1
|
Zhang H, Ma J, Liu F, Zhang J. Long non-coding RNA XIST promotes the proliferation of cardiac fibroblasts and the accumulation of extracellular matrix by sponging microRNA-155-5p. Exp Ther Med 2021; 21:477. [PMID: 33767772 PMCID: PMC7976373 DOI: 10.3892/etm.2021.9908] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (AMI) is characterized by cardiomyocyte death followed by myocardial fibrosis, eventually leading to heart failure. Long non-coding (lnc)RNA X-inactive specific transcript (XIST) serves a vital role in the regulation of fibrosis. The aim of the present study was to determine whether myocardial fibrosis may be regulated by XIST and to elucidate the underlying mechanism. The relative mRNA expression levels of the target genes were evaluated using reverse transcription-quantitative polymerase chain reaction. Cell viability and apoptosis were determined using a Cell Counting Kit-8 assay and flow cytometry, respectively. The apoptosis and fibrosis-related protein expression levels were detected using western blot analysis. Finally, the interaction between XIST and microRNA (miR)-155-5p was analyzed using a luciferase reporter assay. XIST-overexpression increased proliferation and the expression level of the fibrosis-related proteins in the human cardiac fibroblast cells (HCFs). XIST directly targeted miR-155-5p and downregulated its expression, while miR-155-5p downregulation abolished the effect of XIST-silencing on cell viability and the expression level of the fibrosis-related proteins in the HCFs. XIST promoted cell proliferation and the expression level of fibrosis-related proteins by sponging miR-155-5p. Therefore, XIST may represent a novel effective target for AMI treatment.
Collapse
Affiliation(s)
- Hongbin Zhang
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Jianfei Ma
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Fei Liu
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Jun Zhang
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
2
|
AlQudah M, Hale TM, Czubryt MP. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol 2020; 91-92:92-108. [PMID: 32422329 DOI: 10.1016/j.matbio.2020.04.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada; Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Jordan
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, United States
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada.
| |
Collapse
|
3
|
Abbasloo E, Najafipour H, Vakili A. Chronic treatment with apelin, losartan and their combination reduces myocardial infarct size and improves cardiac mechanical function. Clin Exp Pharmacol Physiol 2019; 47:393-402. [PMID: 31630435 DOI: 10.1111/1440-1681.13195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 01/15/2023]
Abstract
The renin-angiotensin system (RAS) has a deleterious and apelin/APJ system has protective effect on the ischaemic heart. The collaboration between these systems in the pathophysiology of myocardial infarction is not clear. We determined the effect of chronic pretreatment with apelin, losartan and their combination on ischaemia-reperfusion (IR) injury in the isolated perfused rat heart and on the expression of apelin-13 receptor (APJ) and angiotensin type 1 receptor (AT1R) in the myocardium. During 5 days before the induction of IR, saline (vehicle), apelin-13 (Apl), F13A (apelin antagonist), losartan (Los, AT1R antagonist) and the combination of Apl and Los were administered intraperitoneally in rats. Ischaemia was induced by left anterior descending (LAD) artery occlusion for 30 minutes followed by reperfusion for 55 minutes in the Langendorff isolated heart perfusion system. Pretreatment with Apl, Los and the combination of Apl + Los significantly reduced infarct size by about 30, 33 and 48 percent respectively; and significantly improved the left ventricular function indices such as left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP) and rate pressure product (RPP). IR increased AT1R protein level but it did not change APJ significantly. AT1R expression was reduced in groups treated with Apl, Los and Apl + Los. Findings showed that chronic pretreatment with apelin along with AT1R antagonist had more protective effects against IR injury. Combination therapy may diminish the risk of IR-induced heart damage, by reducing AT1R expression, in the heart of patients with coronary artery disease that are at the risk of MI and reperfusion injury.
Collapse
Affiliation(s)
- Elham Abbasloo
- Physiology, Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Physiology, Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Abedin Vakili
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Zhang M, Zhu P, Wang Y, Wu J, Yu Y, Wu X, Liu X, Gu Y. Bilateral sympathetic stellate ganglionectomy attenuates myocardial remodelling and fibrosis in a rat model of chronic volume overload. J Cell Mol Med 2018; 23:1001-1013. [PMID: 30411499 PMCID: PMC6349216 DOI: 10.1111/jcmm.14000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 12/05/2022] Open
Abstract
Reducing sympathetic neurohormone expression is a key therapeutic option in attenuating cardiac remodelling. Present study tested the feasibility of attenuating cardiac remodelling through reducing sympathetic neurohormone level by partial cardiac sympathetic denervation in a rat model of chronic volume overload. Male Sprague‐Dawley rats were randomized into sham group (S, n = 7), aortocaval fistula group (AV, n = 7), and aortocaval fistula with bilateral sympathetic stellate ganglionectomy group (AD, n = 8). After 12 weeks, myocardial protein expression of sympathetic neurohormones, including tyrosine hydroxylase, neuropeptide Y, growth associated protein 43, and protein gene product 9.5, were significantly up‐regulated in AV group compared to S group, and down‐regulated in AD group. Cardiac remodelling was aggravated in AV group compared to S group and attenuated in AD group. The myocardial deposition of extracellular matrix, including collagen I and III, was enhanced in AV group, which was reduced in AD group. Myocardial angiotensin II and aldosterone expressions were significantly up‐regulated in AV group and down‐regulated in AD group. Our results show that bilateral sympathetic stellate ganglionectomy could attenuate cardiac remodelling and fibrosis by down‐regulating sympathetic neurohormones expression in this rat model of chronic volume overload.
Collapse
Affiliation(s)
- Mingjing Zhang
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Zhu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Wang
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Yu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinying Wu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Liu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Gu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|