1
|
Bapat GM, Bashir AZ, Malcolm P, Johanning JM, Pipinos II, Myers SA. A biomechanical perspective on walking in patients with peripheral artery disease. Vasc Med 2023; 28:77-84. [PMID: 36759931 PMCID: PMC9997455 DOI: 10.1177/1358863x221146207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The most common symptom of peripheral artery disease (PAD) is intermittent claudication, which consists of debilitating leg pain during walking. In clinical settings, the presence of PAD is often noninvasively evaluated using the ankle-brachial index and imaging of the arterial supply. Furthermore, various questionnaires and functional tests are commonly used to measure the severity and negative effect of PAD on quality of life. However, these evaluations only provide information on vascular insufficiency and severity of the disease, but not regarding the complex mechanisms underlying walking impairments in patients with PAD. Biomechanical analyses using motion capture and ground reaction force measurements can provide insight into the underlying mechanisms to walking impairments in PAD. This review analyzes the application of biomechanics tools to identify gait impairments and their clinical implications on rehabilitation of patients with PAD. A total of 18 published journal articles focused on gait biomechanics in patients with PAD were studied. This narriative review shows that the gait of patients with PAD is impaired from the first steps that a patient takes and deteriorates further after the onset of claudication leg pain. These results point toward impaired muscle function across the ankle, knee, and hip joints during walking. Gait analysis helps understand the mechanisms operating in PAD and could also facilitate earlier diagnosis, better treatment, and slower progression of PAD.
Collapse
Affiliation(s)
- Ganesh M Bapat
- Department of Mechanical Engineering, BITS Pilani K K Birla Goa Campus, Goa, India
| | - Ayisha Z Bashir
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Philippe Malcolm
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Jason M Johanning
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Surgery and Research Service, Omaha VA Medical Center, Omaha, NE, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Surgery and Research Service, Omaha VA Medical Center, Omaha, NE, USA
| | - Sara A Myers
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.,Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Kasprzyk P, Wróbel PM, Dudała J, Geraki K, Szczerbowska-Boruchowska M, Radwańska E, Krzyżewski RM, Adamek D, Lankosz M. Elemental Composition of Skeletal Muscle Fibres Studied with Synchrotron Radiation X-ray Fluorescence (SR-XRF). Int J Mol Sci 2022; 23:ijms23147931. [PMID: 35887280 PMCID: PMC9320641 DOI: 10.3390/ijms23147931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Diseases of the muscle tissue, particularly those disorders which result from the pathology of individual muscle cells, are often called myopathies. The diversity of the content of individual cells is of interest with regard to their role in both biochemical mechanisms and the structure of muscle tissue itself. These studies focus on the preliminary analysis of the differences that may occur between diseased tissues and tissues that have been recognised as a reference group. To do so, 13 samples of biopsied human muscle tissues were studied: 3 diagnosed as dystrophies, 6 as (non-dystrophic) myopathy and 4 regarded as references. From these sets of muscle biopsies, 135 completely measured muscle fibres were separated altogether, which were subjected to investigations using synchrotron radiation X-ray fluorescence (SR-XRF). Muscle fibres were analysed in terms of the composition of elements such as Br, Ca, Cl, Cr, Cu, Fe, K, Mn, P, S and Zn. The performed statistical tests indicate that all three groups (dystrophies—D; myopathies—M; references—R) show statistically significant differences in their elemental compositions, and the greatest impact, according to the multivariate discriminate analysis (MDA), comes from elements such as Ca, Cu, K, Cl and S.
Collapse
Affiliation(s)
- Paula Kasprzyk
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicz 30, 30-059 Krakow, Poland; (P.M.W.); (J.D.); (M.S.-B.)
- Correspondence: (P.K.); (M.L.)
| | - Paweł M. Wróbel
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicz 30, 30-059 Krakow, Poland; (P.M.W.); (J.D.); (M.S.-B.)
| | - Joanna Dudała
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicz 30, 30-059 Krakow, Poland; (P.M.W.); (J.D.); (M.S.-B.)
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, Oxfordshire, UK;
| | - Magdalena Szczerbowska-Boruchowska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicz 30, 30-059 Krakow, Poland; (P.M.W.); (J.D.); (M.S.-B.)
| | - Edyta Radwańska
- Chair of Pathomorphology, Department of Neuropathology, Medical College, Jagiellonian University, Grzegórzecka 16 Str., 31-531 Krakow, Poland; (E.R.); (D.A.)
| | - Roger M. Krzyżewski
- Department of Neurosurgery and Neurotraumatology, Medical College, Jagiellonian University, Jakubowskiego 2 Str., 30-688 Krakow, Poland;
| | - Dariusz Adamek
- Chair of Pathomorphology, Department of Neuropathology, Medical College, Jagiellonian University, Grzegórzecka 16 Str., 31-531 Krakow, Poland; (E.R.); (D.A.)
| | - Marek Lankosz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicz 30, 30-059 Krakow, Poland; (P.M.W.); (J.D.); (M.S.-B.)
- Correspondence: (P.K.); (M.L.)
| |
Collapse
|
3
|
Stavres J, Wang J, Sica CT, Blaha C, Herr M, Pai S, Cauffman A, Vesek J, Yang QX, Sinoway LI. Diffusion tensor imaging indices of acute muscle damage are augmented after exercise in peripheral arterial disease. Eur J Appl Physiol 2021; 121:2595-2606. [PMID: 34106324 PMCID: PMC10445221 DOI: 10.1007/s00421-021-04711-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Although it is known that peripheral arterial disease (PAD) is associated with chronic myopathies, the acute muscular responses to exercise in this population are less clear. This study used diffusion tensor imaging (DTI) to compare acute exercise-related muscle damage between PAD patients and healthy controls. METHODS Eight PAD patients and seven healthy controls performed graded plantar flexion in the bore of a 3T MRI scanner. Exercise began at 2 kg and increased by 2 kg every 2 min until failure, or completion of 10 min of exercise. DTI images were acquired from the lower leg pre- and post-exercise, and were analyzed for mean diffusivity, fractional anisotropy (FA), and eigenvalues 1-3 (λ1-3) of the medial gastrocnemius (MG) and tibialis anterior (TA). RESULTS Results indicated a significant leg by time interaction for mean diffusivity, explained by a significantly greater increase in diffusivity of the MG in the most affected legs of PAD patients (11.1 × 10-4 ± 0.5 × 10-4 mm2/s vs. 12.7 × 10-4 ± 1.2 × 10-4 mm2/s at pre and post, respectively, P = 0.02) compared to healthy control subjects (10.8 × 10-4 ± 0.3 × 10-4 mm2/s vs. 11.2 × 10-4 ± 0.5 × 10-4 mm2/s at pre and post, respectively, P = 1.0). No significant differences were observed for the TA, or λ1-3 (all P ≥ 0.06). Moreover, no reciprocal changes were observed for FA in either group (all P ≥ 0.29). CONCLUSION These data suggest that calf muscle diffusivity increases more in PAD patients compared to controls after exercise. These findings are consistent with the notion that acute exercise results in increased muscle damage in PAD.
Collapse
Affiliation(s)
- Jon Stavres
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Jianli Wang
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Christopher T Sica
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Michael Herr
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Samuel Pai
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Aimee Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jeffrey Vesek
- Department of Molecular Biology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Qing X Yang
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
4
|
Fiorentini D, Cappadone C, Farruggia G, Prata C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients 2021; 13:1136. [PMID: 33808247 PMCID: PMC8065437 DOI: 10.3390/nu13041136] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium plays an important role in many physiological functions. Habitually low intakes of magnesium and in general the deficiency of this micronutrient induce changes in biochemical pathways that can increase the risk of illness and, in particular, chronic degenerative diseases. The assessment of magnesium status is consequently of great importance, however, its evaluation is difficult. The measurement of serum magnesium concentration is the most commonly used and readily available method for assessing magnesium status, even if serum levels have no reliable correlation with total body magnesium levels or concentrations in specific tissues. Therefore, this review offers an overview of recent insights into magnesium from multiple perspectives. Starting from a biochemical point of view, it aims at highlighting the risk due to insufficient uptake (frequently due to the low content of magnesium in the modern western diet), at suggesting strategies to reach the recommended dietary reference values, and at focusing on the importance of detecting physiological or pathological levels of magnesium in various body districts, in order to counteract the social impact of diseases linked to magnesium deficiency.
Collapse
Affiliation(s)
| | | | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (D.F.); (C.C.); (C.P.)
| | | |
Collapse
|
5
|
Co-Registration of Peripheral Atherosclerotic Plaques Assessed by Conventional CT Angiography, MicroCT and Histology in Patients with Chronic Limb Threatening Ischaemia. Eur J Vasc Endovasc Surg 2020; 61:146-154. [PMID: 33187923 DOI: 10.1016/j.ejvs.2020.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To co-register conventional computed tomography angiography (CTA), with ex vivo micro-computed tomography (microCT) and histology of popliteal atherosclerotic plaques. Improving the non-invasive imaging capabilities may be valuable to advance patient care with peripheral arterial obstructive disease towards lesion and individual based treatment. METHODS In this prospective observational study, 12 popliteal arteries from 11 symptomatic patients who had undergone transfemoral amputations for chronic limb threatening ischaemia and who had pre-operative CTA, were analysed ex vivo by microCT and histology. A total of 353 histological cross sections were co-registered with microCT and CTA, and classified as: lipid rich (LP, n = 26), fibrous (FP, n = 80), or calcific (CP, n = 247) plaques. CTA and microCT plaque density was calculated in 791 regions of interest as Hounsfield units (HU). RESULTS CTA and microCT could identify plaque components that were confirmed by histology such as fibrous tissue (FP), lipid pool/core (LP), and calcification (CP). MicroCT densities were 77.8 HU for FP (IQR 52.8, 129.5 HU), -28.4 HU for LP (IQR -87.1, 13.2 HU), and 3826.0 HU for CP (IQR 2989.0, 4501.0 HU). CTA densities of the three components of the plaque were: 78.0 HU for FP (IQR 59.5, 119.8 HU), 32.5 HU for LP (IQR 15.0, 42 HU), and 641.5 HU for CP (IQR 425.8, 1135 HU). The differences were statistically significant between the HU densitometric characteristics among the three groups (p < .0001) for both imaging modalities. Overall, microCT performed better diagnostically than conventional CTA for the three types of plaques: areas under the receiving operator characteristics curve were greater for microCT than CTA for FP (0.97 vs. 0.90), for LP (0.88 vs. 0.67), and for CP (0.97 vs. 0.90). CONCLUSION CTA and microCT can be used to identify histological atherosclerotic plaque components, with better diagnostic performance for microCT. This study demonstrates the feasibility of using microCT to assess plaque morphology lesions in a manner that approaches histology thus becoming a useful tool for ex vivo assessment of atherosclerosis and towards lesion based treatment.
Collapse
|
6
|
Chen M, Li C, Nie F, Liu X, Pipinos II, Li X. Synthesis and characterization of a hyaluronic acid-based hydrogel with antioxidative and thermosensitive properties. RSC Adv 2020; 10:33851-33860. [PMID: 35519025 PMCID: PMC9056774 DOI: 10.1039/d0ra07208g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/04/2020] [Indexed: 02/01/2023] Open
Abstract
Peripheral arterial disease (PAD) is initiated by progressive atherosclerotic blockages of the arteries supplying the lower extremities. The most common presentation of PAD is claudication (leg pain and severe walking limitation), with many patients progressing to limb threatening ischemia and amputation. Biomaterial approaches are just beginning to be explored in the therapy of PAD with different materials now being evaluated for the delivery of cells or growth factors in animal models of PAD. A biomaterial matrix optimized for minimally invasive injection in the ischemic leg muscles of patients with PAD is urgently needed. There are several important requirements for optimal delivery, retention, and performance of a biomaterial matrix in the mechanically, histologically, and biochemically dynamic intramuscular environment of the PAD leg. Ideally, the material should have mechanical properties matching those of the recipient muscle, undergo minimal swelling, and should introduce properties that can ameliorate the mechanisms operating in PAD like oxidative stress and damage. Here we have developed an injectable, antioxidative, and thermosensitive hydrogel system based on hyaluronic acid (HA). We first synthesized a unique crosslinker of disulfide-modified poloxamer F127 diacrylate. This crosslinker led to the creation of a thermosensitive HA hydrogel with minimal swelling and muscle-matching mechanical properties. We introduced unique disulfide groups into hydrogels which functioned as an effective reactive oxygen species scavenger, exhibited hydrogen peroxide (H2O2)-responsive degradation, and protected cells against H2O2-induced damage. Our antioxidative thermosensitive HA hydrogel system holds great potential for the treatment of the ischemic legs of patients with PAD.
Collapse
Affiliation(s)
- Meng Chen
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Cui Li
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Fujiao Nie
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Xiaoyan Liu
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Xiaowei Li
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
7
|
Al-Rifai R, Tournois C, Kheirallah S, Bouland N, Poitevin G, Nguyen P, Beljebbar A. Subcutaneous and transcutaneous monitoring of murine hindlimb ischemia by in vivo Raman spectroscopy. Analyst 2019; 144:4677-4686. [PMID: 31268052 DOI: 10.1039/c8an02449a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have investigated the development of murine hindlimb ischemia from day 1 to day 55 after femoral artery ligation (FAL) using blood flow analysis, functional tests, histopathological staining, and in vivo Raman spectroscopy. FAL resulted in hindlimb blood deprivation and the loss of functionality as attested by the blood flow analysis and functional tests, respectively. The limbs recovered a normal circulation progressively without recovering complete functionality. Histological analysis showed changes in the morphology of muscle fibers with intense inflammation. From day 22 to day 55 post-ischemia, regeneration of the myofibers was observed. Raman spectroscopic results related to subcutaneous analysis made the identification of modification in the biochemical constituents of hindlimb muscles possible during disease progression. Ischemia was characterized by a quantitative increase in the lipid content and a decrease in the protein content. The lipid to protein ratio can be used as a spectroscopic marker to score the severity of ischemia. Multivariate statistical analysis PC-LDA (Principal Component-Linear Discriminant Analysis) was used to classify all the data measured for the normal and ischemic tissues. This classification illustrated an excellent separation between the control and ischemic tissues at any time during the course of ischemic development. In vivo Raman spectroscopy was then applied to assess the potential of this technique as a screening tool to explore an ischemic disease non-invasively (transcutaneously). For this purpose, the influence of skin on the diagnostic accuracy was evaluated; transcutaneous analysis revealed the accuracy of this technique, indicating its potential in the in situ monitoring of muscle structural changes during ischemia.
Collapse
Affiliation(s)
- Rida Al-Rifai
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Claire Tournois
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France and Laboratoire d'Hématologie, CHU Robert Debré, Reims, France
| | | | - Nicole Bouland
- Laboratoire d'Anatomopathologie, Université de Reims Champagne-Ardenne, France
| | - Gaël Poitevin
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Philippe Nguyen
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France and Laboratoire d'Hématologie, CHU Robert Debré, Reims, France
| | - Abdelilah Beljebbar
- BioSpectroscopie Translationnelle BioSpecT, EA 7506, Université de Reims Champagne-Ardenne, France.
| |
Collapse
|