1
|
Wang J, Papanicolaou K, Tryon R, Sangalang J, Salazar B, Suarez-Pierre A, Dong J, Lee A, Larson E, Holmes S, O’Rourke B, Nichols C, Lawton J. Kir1.1 and SUR1 are not implicated as subunits of an adenosine triphosphate-sensitive potassium channel involved in diazoxide cardioprotection. JTCVS OPEN 2023; 15:231-241. [PMID: 37808059 PMCID: PMC10556815 DOI: 10.1016/j.xjon.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 10/10/2023]
Abstract
Objective The adenosine triphosphate-sensitive potassium channel opener diazoxide mimics ischemic preconditioning and is cardioprotective. Clarification of diazoxide's site and mechanism of action could lead to targeted pharmacologic therapies for patients undergoing cardiac surgery. Several mitochondrial candidate proteins have been investigated as potential adenosine triphosphate-sensitive potassium channel components. Renal outer medullary potassium (Kir1.1) and sulfonylurea sensitive regulatory subunit 1 have been suggested as subunits of a mitochondrial adenosine triphosphate-sensitive potassium channel. We hypothesized that pharmacologic blockade or genetic deletion (knockout) of renal outer medullary potassium and sensitive regulatory subunit 1 would result in loss of diazoxide cardioprotection in models of global ischemia with cardioplegia. Methods Myocyte volume and contractility were compared after Tyrode's physiologic solution (20 minutes), stress (hyperkalemic cardioplegia ± diazoxide, ± VU591 (Kir1.1 inhibitor), N = 9 to 23 each, 20 min), and Tyrode's (20 minutes). Isolated mouse (wild-type, sensitive regulatory subunit 1 [-/-], and cardiac knockout renal outer medullary potassium) hearts were given cardioplegia ± diazoxide (N = 9-16 each) before global ischemia (90 minutes) and 30 minutes reperfusion. Left ventricular pressures were compared before and after ischemia. Results Stress (cardioplegia) was associated with reduced myocyte contractility that was prevented by diazoxide. Isolated myocytes were not responsive to diazoxide in the presence of VU591. In isolated hearts, diazoxide improved left ventricular function after prolonged ischemia compared with cardioplegia alone in wild-type and knockout (sensitive regulatory subunit 1 [-/-] and cardiac knockout renal outer medullary potassium) mice. Conclusions Isolated myocyte and heart models may measure independent and separate actions of diazoxide. By definitive genetic deletion, these data indicate that sensitive regulatory subunit 1 and renal outer medullary potassium are not implicated in cardioprotection by diazoxide.
Collapse
Affiliation(s)
- Jie Wang
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Kyriakos Papanicolaou
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Md
| | - Robert Tryon
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Mo
| | - Janelle Sangalang
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Ben Salazar
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Md
| | | | - Jie Dong
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Anson Lee
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Emily Larson
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Sari Holmes
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Brian O’Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Md
| | - Colin Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Mo
| | - Jennifer Lawton
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| |
Collapse
|
2
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Al-Karagholi MAM, Hansen JM, Severinsen J, Jansen-Olesen I, Ashina M. The K ATP channel in migraine pathophysiology: a novel therapeutic target for migraine. J Headache Pain 2017; 18:90. [PMID: 28831746 PMCID: PMC5567577 DOI: 10.1186/s10194-017-0800-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION KATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Johanne Severinsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
- Danish Headache Center, Department of Neurology, Glostrup Research Park, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| |
Collapse
|