research has enabled a better understanding of OS pathogenesis and the discovery of new potential therapeutic targets. Phase I and II clinical trials are already ongoing, with some promising results for these patients. This article reviews OS pathogenesis and new potential therapeutic targets.
Collapse
Affiliation(s)
- Isabel Fernandes
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
| | - Cecília Melo-Alvim
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
| | - Raquel Lopes-Brás
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
| | - Miguel Esperança-Martins
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
- Sérgio Dias Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
| | - Luís Costa
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
| |
Collapse
|
19
|
Lei Y, Junxin C, Yongcan H, Xiaoguang L, Binsheng Y. Role of microRNAs in the crosstalk between osteosarcoma cells and the tumour microenvironment. J Bone Oncol 2020; 25:100322. [PMID: 33083216 PMCID: PMC7554654 DOI: 10.1016/j.jbo.2020.100322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumour, with a peak incidence in adolescents, and the five-year survival rate of patients with metastasis or recurrence is much lower than that of patients without metastasis and recurrence. OS is initiated and develops in a complex tumour microenvironment (TME) that contains many different components, such as osteoblasts, osteoclasts, mesenchymal stem cells, fibroblasts, immune cells, extracellular matrix (ECM), extracellular vesicles, and cytokines. The extensive interaction between OS and the TME underlies OS progression. Therefore, rather than targeting OS cells, targeting the key factors in the TME may yield novel therapeutic approaches. MicroRNAs (miRNAs) play multiple roles in the biological behaviours of OS, and recent studies have implied that miRNAs are involved in mediating the communication between OS cells and the surrounding TME. Here, we review the TME landscape and the miRNA dysregulation of OS, describe the role of the altered TME in OS development and highlight the role of miRNA in the crosstalk between OS cells and the TME.
Collapse
Affiliation(s)
- Yong Lei
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chen Junxin
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huang Yongcan
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Liu Xiaoguang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
| | - Yu Binsheng
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
20
|
Rao G, Dwivedi SKD, Zhang Y, Dey A, Shameer K, Karthik R, Srikantan S, Hossen MN, Wren JD, Madesh M, Dudley JT, Bhattacharya R, Mukherjee P. MicroRNA-195 controls MICU1 expression and tumor growth in ovarian cancer. EMBO Rep 2020; 21:e48483. [PMID: 32851774 PMCID: PMC7534609 DOI: 10.15252/embr.201948483] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
MICU1 is a mitochondrial inner membrane protein that inhibits mitochondrial calcium entry; elevated MICU1 expression is characteristic of many cancers, including ovarian cancer. MICU1 induces both glycolysis and chemoresistance and is associated with poor clinical outcomes. However, there are currently no available interventions to normalize aberrant MICU1 expression. Here, we demonstrate that microRNA-195-5p (miR-195) directly targets the 3' UTR of the MICU1 mRNA and represses MICU1 expression. Additionally, miR-195 is under-expressed in ovarian cancer cell lines, and restoring miR-195 expression reestablishes native MICU1 levels and the associated phenotypes. Stable expression of miR-195 in a human xenograft model of ovarian cancer significantly reduces tumor growth, increases tumor doubling times, and enhances overall survival. In conclusion, miR-195 controls MICU1 levels in ovarian cancer and could be exploited to normalize aberrant MICU1 expression, thus reversing both glycolysis and chemoresistance and consequently improving patient outcomes.
Collapse
Affiliation(s)
- Geeta Rao
- Department of PathologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | | | - Yushan Zhang
- Department of PathologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Anindya Dey
- Department of Obstetrics and GynecologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Khader Shameer
- Institute of Next Generation Healthcare (INGH)Icahn Institute for Data Science and Genomic TechnologyDepartment of Genetics and Genomic SciencesMount Sinai Health SystemNew YorkNYUSA
| | - Ramachandran Karthik
- Department of MedicineCardiology DivisionUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Subramanya Srikantan
- Department of MedicineCardiology DivisionUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Md Nazir Hossen
- Department of PathologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Jonathan D Wren
- Genes & Human Disease Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Muniswamy Madesh
- Department of MedicineCardiology DivisionUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Joel T Dudley
- Institute of Next Generation Healthcare (INGH)Icahn Institute for Data Science and Genomic TechnologyDepartment of Genetics and Genomic SciencesMount Sinai Health SystemNew YorkNYUSA
| | - Resham Bhattacharya
- Department of Obstetrics and GynecologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Peggy and Charles Stephenson Cancer CenterThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Priyabrata Mukherjee
- Department of PathologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Peggy and Charles Stephenson Cancer CenterThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
21
|
Luo H, Wang P, Ye H, Shi J, Dai L, Wang X, Song C, Zhang J, Li J. Serum-Derived microRNAs as Prognostic Biomarkers in Osteosarcoma: A Meta-Analysis. Front Genet 2020; 11:789. [PMID: 32849795 PMCID: PMC7431663 DOI: 10.3389/fgene.2020.00789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022] Open
Abstract
Recent reports suggest that microRNAs (miRNAs) may serve as prognostic biomarkers in osteosarcoma. Due to osteosarcoma's early metastasis and poor prognosis, it is very important to find novel prognostic biomarkers for improving osteosarcoma's prognosis. Herein we propose a meta-analysis for serum miRNA's prognostic value in osteosarcoma. In this study, the literature available from PubMed, Web of Science, Embase, and Cochrane Library databases was reviewed. The pooled hazard ratios (HRs) with their 95% confidence intervals (CIs) were calculated to evaluate miRNAs prognostic values. A total of 20 studies investigating serum miRNAs were included in this meta-analysis; the initial terminal point of these reports included overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), and recurrence-free survival (RFS). For prognostic meta-analyses, the pooled HR for terminal events of higher expression of miRNAs and lower expression of miRNAs were 5.68 (95% CI 4.73-6.82, P < 0.05) and 3.78 (95% CI 3.27-4.37, P < 0.05), respectively. Additionally, subgroup analyses were conducted based on the analysis methods applied and clinicopathological features reported. In the pooled analyses, the miRNA expression levels are associated with poor prognosis according to both univariate and multivariate analyses. Furthermore, serum miRNAs (miRNA-195, miRNA-27a, miRNA-191, miRNA-300, miRNA-326, miRNA-497, miRNA-95-3p, miRNA-223, miRNA-491-5p, miRNA-124, miRNA-101, miRNA-139-5p, miRNA-194) were associated with poor OS and found to be closely correlated with clinical stage and distant metastasis in osteosarcoma. The results illustrate that low or high expression of these specific miRNAs are both potentially useful as prognostic serum biomarkers in osteosarcoma, and miRNAs (miRNA-195, miRNA-27a, miRNA-191, miRNA-300, miRNA-326, miRNA-497, miRNA-95-3p, miRNA-223, miRNA-491-5p, miRNA-124, miRNA-101, miRNA-139-5p, miRNA-194) may indicate clinical stage and metastasis in this form of cancer.
Collapse
Affiliation(s)
- Huan Luo
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China.,Zhengzhou University, Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Liping Dai
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China.,Zhengzhou University, Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Xiao Wang
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China.,Zhengzhou University, Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Chunhua Song
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
| | - Jianying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China.,Zhengzhou University, Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| |
Collapse
|
22
|
Gao SS, Wang YJ, Zhang GX, Zhang WT. Potential diagnostic value of miRNAs in peripheral blood for osteosarcoma: A meta-analysis. J Bone Oncol 2020; 23:100307. [PMID: 32742918 PMCID: PMC7385506 DOI: 10.1016/j.jbo.2020.100307] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common primary malignant tumors in adolescents. In recent years, multiple studies have reported the value of miRNAs in the diagnosis of OS, but the results were very different from each other. Therefore, we conducted this meta-analysis to determine the accuracy of miRNAs in the diagnosis of OS. The meta-analysis searched for relevant researches including PubMed, EMBASE, Web of Science, Wanfang database and China National Knowledge Infrastructure (CNKI) as of June 1, 2020. We used the quality assessment of Diagnostic Accuracy Study 2 (QUADAS-2) to score the quality of each study. A random effects model was used to pool the sensitivity and specificity. We measured the diagnostic value using positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC). Subgroup and meta-regression analysis were used to find potential sources of heterogeneity. The meta-analysis finally included 31 articles about 2634 OS patients and 1715 healthy controls. The pooled estimations showed that the circulating miRNAs has a high accuracy in diagnosing OS, with a sensitivity of 0.79, specificity of 0.89, PLR of 7.3, NLR of 0.23, DOR of 31, and AUC of 0.90. In addition, subgroup and meta-regression analysis showed that miRNA clusters have higher diagnostic accuracy than single miRNA, and miRNAs in plasma were more reliable than those in serum. In conclusion, peripheral blood miRNA is a potential noninvasive biomarker to assist in the early diagnosis of OS, especially young patients with bone pain and/or indeterminate radiology findings.
Collapse
Affiliation(s)
- Shuai-Shuai Gao
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Shaanxi, China
- International Doctoral School, University of Seville, Spain
| | - Yan-Jun Wang
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Shaanxi, China
| | - Guo-Xun Zhang
- International Doctoral School, University of Seville, Spain
| | - Wen-Ting Zhang
- International Doctoral School, University of Seville, Spain
| |
Collapse
|
23
|
Wei J, Liu X, Li T, Xing P, Zhang C, Yang J. The new horizon of liquid biopsy in sarcoma: the potential utility of circulating tumor nucleic acids. J Cancer 2020; 11:5293-5308. [PMID: 32742476 PMCID: PMC7391194 DOI: 10.7150/jca.42816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The diagnosis, treatment and prognosis of sarcoma are mainly dependent on tissue biopsy, which is limited in its ability to provide a panoramic view into the dynamics of tumor progression. In addition, effective biomarkers to monitor the progression and therapeutic response of sarcoma are lacking. Liquid biopsy, a recent technological breakthrough, has gained great attention in the last few decades. Nucleic acids (such as DNA, mRNAs, microRNAs, and long non-coding RNAs) that are released from tumors circulate in the blood of cancer patients and can be evaluated through liquid biopsy. Circulating tumor nucleic acids reflect the intertumoral and intratumoral heterogeneity, and thus liquid biopsy provides a noninvasive strategy to examine these molecules compared with traditional tissue biopsy. Over the past decade, a great deal of information on the potential utilization of circulating tumor nucleic acids in sarcoma screening, prognosis and therapy efficacy monitoring has emerged. Several specific gene mutations in sarcoma can be detected in peripheral blood samples from patients and can be found in circulating tumor DNA to monitor sarcoma. In addition, circulating tumor non-coding RNA may also be a promising biomarker in sarcoma. In this review, we discuss the clinical application of circulating tumor nucleic acids as blood-borne biomarkers in sarcoma.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, 067000, China
| | - Xinyue Liu
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ting Li
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Peipei Xing
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chao Zhang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jilong Yang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
24
|
Gareev I, Beylerli O, Yang G, Sun J, Pavlov V, Izmailov A, Shi H, Zhao S. The current state of MiRNAs as biomarkers and therapeutic tools. Clin Exp Med 2020; 20:349-359. [PMID: 32399814 DOI: 10.1007/s10238-020-00627-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with a length of 18-22 nucleotides that regulate about a third of the human genome at the post-transcriptional level. MiRNAs are involved in almost all biological processes, including cell proliferation, apoptosis, and cell differentiation, but also play a key role in the pathogenesis of many diseases. Most miRNAs are expressed within the cells themselves. Due to various forms of transport from cells like exosomes, circulating miRNAs are stable and can be found in human body fluids, such as blood, saliva, cerebrospinal fluid, and urine. Circulating miRNAs are of great interest as potential noninvasive biomarkers for tumors, lipid disorders, diabetes mellitus, and cardiovascular diseases. However, the possibility of their use in the clinic is limited, and this is associated with a number of problems since currently there are significant differences between the procedures for processing samples, methods of analysis, and especially strategies for standardizing results. Moreover, miRNAs can represent not only potential biomarkers but also become new therapeutic agents and be used in modern clinical practice, which again confirms the need for their study.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jinxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Valentin Pavlov
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Adel Izmailov
- Regional Clinical Oncology Center, Ufa, Republic of Bashkortostan, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001. .,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
25
|
Yang QK, Chen T, Wang SQ, Zhang XJ, Yao ZX. Apatinib as targeted therapy for advanced bone and soft tissue sarcoma: a dilemma of reversing multidrug resistance while suffering drug resistance itself. Angiogenesis 2020; 23:279-298. [PMID: 32333216 DOI: 10.1007/s10456-020-09716-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Bone and soft tissue sarcomas are rare malignant tumors originated from mesenchymal tissues. They harbor more than 50 distinct subtypes and differ in pathological features and clinical courses. Despite the significant improvements in modern multi-modality treatment, the outcomes and overall survival rates remain poor for patients with advanced, refractory, metastatic, or relapsed diseases. The growth and metastasis of bone and soft tissue sarcoma largely depend on angiogenesis, and VEGF/VEGFR pathway is considered as the most prominent player in angiogenesis. Therefore, blockade of VEGF/VEGFR pathways is a promising therapeutic strategy to retard neovascularization. Several VEGFR inhibitors have been developed and revealed their favorable anti-neoplastic effects in various cancers, but such desirable anti-tumor effects are not obtained in advanced sarcomas because of multiple reasons, such as drug tolerance, short duration of response, and severe adverse effects. Fortunately, preclinical and clinical studies have indicated that apatinib is a novel promising VEGFR2 inhibitor showing potent anti-angiogenic and anti-neoplastic activities in advanced sarcomas. Especially, apatinib has showed notable characteristics in multidrug resistance reversal, tumor regression, vascular normalization, immunosuppression alleviation, and enhancement of chemotherapeutic and radiotherapeutic effects. However, apatinib also gets struck in dilemma of reversing multidrug resistance of chemotherapeutic agents while suffering drug resistance itself, and several difficulties should be tackled before full use of apatinib. In this review, we discuss the outstanding characteristics and main predicaments of apatinib as targeted therapy in advanced sarcomas. Bone and soft tissue sarcomas are rare but malignant tumors originated from mesenchymal tissues. They harbor more than 100 distinct subtypes and differ in features of pathologies and clinical courses. Despite the significant improvements in modern multi-modality treatment, the outcomes and overall survival rates remain poor for patients with advanced, refractory, metastatic, or relapsed lesions. The growth and metastasis of bone and soft tissue sarcoma largely depend on angiogenesis and VEGF/VEGFR pathways play a pivotal role in angiogenesis. Therefore, blockade of VEGF/VEGFR pathways is a promising therapeutic strategy. Several VEGFR inhibitors have been developed and verified in clinical trials but with unfavorable outcomes. Fortunately, preclinical studies and clinical trials have indicated that apatinib is a novel promising VEGFR2 inhibitor showing potent anti-angiogenic and anti-neoplastic activities in advanced sarcomas. Actually, apatinib has showed notable characteristics in multidrug resistance reversal, tumor regression, vascular normalization, immunosuppression alleviation, enhancement of chemotherapeutic and radiotherapeutic effects. However, apatinib also gets struck in dilemma of reversing multidrug resistance of chemotherapeutic agents while suffering drug resistance itself, and several difficulties should be tackled before full use of apatinib. In this review, we discuss the outstanding characteristics and main predicaments of apatinib as targeted therapy in advanced sarcomas.
Collapse
Affiliation(s)
- Qian-Kun Yang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
- Department of Physiology, Army Medical University, Chongqing, 400038, China
| | - Tong Chen
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Shi-Qi Wang
- Troops 65651 of Chinese People's Liberation Army, Jinzhou, 121100, China
| | - Xiao-Jing Zhang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| | - Zhong-Xiang Yao
- Department of Physiology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
26
|
Stachowicz-Stencel T, Synakiewicz A. Biomarkers for pediatric cancer detection: latest advances and future perspectives. Biomark Med 2020; 14:391-400. [PMID: 32270691 DOI: 10.2217/bmm-2019-0613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer is one of the major health problems of the modern world. With the development of novel biochemistry and analytical instrumentation, precancer diagnosis has become a major focus of clinical and preclinical research. Finding appropriate biomarkers is crucial to make an early diagnosis, before the disease fully develops. With the improvement of precancer studies, cancer biomarkers prove their usefulness in providing important data on the cancer type and the status of patients' progression at a very early stage of the disease. Due to the constant evolution of pediatric cancer diagnosis, which includes highly advanced molecular techniques, the authors have decided to focus on selected groups of neoplastic disease and these include brain tumors, neuroblastoma, osteosarcoma and Hodgkin lymphoma.
Collapse
Affiliation(s)
- Teresa Stachowicz-Stencel
- Department of Pediatrics, Hematology & Oncology, Medical University of Gdansk, Poland 7 Debinki Street, 80-952 Gdansk, Poland
| | - Anna Synakiewicz
- Department of Pediatrics, Hematology & Oncology, Medical University of Gdansk, Poland 7 Debinki Street, 80-952 Gdansk, Poland
| |
Collapse
|
27
|
Jain N, Das B, Mallick B. Restoration of microRNA-197 expression suppresses oncogenicity in fibrosarcoma through negative regulation of RAN. IUBMB Life 2020; 72:1034-1044. [PMID: 32027089 DOI: 10.1002/iub.2240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) act as crucial regulators of biological pathways/processes by reinforcing transcriptional programs and moderating transcripts. Emerging evidences have shown the involvement of dysregulated miRNAs in pathophysiology of human diseases including several cancer types. Recently, miR-197-3p has been reported to play different roles in different cancers; however, its role in fibrosarcoma, a highly aggressive and malignant soft tissue sarcoma originated from the mesenchymal tissues, has not yet been studied. Therefore, this study aims to investigate the possible regulatory roles of miR-197-3p in the oncogenicity of fibrosarcoma. For this, we initially performed qRT-PCR of miR-197-3p, which we found to be downregulated in HT1080 human fibrosarcoma cells compared with IMR90-tert normal fibroblast cells. Subsequently, we performed gain-of-function study by employing several methods such as MTT assay, clonogenic assay, wound healing, flow cytometry cell cycle analysis, and acridine orange staining after transfecting HT1080 cells with miR-197-3p mimic. From these assays, we observed that miR-197-3p significantly inhibits viability, colony forming, and migration ability as well as triggers G2/M phase cell cycle arrest and autophagy in fibrosarcoma cells. To understand the mechanism through which miRNA performs these functions, we predicted its targets using TargetScan and performed pathway enrichment analysis after screening them by their expression in fibrosarcoma. Among the enriched targets, we found RAN (ras-related nuclear protein) to be a crucial target through which miR-197-3p represses tumorigenesis by binding to its 3´ UTR, validated by luciferase reporter assay. The tumor suppressive role of the miRNA was further confirmed by transfecting its mimic in RAN-overexpressed cells which showed significant attenuation in tumorigenic effect of RAN in fibrosarcoma as seen in different assays. Taken together, our study unveiled that miR-197-3p acts as an oncosuppressor in fibrosarcoma through G2/M phase arrest and induction of autophagy, and raises the possibility to act as a novel therapeutic intervention for the malignancy.
Collapse
Affiliation(s)
- Neha Jain
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Basudeb Das
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
28
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
29
|
Bottani M, Banfi G, Lombardi G. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Common Solid Tumors: Focus on Lung, Breast, Prostate Cancers, and Osteosarcoma. J Clin Med 2019; 8:E1661. [PMID: 31614612 PMCID: PMC6833074 DOI: 10.3390/jcm8101661] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
An early cancer diagnosis is essential to treat and manage patients, but it is difficult to achieve this goal due to the still too low specificity and sensitivity of classical methods (imaging, actual biomarkers), together with the high invasiveness of tissue biopsies. The discovery of novel, reliable, and easily collectable cancer markers is a topic of interest, with human biofluids, especially blood, as important sources of minimal invasive biomarkers such as circulating microRNAs (miRNAs), the most promising. MiRNAs are small non-coding RNAs and known epigenetic modulators of gene expression, with specific roles in cancer development/progression, which are next to be implemented in the clinical routine as biomarkers for early diagnosis and the efficient monitoring of tumor progression and treatment response. Unfortunately, several issues regarding their validation process are still to be resolved. In this review, updated findings specifically focused on the clinical relevance of circulating miRNAs as prognostic and diagnostic biomarkers for the most prevalent cancer types (breast, lung, and prostate cancers in adults, and osteosarcoma in children) are described. In addition, deep analysis of pre-analytical, analytical, and post-analytical issues still affecting the circulation of miRNAs' validation process and routine implementation is included.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Vita-Salute San Raffaele University, 20132 Milano, Italy.
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Dept. of Physiology and Pharmacology, Gdańsk University of Physical Education and Sport, Gdańsk, ul. Kazimierza Górskiego 1, 80-336 Pomorskie, Poland.
| |
Collapse
|
30
|
Cappariello A, Rucci N. Tumour-Derived Extracellular Vesicles (EVs): A Dangerous "Message in A Bottle" for Bone. Int J Mol Sci 2019; 20:E4805. [PMID: 31569680 PMCID: PMC6802008 DOI: 10.3390/ijms20194805] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Several studies have shown the importance of Extracellular Vesicles (EVs) in the intercellular communication between tumour and resident cells. Through EVs, tumour cells can trigger cell-signalling molecules and shuttle exogenous information to target cells, thus promoting spread of the disease. In fact, many processes are fuelled by EVs, such as tumour invasion and dormancy, drug-resistance, immune-surveillance escape, extravasation, extracellular matrix remodelling and metastasis. A key element is certainly the molecular profile of the shed cargo. Understanding the biochemical basis of EVs would help to predict the ability and propensity of cancer cells to metastasize a specific tissue, with the aim to target the release of EVs and to manipulate their content as a possible therapeutic approach. Moreover, EV profiling could help monitor the progression of cancer, providing a useful tool for more effective therapy. This review will focus on all the EV-mediated mentioned mechanisms in the context of both primary bone cancers and bone metastases.
Collapse
Affiliation(s)
- Alfredo Cappariello
- Department of Onco-haematology IRCCS Bambino Gesù Children's Hospital, 00152 Rome, Italy.
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
31
|
Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers (Basel) 2019; 11:E1170. [PMID: 31416190 PMCID: PMC6721601 DOI: 10.3390/cancers11081170] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
The last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers. The new frontiers of the research lead to a search for RNA molecules circulating in body fluids. Searching for biomarkers in extracellular body fluids represents a better option for patients because they are easier to access, less painful, and potentially more economical. Moreover, the possibility for these types of samples to be taken repeatedly, allows a better monitoring of the disease progression or treatment efficacy for a better intervention and dynamic treatment of the patient, which is the fundamental basis of personalized medicine. RNA molecules, freely circulating in body fluids or packed in microvesicles, have all the characteristics of the ideal biomarkers owing to their high stability under storage and handling conditions and being able to be sampled several times for monitoring. Moreover, as demonstrated for many cancers, their plasma/serum levels mirror those in the primary tumor. There are a large variety of RNA species noncoding for proteins that could be used as cancer biomarkers in liquid biopsies. Among them, the most studied are microRNAs, but recently the attention of the researcher has been also directed towards Piwi-interacting RNAs, circular RNAs, and other small noncoding RNAs. Another class of RNA species, the long noncoding RNAs, is larger than microRNAs and represents a very versatile and promising group of molecules which, apart from their use as biomarkers, have also a possible therapeutic role. In this review, we will give an overview of the most common noncoding RNA species detectable in extracellular fluids and will provide an update concerning the situation of the research on these molecules as cancer biomarkers.
Collapse
Affiliation(s)
- Barbara Pardini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy.
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Alexandru Anton Sabo
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 077120 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Liu H, Chen Y, Li Y, Li C, Qin T, Bai M, Zhang Z, Jia R, Su Y, Wang C. miR‑195 suppresses metastasis and angiogenesis of squamous cell lung cancer by inhibiting the expression of VEGF. Mol Med Rep 2019; 20:2625-2632. [PMID: 31322197 PMCID: PMC6691228 DOI: 10.3892/mmr.2019.10496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/29/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that are ~22 nucleotides in length. Accumulating evidence has revealed that miRNAs act as oncogenes or tumor suppressors in various human cancers. In order to investigate the role of miR-195- in squamous cell lung cancer (SQCLC) cells, and to determine the underlying mechanism, the present study utilized RT-qPCR, western blot analysis, luciferase assay, MTT assay, cell migration assay, and in vitro angiogenesis techniques. The results obtained revealed that miR-195-5p acted as a tumor suppressor in SQCLC cells. The expression levels of miR-195 were decreased in two SQCLC cell lines (H520 and SK-Mes-1) compared with a normal lung cell line, and miR-195 directly targeted the 3′-untranslated region of vascular endothelial growth factor (VEGF) in SQCLC cells. Additionally, miR-195 upregulation suppressed the viability and migration of SQCLC cells. Furthermore, miR-195 inhibited the growth and tube formation of endothelial vascular cells. Collectively, the findings indicated that miR-195 downregulated VEGF, and that targeting this miRNA may provide an effective approach to inhibit angiogenesis in tumors.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yulong Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yue Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Chenguang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Tingting Qin
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Ming Bai
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Rui Jia
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yanjun Su
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
33
|
Cao X, Duan Z, Yan Z, Li Y, Li L, Sun J, Han P, Li P, Wei L, Wei X. miR-195 contributes to human osteoarthritis via targeting PTHrP. J Bone Miner Metab 2019; 37:711-721. [PMID: 30465089 DOI: 10.1007/s00774-018-0973-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 01/30/2023]
Abstract
The dysregulated expression of the osteoarthritis (OA)-related genes in cartilage, such as matrix metalloproteinase 13 (MMP-13) and type X collagen (Col X), facilitates the onset and progression of OA. Reduced parathyroid hormone-related protein (PTHrP) may also accelerate this progression. Furthermore, miRNAs, endogenous regulators of mRNAs, are thought to play key roles in the pathogenesis of OA. In this study, we found that miR-195 levels were significantly upregulated in OA tissue, while PTHrP mRNA/protein expression was substantially downregulated, and there was a negative correlation between miR-195 and PTHrP. Upregulated miR-195 strongly inhibited Aggrecan, type II collagen (Col II) mRNA/protein expression, while it enhanced the expression of MMP-13 and Col X at mRNA/protein level; conversely, downregulated miR-195 significantly increased Col II mRNA/protein expression, while it decreased the expression of MMP-13 and Col X mRNA/protein. Moreover, our study demonstrated that PTHrP is a novel target of miR-195 using dual luciferase reporter assay. Finally, miR-195-mediated changes of Col II and OA-related genes were substantially attenuated by siRNAPTHrP treatment. These results suggested that miR-195 is involved in the pathogenesis of OA via PTHrP.
Collapse
Affiliation(s)
- Xiaoming Cao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Zhiqing Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, 56 South Xinjian Road, Taiyuan, 030001, Shanxi, China
| | - Zheyi Yan
- Department of Ophthalmology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yongping Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Lu Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Jian Sun
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Pengfei Han
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Pengcui Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Lei Wei
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
- Department of Orthopedics, Warren Alpert Medical School of Brown University/RIH, CORO West, Suite 402H, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Xiaochun Wei
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
34
|
Yan L, Wu X, Liu Y, Xian W. LncRNA Linc00511 promotes osteosarcoma cell proliferation and migration through sponging miR-765. J Cell Biochem 2019; 120:7248-7256. [PMID: 30592325 DOI: 10.1002/jcb.27999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Long noncoding RNA (lncRNA) Linc00511 is a novel lncRNA, and it was reported to play important roles in the progression and carcinogenesis of several tumors. However, the expression and biological roles of Linc00511 in osteosarcoma were still unknown. In this research, we showed that the expression of Linc00511 was upregulated in osteosarcoma samples and cell lines. Ectopic expression of Linc00511 promoted osteosarcoma cell growth, colony formation, and migration. Moreover, overexpression of Linc00511 enhanced the epithelial-mesenchymal transition progression in osteosarcoma cell. In addition, we showed that elevated expression of Linc00511 suppressed microRNA-765 (miR-765) expression and promoted apurinic/apyrimidinic endonuclease 1 (APE1) expression in osteosarcoma cell. The expression of miR-765 was downregulated in osteosarcoma cells and samples and was negatively related to Linc00511 expression in osteosarcoma tissues. Ectopic expression of miR-765 inhibited osteosarcoma cell growth and migration. Furthermore, we showed that Linc00511 overexpression promoted MG-63 cells proliferation, colony formation, and migration via downregulation of miR-765. These results suggested that Linc00511 played as an oncogene in the development of osteosarcoma.
Collapse
Affiliation(s)
- Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang, Henan, China
| | - Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| | - Wenfeng Xian
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| |
Collapse
|
35
|
Masaoutis C, Korkolopoulou P, Theocharis S. Exosomes in sarcomas: Tiny messengers with broad implications in diagnosis, surveillance, prognosis and treatment. Cancer Lett 2019; 449:172-177. [PMID: 30779943 DOI: 10.1016/j.canlet.2019.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-secreted extracellular vesicles, which contain an array of biomolecules, such as proteins, mRNAs, microRNAs, and lipids, take part in intercellular communication and mediate tumor-host interactions. They are increasingly considered as a source of biomarkers for liquid biopsies as well as potential drug vectors. Sarcomas are rare malignant mesenchymal tumours and due to their relative rarity exosomes have not been investigated in as extensively as in epithelial malignancies. Nonetheless, valuable information has been gathered over the last years on the roles of exosomes in sarcomas. In the present review we summarize all relevant data obtained so far from cell lines, animal models and patients with emphasis on their potential clinical utility.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
36
|
Botti G, Giordano A, Feroce F, De Chiara AR, Cantile M. Noncoding RNAs as circulating biomarkers in osteosarcoma patients. J Cell Physiol 2019; 234:19249-19255. [PMID: 31032924 DOI: 10.1002/jcp.28744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Noncoding RNAs (ncRNAs) identify a large family of RNAs that do not encode proteins and represent an important group of tumor biomarkers, directly involved in the process of tumor pathogenesis and progression. Many of them have also been identified in biological fluids of patients with cancer, especially blood, suggesting their role as an emerging class of circulating biomarkers. Many ncRNAs, both miRNAs and lncRNAs, are deregulated in sarcoma tissues, with the most consistent data in osteosarcomas. In patients with osteosarcoma, the role of ncRNAs as circulating biomarkers is taking enormous value, above all for their ability to vary expression levels during disease progression and in response to therapy. In this mini-review, we summarize the main studies supporting the role of circulating ncRNAs in monitoring disease status in patients with osteosarcoma.
Collapse
Affiliation(s)
- Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Florinda Feroce
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, Naples, Italy
| | | | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, Naples, Italy
| |
Collapse
|
37
|
MicroRNA-Based Diagnosis and Treatment of Metastatic Human Osteosarcoma. Cancers (Basel) 2019; 11:cancers11040553. [PMID: 31003401 PMCID: PMC6521107 DOI: 10.3390/cancers11040553] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma is a malignant tumor of the bones that commonly occurs in young individuals. The 5-year survival rate of osteosarcoma patients is 60-70%. Metastasis to the lungs leads to death in 30-40% of osteosarcoma patients. Therefore, the development of effective strategies for early detection and treatment of this disease are important to improve the survival of osteosarcoma patients. However, metastatic markers for osteosarcoma and molecules that might be targeted for the treatment of metastatic osteosarcoma have not been identified yet. Therefore, the mechanism of metastasis to the lungs needs to be explored from a novel viewpoint. Recently, the aberrant expression of microRNAs (miRNAs) has been reported to be involved in the carcinogenesis and cancer progression of many cancers. Furthermore, miRNAs in the blood have been reported to show an aberrant expression unique to several cancers. Therefore, miRNAs are gaining attention as potential diagnostic markers for cancers. On the other hand, normalizing the dysregulated expression of miRNAs in cancer cells has been shown to alter the phenotype of cancer cells, and thus treatment strategies targeting miRNAs are also being considered. This review summarizes the abnormality of miRNA expression associated with the metastasis of osteosarcoma and describes the present situation and issues regarding the early diagnosis and development of treatment strategies for metastatic osteosarcoma based on the current understanding of this disease.
Collapse
|
38
|
Kohama I, Kosaka N, Chikuda H, Ochiya T. An Insight into the Roles of MicroRNAs and Exosomes in Sarcoma. Cancers (Basel) 2019; 11:E428. [PMID: 30917542 PMCID: PMC6468388 DOI: 10.3390/cancers11030428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are rare solid tumors, but at least one-third of patients with sarcoma die from tumor-related disease. MicroRNA (miRNA) is a noncoding RNA that regulates gene expression in all cells and plays a key role in the progression of cancers. Recently, it was identified that miRNAs are transferred between cells by enclosure in extracellular vesicles, especially exosomes. The exosome is a 100 nm-sized membraned vesicle that is secreted by many kinds of cells and contains miRNA, mRNA, DNA, and proteins. Cancer uses exosomes to influence not only the tumor microenvironment but also the distant organ to create a premetastatic niche. The progression of sarcoma is also regulated by miRNAs and exosomes. These miRNAs and exosomes can be targeted as biomarkers and treatments. In this review, we summarize the studies of miRNA and exosomes in sarcoma.
Collapse
Affiliation(s)
- Isaku Kohama
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan.
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
- Department of Translational Research for Extracellular Vesicles, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| |
Collapse
|
39
|
Zamborsky R, Kokavec M, Harsanyi S, Danisovic L. Identification of Prognostic and Predictive Osteosarcoma Biomarkers. Med Sci (Basel) 2019; 7:medsci7020028. [PMID: 30754703 PMCID: PMC6410182 DOI: 10.3390/medsci7020028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Both adolescents and children suffer from osteosarcoma, localized in the metaphysis of the long bones. This is the most common primary high-grade bone tumor in this patient group. Early tumor detection is the key to ensuring effective treatment. Improved osteosarcoma outcomes in clinical trials have been contingent on biomarker discovery and an evolving understanding of molecules and their complex interactions. In this review, we present a short overview of biomarkers for osteosarcoma, and highlight advances in osteosarcoma-related biomarker research. Many studies show that several biomarkers undergo critical changes with osteosarcoma progression. Growing knowledge about osteosarcoma-related markers is expected to positively impact the development of therapeutics for osteosarcoma, and ultimately of clinical care. It has also become important to develop new biomarkers, which can identify vulnerable patients who should be treated with more intensive and aggressive therapy after diagnosis.
Collapse
Affiliation(s)
- Radoslav Zamborsky
- Department of Orthopedics, Faculty of Medicine, Comenius University, Limbova 1, 833 40 Bratislava, Slovakia.
| | - Milan Kokavec
- Department of Orthopedics, Faculty of Medicine, Comenius University, Limbova 1, 833 40 Bratislava, Slovakia.
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| |
Collapse
|
40
|
Tan GJS, Gerrand CH, Rankin KS. Blood-borne biomarkers of osteosarcoma: A systematic review. Pediatr Blood Cancer 2019; 66:e27462. [PMID: 30251311 DOI: 10.1002/pbc.27462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor in children and young adults. Development of clinically useful biomarkers has the potential to improve treatments. The aim of this review was to investigate the recent literature assessing the utility of biomarkers for osteosarcoma. A detailed literature search was performed, with hand searches for related research publications. The search was limited to publications in English between January 2007 and February 2017. Of 286 studies identified, 24 met the inclusion criteria. There is a wide range of osteosarcoma biomarkers identified which act as clinical prognostic factors in patient outcome.
Collapse
Affiliation(s)
- Gerald J S Tan
- The Ipswich Hospital, East Suffolk and North Essex NHS Foundation Trust, Ipswich, United Kingdom
| | - C H Gerrand
- The London Sarcoma Service, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - K S Rankin
- North of England Bone and Soft Tissue Tumour Service, Freeman Hospital, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
41
|
Li X, Seebacher NA, Hornicek FJ, Xiao T, Duan Z. Application of liquid biopsy in bone and soft tissue sarcomas: Present and future. Cancer Lett 2018; 439:66-77. [PMID: 30223067 DOI: 10.1016/j.canlet.2018.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/13/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Bone and soft tissue sarcomas account for approximately 1% of adult solid malignancies and 20% of pediatric solid malignancies. Sarcomas are divided into more than 50 subtypes. Each subtype is highly heterogeneous and characterized by significant morphological and phenotypic variability. Currently, sarcoma characterization is based on tissue biopsies. However, primary and invasive tissue biopsies may not accurately reflect the current disease condition following treatment as is may cause marked changes to the tumor cells. Liquid biopsy offers an alternative minimally invasive approach to provide dynamic tumor information, allowing for the application of precision medicine in the treatment of sarcomas. Recently, there have been numerous blood-based tumor components identified by liquid biopsy in sarcomas, including circulating tumor cells, circulating cell-free nucleic acids, tumor-derived exosomes and metabolites in circulation. Here, we summarize the current evolving technologies and then elaborate on emerging novel concepts that may further propel the field of liquid biopsy in sarcomas. We address the applications in the context of our current knowledge about liquid biopsy in sarcomas and highlight the potential of translating these recent advances into the clinic for more effective management strategies for sarcoma patients.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China.
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
42
|
Zhi LQ, Yang YX, Yao SX, Qing Z, Ma JB. Identification of Novel Target for Osteosarcoma by Network Analysis. Med Sci Monit 2018; 24:5914-5924. [PMID: 30144309 PMCID: PMC6120164 DOI: 10.12659/msm.909973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Osteosarcoma (OS) is a highly complicated bone cancer involving imbalance of signaling transduction networks in cells. Development of new anti-osteosarcoma drugs is very challenging, mainly due to lack of known key targets. Material/Method In this study, we attempted to reveal more promising targets for drug design by “Target-Pathway” network analysis, providing the new therapeutic strategy of osteosarcoma. The potential targets used for the treatment of OS were selected from 4 different sources: DrugBank, TCRD database, dbDEMC database, and recent scientific literature papers. Cytoscape was used for the establishment of the “Target-Pathway” network. Results The obtained results suggest that tankyrase 2 (TNKS2) might be a very good potential protein target for the treatment of osteosarcoma. An in vitro MTT assay proved that it is an available option against OS by targeting the TNKS2 protein. Subsequently, cell cycle and apoptosis assay by flow cytometry showed the TNKS2 inhibitor can obviously induce cell cycle arrest, apoptosis, and mitotic cell death. Conclusions Tankyrase 2 (TNKS2), a member of the multifunctional poly(ADP-ribose) polymerases (PARPs), could be a very useful protein target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Li-Qiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Yi-Xin Yang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Shu-Xin Yao
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Zhong Qing
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Jian-Bing Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
43
|
MiR-139-5p suppresses osteosarcoma cell growth and invasion through regulating DNMT1. Biochem Biophys Res Commun 2018; 503:459-466. [PMID: 29673587 DOI: 10.1016/j.bbrc.2018.04.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Accumulating evidence has suggested the crucial roles of differentially expressed miRNAs in osteosarcoma progression. MiR-139-5p was decreased in various cancers. However, the role of miR-139-5p in the development of osteosarcoma and the underlying mechanism remain to be addressed. METHODS MiR-139-5p and DNA methyltransferase-1 (DNMT1) mRNA expressions in osteosarcoma tissues and cells were detected by qRT-PCR and western blot analysis. The effects of miR-139-5p and DNMT1 on osteosarcoma cell migration, invasion and epithelial-mesenchymal transition (EMT) were investigated through cell migration and invasion assays, and western blot analysis. The relationship between miR-139-5p and DNMT1was explored using luciferase reporter analysis and western blot. A xenograft tumor model was employed to verify the effects of miR-139-5p on osteosarcoma. RESULTS We found that miR-139-5p was strikingly decreased in osteosarcoma tissues and cell lines. MiR-139-5p over-expression suppressed osteosarcoma cell growth, migration and invasion, while loss of miR-139-5p promoted osteosarcoma cell proliferation, migration and invasion. Following, we characterized that DNMT1 was a direct target of miR-139-5p that interacted with the 3'-untranslated region of DNMT1. MiR-139-5p regulated a down-regulation in DNMT1 protein expression levels. We also found that DNMT1 expression was increased and negatively correlated with miR-139-5p expression in osteosarcoma tissues clinically. Xenograft tumor analysis suggested that miR-139-5p over-expression reduced tumor growth in osteosarcoma in vivo through decreasing DNMT1 expressions. CONCLUSION MiR-139-5p suppressed the osteosarcoma progression by reducing DNMT1, supplying new insight into the molecular mechanism uncovering osteosarcoma growth.
Collapse
|
44
|
Li B, Wang S, Wang S. MiR-195 suppresses colon cancer proliferation and metastasis by targeting WNT3A. Mol Genet Genomics 2018; 293:1245-1253. [PMID: 29948330 DOI: 10.1007/s00438-018-1457-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are a novel class of diagnostic and therapeutic target in cancer. Here, we aimed to explore the effects and mechanism of miR-195 regulation in colon cancer. The expressions of several putative miRNAs in colon tumors, compared to those in normal tissues, were investigated by bioinformatical analysis of a Gene Expression Omnibus database. Quantitative real-time PCR analysis (qRT-PCR) was used to validate the identified changes in normal tissues, primary tumors, and metastatic tumors. MTT, soft agar colony formation, and transwell assays were used to evaluate the effects of miR-195 overexpression or inhibition on cell viability, proliferation, migration, and invasion. Targets of miR-195 were identified by TargetScan, and subsequently verified by qRT-PCR and Western blot. The role of miR-195 in the β-catenin pathway was also studied using RT-PCR and Western blot. MiR-195 expression was downregulated in colon carcinoma tissues and negatively correlated with the metastatic potential. While transfecting miR-195 mimics decreased the proliferation, migration, and invasion of colon cancer cells, miR-195 inhibition exerted opposing effects. WNT3A was identified as a direct target of miR-195. β-catenin was also downregulated by miR-195 in colon cancers. MiR-195 downregulation is associated with the enhanced proliferation, migration, and invasion of colon cancer. MiR-195 directly downregulates WNT3A. Our results indicate that miR-195 is a potential diagnostic marker and therapeutic target for improving the clinical management of colon cancer.
Collapse
Affiliation(s)
- Baoyu Li
- General Surgery Department, Yidu Central Hospital of Weifang, 4138 Linglongshan Nanlu, Qingzhou, 262500, Shandong, China.
| | - Shunsheng Wang
- General Surgery Department, Yidu Central Hospital of Weifang, 4138 Linglongshan Nanlu, Qingzhou, 262500, Shandong, China
| | - Shumei Wang
- General Surgery Department, Yidu Central Hospital of Weifang, 4138 Linglongshan Nanlu, Qingzhou, 262500, Shandong, China
| |
Collapse
|
45
|
Feng C, Zhang L, Sun Y, Li X, Zhan L, Lou Y, Wang Y, Liu L, Zhang Y. GDPD5, a target of miR-195-5p, is associated with metastasis and chemoresistance in colorectal cancer. Biomed Pharmacother 2018; 101:945-952. [DOI: 10.1016/j.biopha.2018.03.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
|
46
|
Cătană CS, Pichler M, Giannelli G, Mader RM, Berindan-Neagoe I. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma. Oncotarget 2018; 8:29519-29534. [PMID: 28392501 PMCID: PMC5438748 DOI: 10.18632/oncotarget.15706] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022] Open
Abstract
In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs.
Collapse
Affiliation(s)
- Cristina- Sorina Cătană
- Department of Medical Biochemistry, ""Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Martin Pichler
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Gianluigi Giannelli
- Department of Internal Medicine, Immunology and Infectious Diseases, Section of Internal Medicine, University of Bari Medical School, Bari, Italy
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Austria
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, ""Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Experimental Pathology, "Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania.,Medfuture Research Center for Advanced Medicine, Cluj-Napoca, Romania
| |
Collapse
|
47
|
Yang C, Wu K, Wang S, Wei G. Long non-coding RNA XIST promotes osteosarcoma progression by targeting YAP via miR-195-5p. J Cell Biochem 2018; 119:5646-5656. [PMID: 29384226 DOI: 10.1002/jcb.26743] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
The lncRNA XIST (X inactive-specific transcript) is an oncogenic lncRNA that is present in various malignant tumors; however, its role and molecular mechanisms in osteosarcoma (OS) progression remain unclear. In the current study, 40 pairs of OS tissues and matched adjacent non-tumor tissues were collected. qRT-PCR was conducted to investigate the differences in XIST expression in tissues and OS cell lines. The proliferation, invasion, and EMT status of OS cells after transfection were assessed with WST-1 assays, Transwell assays, and Western blot analysis, respectively. Whether miR-195-5p was a direct downstream target of XIST was verified by both bioinformatics target gene prediction and dual-luciferase report analysis. A mouse model was established to evaluate tumor proliferation in vivo. Our results demonstrated that XIST expression was significantly upregulated in OS tissues and cell lines and negatively correlated with clinical prognosis. XIST knockdown inhibited cancer cell proliferation and invasion in vitro, inhibited the EMT of OS cells in vitro, and suppressed subcutaneous tumor growth in vivo. Further analysis demonstrated that XIST regulated YAP expression by functioning as a competing endogenous RNA that sponged miR-195-5p in OS cells. XIST directly interacted with miR-195-5p and decreased the binding of miR-195-5p to the YAP 3'UTR, which suppressed the degradation of YAP mRNA by miR-195-5p. In conclusion, this work demonstrates that lncRNA XIST enhances OS cancer cell proliferation and invasion in part through the miR-195-5p/YAP pathway. Therefore, lncRNA XIST might be a promising therapeutic target for OS.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ke Wu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guanghui Wei
- China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| |
Collapse
|
48
|
Ma X, Zou L, Li X, Chen Z, Lin Q, Wu X. MicroRNA-195 regulates docetaxel resistance by targeting clusterin in prostate cancer. Biomed Pharmacother 2018; 99:445-450. [DOI: 10.1016/j.biopha.2018.01.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
|
49
|
Jiang Z, Ma J, Wang Q, Wu F, Ping J, Ming L. Circulating microRNA expression and their target genes in deep vein thrombosis: A systematic review and bioinformatics analysis. Medicine (Baltimore) 2017; 96:e9330. [PMID: 29390402 PMCID: PMC5815814 DOI: 10.1097/md.0000000000009330] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clinically, D-dimer is the only established biomarker for the diagnosis of deep vein thrombosis (DVT). However, low specificity discounts its diagnostic value. Several publications have illustrated the differentially expressed circulating microRNAs (miRNAs) and their potential diagnostic values for DVT patients. Therefore, we systematically evaluated present researches and further performed bioinformatics analysis, to provide new insights into the diagnosis and underlying mechanisms of miRNAs in DVT. METHODS Databases PubMed, Web of Science, and Embase were searched from January 2000 to April 2017. Articles on circulating miRNAs expression in DVT were retrieved and reference lists were handpicked. Bioinformatics analysis was conducted for further evaluation. RESULTS Eventually, the eligibility criteria for inclusion in this study were met by 3 articles, which consisted of 13 specially expressed miRNAs and 149 putative target genes. Two representative KEGG pathways, vascular endothelial growth factor and phosphatidylinositol 3'-kinase (PI3K)-Akt signaling pathway, seemed to participate in the regulatory network of thrombosis. CONCLUSIONS Despite the potential diagnostic value and regulation effect, the results of circulating miRNAs used as biomarkers for DVT are not so encouraging. More in-depth and larger sample investigations are needed to explore the diagnostic and therapeutic values of miRNAs for DVT.
Collapse
|
50
|
Ba Z, Gu L, Hao S, Wang X, Cheng Z, Nie G. Downregulation of lncRNA CASC2 facilitates osteosarcoma growth and invasion through miR-181a. Cell Prolif 2017; 51. [PMID: 29194827 DOI: 10.1111/cpr.12409] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Long non-coding RNA cancer susceptibility candidate 2 (CASC2) is a novel lncRNA and has been indicated as playing tumour suppressor gene in several tumours. However, the role of CASC2 in osteosarcoma is still uncovered. MATERIALS AND METHODS The CASC2 and miR-181a expressions were measured via qRT-PCR. CCK-8 assay and colony formation assay were performed to determine the cell growth, and transwell assay was performed to assess the cell invasion. RESULTS We showed that CASC2 expression was downregulated in osteosarcoma samples and cell lines. Moreover, we showed that downregulated expression of CASC2 was correlated with advanced TNM stage. Furthermore, overexpression of CASC2 inhibited osteosarcoma cell proliferation, colony formation, and invasion. In addition, we indicated that ectopic expression of CASC2 suppressed miR-181a expression and enhanced the expression of Ras association domain family member 6 (RASSF6), PTEN and ATM in osteosarcoma cell, which were the direct target gene of miR-181a. Moreover, we indicated that RASSF6 expression was downregulated in osteosarcoma samples and cell lines and downregulated expression of RASSF6 was correlated with advanced TNM stage. We found that the expression of RASSF6 was positively correlated with the expression of CASC2 in osteosarcoma tissues. Ectopic expression of CASC2 suppressed the osteosarcoma cell proliferation, colony formation and invasion through regulating RASSF6 expression. CONCLUSIONS Our data illuminated that CASC2 acted as a tumour suppressor in osteosarcoma progression.
Collapse
Affiliation(s)
- Zhiwen Ba
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Lili Gu
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Songnan Hao
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Xiaofang Wang
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Zhenping Cheng
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Guangchen Nie
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| |
Collapse
|