1
|
Li Y, Leung PS, Zhang W, Zhang S, Liu Z, Kurth M, Patterson AD, Gershwin ME, Song J. Immunobiology of bile and cholangiocytes. J Autoimmun 2025; 151:103376. [PMID: 39892203 DOI: 10.1016/j.jaut.2025.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
The biliary tract is now recognized as an immune organ, and within the biliary tract, both bile and cholangiocytes play a key role in maintaining immune defense and homeostasis. First, immunoreactive proteins such as secretory IgA provide local antimicrobial effects. Second, bile acids (BAs) protect the biliary tree from immune-related injury through receptor signaling, mainly via the membrane-bound receptor TGR5 on cholangiocytes. Third, the biliary microbiota, similar to the intestinal microbiota, contributes to sustaining a stable physiobiological microenvironment. Fourth, cholangiocytes actively modulate the expression/release of adhesion molecules and cytokines/chemokines and are involved in antigen presentation; additionally, cholangiocyte senescence and apoptosis also influence immune responses. Conversely, aberrant bile composition, altered BA profiles, imbalances in the biliary microbiota, and cholangiocyte dysfunction are associated with immune-mediated cholangiopathies, including primary biliary cholangitis, primary sclerosing cholangitis, and biliary atresia. While current therapeutic agents that modulate BA homeostasis and receptor signaling have shown promise in preclinical and clinical studies, future research on biliary/intestinal microbiota and cholangiocyte function should focus on developing novel therapeutic strategies for treating cholangiopathies.
Collapse
Affiliation(s)
- Yang Li
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Patrick Sc Leung
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Shucheng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Zhenning Liu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Mark Kurth
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, 16802, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Junmin Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China.
| |
Collapse
|
2
|
Cao H, Li T, Li Z, Zhao B, Liu Z, Wang W. Goal-oriented preoperative biliary drainage is more precise and conducive to seize the opportunity for pancreaticoduodenectomy. World J Surg Oncol 2024; 22:331. [PMID: 39707442 DOI: 10.1186/s12957-024-03615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Preoperative biliary drainage (PBD) for selected patients with severe juandice has been shown to improve clinical conditions for pancreaticoduodenectomy (PD) and reduce the risk of post-pancreatectomy hemorrhage (PPH). However, the determination of an optimal end-point for PBD remains unclear. The aim of this research is to introduce the concept of goal-oriented biliary drainage, which may serve as a reasonable target and identify the optimal surgery time window. METHODS The clinical data of 194 patients diagnosed with pancreatic cancer and obstructive jaundice were retrospectively analyzed. Serological laboratory examinations including total bilirubin (TBIL) within one week before PBD and PD were recorded and labeled as TBIL-pre and TBIL-post respectively. PBD and PD were performed by experienced medical teams. PPH with grade B and C were enrolled. RESULTS TBIL-post less than 93.0µmol/L (sensitivity 83.78%, specificity 72.61%) or TBIL decay more than 68.5% (sensitivity 86.49%, specificity 69.43%) identified through ROC curves and multivariate analysis were independent protective factors for reducing the risk of PPH (OR 0.234 and 0.191 retrospectively, P<0.05) and were established as PBD goals. The Kaplan-Meier curves demonstrated the median time to achieve both PBD goals was 3 weeks. Additionally, the proportion of patients achieving both goals failed to increase with the PBD duration over 6 weeks (P > 0.05). The proportion of TBIL-post ≤ 93.0µmol/L (70.8% vs. 51.1%, P<0.05) and TBIL decay ≥ 68.5% (67.0% vs. 50.0%, P<0.05) were higher in EBS group than those in PTCD group. CONCLUSION A goal-oriented PBD with the target of TBIL ≤ 93.0µmol/L or TBIL decay ≥ 68.5% can reduce the morbidity of PPH. In general conditions, PBD duration within 3 weeks would be sufficient, while exceeding the duration beyond 6 weeks could not provide additional benefits. Both EBS and PTCD are safe and EBS is more recommended due to its superior performance in achieving the goals.
Collapse
Affiliation(s)
- Hongtao Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Zhang C, Yin Z, Hu F, Lin X, Guan Q, Zhang F, Zhang X. Omega-3 Polyunsaturated Fatty Acids Alleviate Intestinal Barrier Dysfunction in Obstructive Jaundice Rats. Mol Biotechnol 2024; 66:1954-1960. [PMID: 37507597 DOI: 10.1007/s12033-023-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Obstructive jaundice (OJ) can cause multiple pathophysiological consequences including intestinal barrier dysfunction. Omega-3 has been indicated to have a promising therapeutic effect on OJ. This study aimed to further investigate the functions of omega-3 on OJ-induced intestinal injury. A rat OJ model was established by bile duct ligation with or without omega-3 administration. ELISA was utilized for measuring serum levels of inflammatory cytokines. Hematoxylin-eosin staining and TUNEL staining were employed for detecting the morphological changes and cell apoptosis in rat intestine. Western blotting was utilized for evaluating expression of tight junction proteins in the intestinal tissues. Omgea-3 offset the reduction in body weight of OJ rats. Omega-3 alleviated inflammatory response, pathological damages and cell apoptosis in the intestine of OJ rats. Additionally, omega-3 enhanced levels of tight junction proteins in the intestinal tissues of OJ rats. Omega-3 ameliorates OJ-triggered impairment of intestinal barrier function in rats.
Collapse
Affiliation(s)
- Changxi Zhang
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Zhicheng Yin
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Feng'ai Hu
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Xutao Lin
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Qinghai Guan
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Fan Zhang
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Xingyuan Zhang
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China.
| |
Collapse
|
4
|
Liu Y, Li F, Fang Y, Zhong Q, Xiao Y, Zheng Y, Zhu J, Zhao C, Cao X, Xiong J, Hu L. Clinical Characteristics, Prognosis and Treatment of Bloodstream Infections with Enterobacter Cloacae Complex in a Chinese Tertiary Hospital: A Retrospective Study. Infect Drug Resist 2024; 17:1811-1825. [PMID: 38741943 PMCID: PMC11090197 DOI: 10.2147/idr.s460744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Objective This research aimed to analyze the clinical characteristics, prognosis, and antimicrobial treatment of bloodstream infections (BSI) caused by Enterobacter cloacae complex (ECC). Methods The clinical data of patients with bloodstream infections caused by Enterobacter cloacae complex from April 2017 to June 2023 were collected retrospectively. These data were then analyzed in subgroups based on the detection results of extended-spectrum β-lactamase (ESBL), 30-day mortality, and the type of antimicrobial agent used (β-lactam/β-lactamase inhibitor combinations (BLICs) or carbapenems). Results The proportion of ESBL-producing Enterobacter cloacae complex was 32.5% (37/114). Meanwhile, ICU admission, receiving surgical treatment within 3 months, and biliary tract infection were identified as risk factors for ESBL-producing ECC-BSI. Additionally, immunocompromised status and Sequential Organ Failure Assessment (SOFA) score ≥ 6.0 were identified as independent risk factors of 30-day mortality in patients with ECC-BSI (n = 108). Further analysis in BSI patients caused by non-ESBL-producing ECC revealed that patients treated with BLICs (n = 45) had lower SOFA scores and lower incidence of hypoproteinemia and sepsis compared with patients treated with carbapenems (n = 20). Moreover, in non-ESBL-producing ECC-BSI patients, the univariate Cox regression analysis indicated a significantly lower 30-day mortality rate in patients treated with BLICs compared to those treated with carbapenems (hazard ratios (HR) [95% CI] 0.190 [0.055-0.662], P = 0.009; adjusted HR [95% CI] 0.106 [0.013-0.863], P = 0.036). Conclusion This study investigated the factors influencing the susceptibility to infection by ESBL-producing strains and risk factors for 30-day mortality in ECC-BSI patients. The results revealed that ESBL-negative ECC-BSI patients treated with BLICs exhibited significantly lower 30-day mortality compared to those treated with carbapenems. BLICs were found to be more effective in ECC-BSI patients with milder disease (ESBL-negative and SOFA ≤6.0).
Collapse
Affiliation(s)
- Yanhua Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, People’s Republic of China
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| | - Fuxing Li
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, People’s Republic of China
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| | - Youling Fang
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
- School of Public Health, Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| | - Qiaoshi Zhong
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, People’s Republic of China
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| | - Yanping Xiao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, People’s Republic of China
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| | - Yunwei Zheng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, People’s Republic of China
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| | - Junqi Zhu
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
- School of Public Health, Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| | - Chuwen Zhao
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
- School of Public Health, Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| | - Xingwei Cao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, People’s Republic of China
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| | - Jianqiu Xiong
- Department of Nursing, the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| | - Longhua Hu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, People’s Republic of China
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, People’s Republic of China
| |
Collapse
|
5
|
Huang J, Gao X, Wang M, Yang Z, Xiang L, Li Y, Yi B, Gu J, Wen J, Lu K, Zhao H, Ma D, Chen L, Ning J. Prophylactic Administration with Methylene Blue Improves Hemodynamic Stabilization During Obstructive Jaundice-Related Diseases' Operation: a Blinded Randomized Controlled Trial. J Gastrointest Surg 2023; 27:1837-1845. [PMID: 37101089 PMCID: PMC10511601 DOI: 10.1007/s11605-022-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/21/2022] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Patients with obstruction jaundice are at a high risk of hypotension and need high volume of fluids and a high dose of catecholamine to maintain organ perfusion during operation procedure. All these likely contribute to high perioperative morbidity and mortality. The aim of the study is to evaluate the effects of methylene blue on the hemodynamics in patients undergoing surgeries associated with obstructive jaundice. DESIGN A prospective, randomized, and controlled clinical study. SETTING The enrolled patients randomly received 2 mg/kg of methylene blue in saline or saline (50 ml) before anesthesia induction. The primary outcome was the frequency and dose of noradrenaline administration to maintain mean arterial blood pressure over 65 mmHg or > 80% of baseline, and systemic vascular resistance (SVR) over 800 dyne/s/cm5 during operation. The secondary outcomes were liver and kidney functions, and ICU stay. PATIENTS Seventy patients were enrolled in the study and randomly assigned to receive either methylene blue or control (n = 35/group). RESULTS Fewer patients received noradrenaline in the methylene blue group when compared with the control group (13/35 vs 23/35, P = 0.017), and the noradrenaline dose administrated during operation was reduced in the methylene blue group when compared with the control group (0.32 ± 0.57 mg vs 1.787 ± 3.51 mg, P = 0.018). The blood level of creatinine, glutamic oxalacetic transaminase, and glutamic-pyruvic transaminase after the operation was reduced in the methylene blue group when compared with the control group. CONCLUSIONS Prophylactic administration of methylene blue before operation associated with obstructive jaundice improves hemodynamic stability and short-term prognosis. QUESTION Methylene blue use prevented refractory hypotension during cardiac surgery, sepsis, or anaphylactic shock. It is still unknown that methylene blue on the vascular hypo-tone associated with obstructive jaundice. FINDINGS Prophylactic administration with methylene blue improved peri-operative hemodynamic stability, and hepatic and kidney function on the patients with obstructive jaundice. MEANINGS Methylene blue is a promising and recommended drug for the patients undergoing the surgeries of relief obstructive jaundice during peri-operation management.
Collapse
Affiliation(s)
- Jian Huang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Xian Gao
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Moran Wang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Zhen Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Lunli Xiang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Yongshuai Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Jianteng Gu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Jing Wen
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Kaizhi Lu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Hongwen Zhao
- Department of Nephrology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW109NH UK
| | - Li Chen
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jiaolin Ning
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038 China
| |
Collapse
|
6
|
Liu JJ, Sun YM, Xu Y, Mei HW, Guo W, Li ZL. Pathophysiological consequences and treatment strategy of obstructive jaundice. World J Gastrointest Surg 2023; 15:1262-1276. [PMID: 37555128 PMCID: PMC10405123 DOI: 10.4240/wjgs.v15.i7.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Obstructive jaundice (OJ) is a common problem in daily clinical practice. However, completely understanding the pathophysiological changes in OJ remains a challenge for planning current and future management. The effects of OJ are widespread, affecting the biliary tree, hepatic cells, liver function, and causing systemic complications. The lack of bile in the intestine, destruction of the intestinal mucosal barrier, and increased absorption of endotoxins can lead to endotoxemia, production of proinflammatory cytokines, and induce systemic inflammatory response syndrome, ultimately leading to multiple organ dysfunction syndrome. Proper management of OJ includes adequate water supply and electrolyte replacement, nutritional support, preventive antibiotics, pain relief, and itching relief. The surgical treatment of OJ depends on the cause, location, and severity of the obstruction. Biliary drainage, surgery, and endoscopic intervention are potential treatment options depending on the patient's condition. In addition to modern medical treatments, Traditional Chinese medicine may offer therapeutic benefits for OJ. A comprehensive search was conducted on PubMed for relevant articles published up to August 1970. This review discusses in detail the pathophysiological changes associated with OJ and presents effective strategies for managing the condition.
Collapse
Affiliation(s)
- Jun-Jian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin Medical University Nankai Hospital, Tianjin 300102, China
| | - Yi-Meng Sun
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Yan Xu
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Han-Wei Mei
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wu Guo
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Zhong-Lian Li
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin Medical University Nankai Hospital, Tianjin 300102, China
| |
Collapse
|
7
|
Ma Y, Tan B, Wang S, Ren C, Zhang J, Gao Y. Influencing factors and predictive model of postoperative infection in patients with primary hepatic carcinoma. BMC Gastroenterol 2023; 23:123. [PMID: 37046206 PMCID: PMC10099730 DOI: 10.1186/s12876-023-02713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The purpose of this study was to explore the risk factors for postoperative infection in patients with primary hepatic carcinoma (PHC), build a nomogram prediction model, and verify the model to provide a better reference for disease prevention, diagnosis and treatment. METHODS This single-center study included 555 patients who underwent hepatobiliary surgery in the Department of Hepatobiliary Surgery of Tianjin Third Central Hospital from January 2014 to December 2021, and 32 clinical indicators were selected for statistical analysis. In this study, Lasso logistic regression was used to determine the risk factors for infection after liver cancer resection, establish a predictive model, and construct a visual nomogram. The consistency index (C-index), calibration curve, and receiver operating characteristic (ROC) curve were used for internal validation, and decision curve analysis (DCA) was used to analyze the clinical applicability of the predictive model. The bootstrap method was used for intramodel validation, and the C-index was calculated to assess the model discrimination. RESULTS Among the 555 patients, 279 patients met the inclusion criteria, of whom 48 had a postoperative infection, with an incidence rate of 17.2%. Body mass index (BMI) (P = 0.022), alpha-fetoprotein (P = 0.023), total bilirubin (P = 0.016), intraoperative blood loss (P < 0.001), and bile leakage (P < 0.001) were independent risk factors for infection after liver cancer surgery. The nomogram was constructed and verified to have good discriminative and predictive ability. DCA showed that the model had good clinical applicability. The C-index value verified internally by the bootstrap method results was 0.818. CONCLUSION Postoperative infection in patients undergoing hepatectomy may be related to risk factors such as BMI, preoperative AFP level, TBIL level, intraoperative blood loss and bile leakage. The prediction model of the postoperative infection nomogram established in this study can better predict and estimate the risk of postoperative infection in patients undergoing hepatectomy.
Collapse
Affiliation(s)
- Yanan Ma
- Department of Clinical Laboratory, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Jintang Road 83, Hedong District, Tianjin, 300170, China
| | - Bing Tan
- Department of Clinical Laboratory, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
| | - Sumei Wang
- Department of Clinical Laboratory, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
| | - Chaoyi Ren
- Department of Hepatobiliary Surgery, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
| | - Jiandong Zhang
- Department of Clinical Laboratory, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Jintang Road 83, Hedong District, Tianjin, 300170, China.
- Artificial Cell Engineering Technology Research Center, Tianjin, 300170, China.
| |
Collapse
|
8
|
Jing N, Liu F, Wang R, Zhang Y, Yang J, Hou Y, Zhang H, Xie Y, Liu H, Ge S, Jin J. Both live and heat-killed Bifidobacterium animalis J-12 alleviated oral ulcers in LVG golden Syrian hamsters by gavage by directly intervening in the intestinal flora structure. Food Funct 2023; 14:2045-2058. [PMID: 36723265 DOI: 10.1039/d2fo03751c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Live and heat-killed Bifidobacterium has been proven to have anti-inflammatory and antioxidant effects. In this study, we evaluated the effects of live and heat-killed Bifidobacterium animalis J-12 (J-12) on the oral ulceration of LVG golden Syrian hamsters after buccal membrane injection with methyl viologen dichloride. Results showed that interleukin-1β, glutathione, and malondialdehyde in serum were downregulated by the gavage of live and heat-killed J-12 bacteria. The J-12 live and heat-killed bacteria can reduce the expression of matrix metalloproteinase-9 by reducing the expression of nuclear factor kappa-B, thus reducing the expression of anti-inflammatory factors lipoxin A4 and prostaglandin E2. Reducing the expression of caspase-3 and adenosine diphosphate ribose polymerase resulted in a reduction of ulcer tissue DNA damage. In addition, regulating the structure of the intestinal flora prevented the process of oral ulcer formation. This study shows that J-12 can reduce the risk of oral ulcer formation while also having a positive effect on inhibiting existing oral ulcer growth.
Collapse
Affiliation(s)
- Nanqing Jing
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China.,Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China
| | - Yan Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Jianjun Yang
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yubing Hou
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hongxing Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Yuanhong Xie
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hui Liu
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Shaoyang Ge
- BEIJING HEYIYUAN BIOTECHNOLOGY Co, Ltd., Beijing 100088, China
| | - Junhua Jin
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| |
Collapse
|
9
|
Liu JJ, Xu Y, Chen S, Hao CF, Liang J, Li ZL. The mechanism of Yinchenhao decoction in treating obstructive-jaundice-induced liver injury based on Nrf2 signaling pathway. World J Gastroenterol 2022; 28:4635-4648. [PMID: 36157920 PMCID: PMC9476870 DOI: 10.3748/wjg.v28.i32.4635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obstructive jaundice (OJ) is caused by bile excretion disorder after partial or complete bile duct obstruction. It may cause liver injury through various mechanisms. Traditional Chinese medicine (TCM) has a lot of advantages in treating OJ. The recovery of liver function can be accelerated by combining Chinese medicine treatment with existing clinical practice. Yinchenhao decoction (YCHD), a TCM formula, has been used to treat jaundice. Although much progress has been made in recent years in understanding the mechanism of YCHD in treating OJ-induced liver injury, it is still not clear.
AIM To investigate chemical components of YCHD that are effective in the treatment of OJ and predict the mechanism of YCHD.
METHODS The active components and putative targets of YCHD were predicted using a network pharmacology approach. Gene Ontology biological process and Kyoto Encyclopedia of Genes and Genomes path enrichment analysis were carried out by cluster profile. We predicted the biological processes, possible targets, and associated signaling pathways that YCHD may involve in the treatment of OJ. Thirty male Sprague–Dawley rats were randomly divided into three groups, each consisting of 10 rats: the sham group (Group S), the OJ model group (Group M), and the YCHD-treated group (Group Y). The sham group only received laparotomy. The OJ model was established by ligating the common bile duct twice in Groups M and Y. For 1 wk, rats in Group Y were given a gavage of YCHD (3.6 mL/kg) twice daily, whereas rats in Groups S and M were given the same amount of physiological saline after intragastric administration daily. After 7 d, all rats were killed, and the liver and blood samples were collected for histopathological and biochemical examinations. Total bilirubin (TBIL), direct bilirubin (DBIL), alanine aminotransferase (ALT), and aspartate transaminase (AST) levels in the blood samples were detected. The gene expression levels of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS), and the nucleus positive rate of NF-E2 related factor 2 (Nrf2) protein were measured. Western blot analyses were used to detect the protein and gene expression levels of Nrf2, Kelch-like ECH-associated protein 1, NAD(P)H quinone dehydrogenase 1 (NQO1), and glutathione-S-transferase (GST) in the liver tissues. One-way analysis of variance was used to evaluate the statistical differences using the statistical package for the social sciences 23.0 software. Intergroup comparisons were followed by the least significant difference test and Dunnett’s test.
RESULTS The effects of YCHD on OJ involve biological processes such as DNA transcription factor binding, RNA polymerase II specific regulation, DNA binding transcriptional activator activity, and nuclear receptor activity. The protective effects of YCHD against OJ were closely related to 20 pathways, including the hepatitis-B, the mitogen-activated protein kinase, the phosphatidylinositol 3-kinase/protein kinase B, and tumor necrosis factor signaling pathways. YCHD alleviated the swelling and necrosis of hepatocytes. Following YCHD treatment, the serum levels of TBIL (176.39 ± 17.03 μmol/L vs 132.23 ± 13.88 μmol/L, P < 0.01), DBIL (141.41 ± 14.66 μmol/L vs 106.43 ± 10.88 μmol/L, P < 0.01), ALT (332.07 ± 34.34 U/L vs 269.97 ± 24.78 U/L, P < 0.05), and AST (411.44 ± 47.64 U/L vs 305.47 ± 29.36 U/L, P < 0.01) decreased. YCHD promoted the translocation of Nrf2 into the nucleus (12.78 ± 0.99 % vs 60.77 ± 1.90 %, P < 0.001). After YCHD treatment, we found a decrease in iNOS (0.30 ± 0.02 vs 0.20 ± 0.02, P < 0.001) and an increase in eNOS (0.18 ± 0.02 vs 0.32 ± 0.02, P < 0.001). Meanwhile, in OJ rats, YCHD increased the expressions of Nrf2 (0.57 ± 0.03 vs 1.18 ± 0.10, P < 0.001), NQO1 (0.13 ± 0.09 vs 1.19 ± 0.07, P < 0.001), and GST (0.12 ± 0.02 vs 0.50 ± 0.05, P < 0.001), implying that the potential mechanism of YCHD against OJ-induced liver injury was the upregulation of the Nrf2 signaling pathway.
CONCLUSION OJ-induced liver injury is associated with the Nrf2 signaling pathway. YCHD can reduce liver injury and oxidative damage by upregulating the Nrf2 pathway.
Collapse
Affiliation(s)
- Jun-Jian Liu
- The Second Department of Hepatobiliary and Pancreatic Surgery, Tianjin Medical University NanKai Hospital, Tianjin 300102, China
| | - Yan Xu
- Graduate School, Tianjin Medical University, Tianjin 3000070, China
| | - Shuai Chen
- Department of Thoracic Surgery, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou 221000, Jiangsu Province, China
| | - Cheng-Fei Hao
- The Second Department of Hepatobiliary and Pancreatic Surgery, Tianjin Medical University NanKai Hospital, Tianjin 300102, China
| | - Jing Liang
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, Sichuan Province, China
| | - Zhong-Lian Li
- The Second Department of Hepatobiliary and Pancreatic Surgery, Tianjin Medical University NanKai Hospital, Tianjin 300102, China
| |
Collapse
|
10
|
Biliary Drainage Reduces Intestinal Barrier Damage in Obstructive Jaundice by Regulating Autophagy. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3301330. [PMID: 35909583 PMCID: PMC9307405 DOI: 10.1155/2022/3301330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
This study aims to investigate the mechanism by which biliary drainage reduces intestinal barrier damage in obstructive jaundice (OJ). A biliary drainage model was established in rats with OJ to detect changes in inflammatory factors and diamine oxidase (DAO), a marker of intestinal mucosal damage. The expression of autophagy-related genes in the intestinal mucosa after biliary drainage was detected using a reverse transcription-polymerase chain reaction. The rats were separated into two groups that received the autophagy activator rapamycin (RAPA) or the autophagy inhibitor 3-methyladenine (3-MA) to further investigate whether biliary drainage could alleviate the inflammatory response, oxidative stress, mitochondrial complex IV damage, and thus barrier damage in rats with OJ. The expression levels of inflammatory factors and the serum DAO content were increased in rats with OJ (P < 0.05). Biliary drainage further induced autophagy, reduced the expression levels of inflammatory factors, decreased the serum DAO content (P < 0.05), and improved intestinal mucosal damage. Administration of RAPA to OJ rats with biliary drainage increased autophagy (P < 0.05); decreased inflammatory factor secretion (P < 0.05), the serum DAO content (P < 0.05), oxidative stress (P < 0.05), and mitochondrial respiratory chain complex IV damage (P < 0.05); and ameliorated intestinal mucosal injury in OJ rats. When OJ rats were treated with 3-MA, intestinal mucosal injury, intestinal mitochondrial injury, and oxidative stress were all aggravated (P < 0.05). Biliary drainage can reduce the expression of inflammatory factors, oxidative stress, and mitochondrial injury by inducing intestinal mucosal autophagy in OJ rats, thus suggesting its role in the alleviation of intestinal mucosal injury.
Collapse
|
11
|
Stupin V, Abramov I, Gahramanov T, Kovalenko A, Manturova N, Litvitskiy P, Balkizov Z, Silina E. Comparative Study of the Results of Operations in Patients with Tumor and Non-Tumor Obstructive Jaundice Who Received and Did Not Receive Antioxidant Therapy for the Correction of Endotoxemia, Glycolysis, and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061203. [PMID: 35740100 PMCID: PMC9219634 DOI: 10.3390/antiox11061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose: To compare the results of surgical treatment and changes in biomarkers of cholestasis, endotoxicosis, cytolysis, lipid peroxidation, glycolysis disorders, and inflammation in patients with benign and malignant obstructive jaundice (OJ) in patients receiving and not receiving antioxidant pharmacotherapy (AOT). Patients and methods: The study included 113 patients (aged 21–90 years; 47 males and 66 females) who received surgical intervention for OJ due to non-malignant (71%) or malignant tumor (29%) etiologies. Patients were divided into two groups: Group I (n = 61) who did not receive AOT and Group II (n = 51) who received AOT (succinate-containing drug Reamberin) as part of detoxification infusion therapy. The surgical approach and scope of interventions in both groups were identical. Dynamic indicators of endotoxicosis, cholestasis, and cytolysis (total, direct, and indirect bilirubin, alanine aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [AP] and gamma-glutamyltransferase [GGT]), kidney function (urea), lipid peroxidation (malonic dialdehyde, MDA), inflammation (leukocytosis), and glycolysis disorders (lactate dehydrogenase (LDH), glucose) were evaluated. Results: Tumor jaundice, unlike non-tumor jaundice, persisted and was characterized by a more severe course, a higher level of hyperbilirubinemia, and lipid peroxidation. The prognostic value of the direct (and total) bilirubin, MDA, glycemia, and leukocytosis levels on the day of hospitalization, which increased significantly in severe jaundice and, especially, in deceased patients, was established. Decompression interventions significantly reduced levels of markers of liver failure, cytolysis, cholestasis, and lipid peroxidation on day 3 after decompression by 1.5–3 times from initial levels; this is better achieved in non-tumor OJ. However, 8 days after decompression, most patients did not normalize the parameters studied in both groups. AOT favorably influenced the dynamics (on day 8 after decompression) of total and direct bilirubin, ALT, AST, MDA, and leukocytosis in non-tumor jaundice, as well as the dynamics of direct bilirubin, AST, MDA, glucose, and LDH in tumor jaundice. Clinically, in the AOT group, a two-fold reduction in the operative and non-operative complications was recorded (from 23% to 11.5%), a reduction in the duration of biliary drainage by 30%, the length of stay in intensive care units was reduced by 5 days, and even hospital mortality decreased, especially in malignancy-induced OJ. Conclusion: A mechanism for the development of liver failure in OJ is oxidative stress with the appearance of enhanced lipid peroxidation and accompanied by hepatocyte necrosis. Inclusion of AOT in perioperative treatment in these patients improves treatment outcomes.
Collapse
Affiliation(s)
- Victor Stupin
- Department of Hospital Surgery No.1, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.S.); (I.A.); (T.G.); (N.M.); (Z.B.)
| | - Igor Abramov
- Department of Hospital Surgery No.1, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.S.); (I.A.); (T.G.); (N.M.); (Z.B.)
| | - Teymur Gahramanov
- Department of Hospital Surgery No.1, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.S.); (I.A.); (T.G.); (N.M.); (Z.B.)
| | - Alexey Kovalenko
- Chemical Analytical Department, Institute of Toxicology of the Federal Medical and Biological Agency of Russia, 192019 Saint Petersburg, Russia;
| | - Natalia Manturova
- Department of Hospital Surgery No.1, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.S.); (I.A.); (T.G.); (N.M.); (Z.B.)
| | - Petr Litvitskiy
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Zalim Balkizov
- Department of Hospital Surgery No.1, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.S.); (I.A.); (T.G.); (N.M.); (Z.B.)
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Correspondence: ; Tel.: +7-9689559784
| |
Collapse
|
12
|
Liu S, Wang X, Kai Y, Tian C, Guo S, He L, Zhai D, Song X. Clinical significance of high mobility group box 1/toll-like receptor 4 in obese diabetic patients. Endocr J 2022; 69:235-242. [PMID: 34657898 DOI: 10.1507/endocrj.ej21-0381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
High mobility group box 1 (HMGB1) is an alarmin that may link to obesity and type 2 diabetes mellitus (T2DM). The present study analyzed the correlation between HMGB1/ Toll-like receptor 4 (TLR4) and certain biochemical parameters in obese (OB) diabetic patients. 40 normal glucose tolerant subjects (NGT) and 40 patients with newly diagnosed T2DM were enrolled. All patients were further divided into non-obese NGT (NGT-NOB), obese NGT (NGT-OB), non-obese T2DM (T2DM-NOB) and obese T2DM (T2DM-OB) groups according to body mass index (BMI).The levels of HMGB1 in serum were quantified using ELISA, whereas the mRNA expression levels of TLR4 in peripheral blood mononuclear cells were assessed using reverse transcription-quantitative PCR. The results suggested that the levels of HMGB1 and TLR4 were higher in NGT-OB and T2DM-NOB groups compared with those in NGT-NOB group. Similarly, the levels of these two markers were higher in T2DM-OB group compared with those in NGT-OB group. Correlation analysis indicated that the levels of HMGB1 and TLR4 were positively correlated with triglyceride (TG), fasting plasma glucose (FPG) levels and BMI, whereas a negative correlation between HMGB1 and high density lipoprotein (HDL) was noted. Linear regression analysis suggested that HMGB1 was associated with FPG and TG levels, whereas TLR4 was strongly associated with TG levels and BMI. The results demonstrated that the expression levels of HMGB1 and TLR4 in patients with T2DM or obesity were increased, which were associated with glycolipid metabolism disorders. Therefore, the HMGB1/TLR4 may serve a role in inflammatory process associated with obesity and T2DM.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Blood Transfusion, the Third Affiliated Hospital of Xinxiang Medical University, Henan Xinxiang, 453003, China
| | - Xianchun Wang
- Clinical laboratory, the Third Affiliated Hospital of Xinxiang Medical University, Henan Xinxiang, 453003, China
| | - Yue Kai
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Henan Xinxiang, 453000, China
| | - Chenrui Tian
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Henan Xinxiang, 453000, China
| | - Sheng Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Henan Xinxiang, 453000, China
| | - Ling He
- Department of Ophthalmology, the 371 Affiliated Hospital of Xinxiang Medical University, Henan Xinxiang, 453003, China
| | - Desheng Zhai
- Department of Epidemiology and Biostatistics, School of Public Health, Xinxiang Medical University, Henan Xinxiang, 453003, China
| | - Xiangfeng Song
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Henan Xinxiang, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Henan Xinxiang, 453000, China
| |
Collapse
|
13
|
Tian X, Zhang Z, Li W. Expression of TLR2 and TLR5 in distal ileum of mice with obstructive jaundice and their role in intestinal mucosal injury. Arch Med Sci 2022; 18:237-250. [PMID: 35154543 PMCID: PMC8826794 DOI: 10.5114/aoms.2019.85648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/18/2019] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The aim was to investigate the expression of TLR2 and TLR5 in the distal ileum of mice with obstructive jaundice (OJ) and their role in intestinal mucosal injury. MATERIAL AND METHODS A total of 100 male C57BL/6J mice were randomly assigned to two groups: (I) sham operation (SH); (II) bile duct ligation (BDL). The mice were respectively sacrificed before operation and on the 1st, 3rd, 5th and 7th days after operation to collect specimens. Various indicators were detected by PCR, immunohistochemistry and other methods. RESULTS TLR2 was increased gradually with the extension of OJ time in the BDL group (p < 0.05). However, the changes in the expression of TLR5 were not obvious at different time points. The amount of Bifidobacteria and Lactobacillus showed downward trends in intestinal tract of the BDL group. Furthermore, the amount of Escherichia coli was increased in intestinal tract of the BDL group. The pathological score of intestinal mucosa and the expression of NF-κB increased gradually in the BDL group with the extension of OJ time. There were positive correlations between the pathological score of intestinal mucosa and expressions of TLR2(r = 0.767, p < 0.05) and NF-κB (r = 0.817, p < 0.05) in BDL group. NF-κB expression was positively correlated with TLR2 expression(r = 0.706, p < 0.05). CONCLUSIONS Disturbance of intestinal flora caused by OJ could increase the expression of NF-κB via up-regulating the expression of TLR2 to activate the downstream signaling pathway, thus aggravated the injury of intestinal mucosa.
Collapse
Affiliation(s)
- Xiaopeng Tian
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | | | - Wen Li
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Luo L, Yao Y, Liao H, Huang J, Liao M, Wang J, Yuan K, Zeng Y. Cumulative damage effect of jaundice may be an effective predictor of complications in patients undergoing radical resection of Bismuth type II or above hilar cholangiocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:861. [PMID: 34164495 PMCID: PMC8184487 DOI: 10.21037/atm-21-1860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background There is currently no preoperative risk assessment system for predicting complications after radical resection of hilar cholangiocarcinoma. This study examined the association between the cumulative damage effect of jaundice (CDEJ) and the complications of radical resection of Bismuth II or above hilar cholangiocarcinoma. Methods Patients who underwent radical resection of hilar cholangiocarcinoma at the Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, from April 2010 to January 2018 were retrospectively included. Results Of the 171 included patients, 115 (67.3%) patients experienced complications. Multivariate analysis found that CDEJ [odds ratio (OR) =1.0001, 95% confidence interval (95% CI) =1.000027–1.000239, P=0.014], cholangitis (OR =9.638, 95% CI =2.683–34.622, P=0.001), and preoperative bilirubin (OR =1.006, 95% CI =1.002–1.01, P=0.004) were independently associated with the incidence of complications. CDEJ (OR =1.0001, 95% CI =1.00001–1.00019, P=0.024), age (OR =1.083, 95% CI =1.029–1.14, P=0.002), preoperative bilirubin (OR =1.083, 95% CI =1.029–1.14, P=0.002), and future liver remnant (FLR) (OR =0.963, 95% CI =0.941–0.986, P=0.002) were independently associated with hepatic failure. To predict the incidence of complications, the following criteria were used. For the CDEJ cutoff of 2,151, the area under the receiver operating characteristic curve (AUC) was 0.69 (95% CI =0.615–0.759), the sensitivity was 66.09%, and the specificity was 69.64%. For the preoperative bilirubin cutoff of 111.7 µmol/L, the AUC was 0.65 (95% CI =0.573–0.721), the sensitivity was 84.35%, and the specificity was 42.86%. To predict hepatic failure, the following criteria were used. For the CDEJ cutoff of 3,931.95, the AUC was 0.605 (95% CI =0.582–0.679), the sensitivity was 51.28%, and the specificity was 70.45%. For the preoperative bilirubin cutoff of 115.9 µmol/L, the AUC was 0.638 (95% CI =0.561–0.71), the sensitivity was 92.31%, and the specificity was 32.58%. For the FLR cutoff of 50, the AUC was 0.638 (95% CI =0.515–0.667), the sensitivity was 48.72%, and the specificity was 78.79%. Conclusions CDEJ was independently associated with complications and can moderately predict complications after surgical resection of hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Le Luo
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutong Yao
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haotian Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jiwei Huang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingheng Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinju Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
15
|
Jiao H, Shuai X, Luo Y, Zhou Z, Zhao Y, Li B, Gu G, Li W, Li M, Zeng H, Guo X, Xiao Y, Song Z, Gan L, Huang Q. Deep Insight Into Long Non-coding RNA and mRNA Transcriptome Profiling in HepG2 Cells Expressing Genotype IV Swine Hepatitis E Virus ORF3. Front Vet Sci 2021; 8:625609. [PMID: 33996960 PMCID: PMC8116512 DOI: 10.3389/fvets.2021.625609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Swine hepatitis E (swine HE) is a new type of zoonotic infectious disease caused by the swine hepatitis E virus (swine HEV). Open reading frame 3 (ORF3) is an important virulent protein of swine HEV, but its function still is mainly unclear. In this study, we generated adenoviruses ADV4-ORF3 and ADV4 negative control (ADV4-NC), which successfully mediated overexpression of enhanced green fluorescent protein (EGFP)-ORF3 and EGFP, respectively, in HepG2 cells. High-throughput sequencing was used to screen for differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs). The cis-target genes of lncRNAs were predicted, functional enrichment (Gene Ontology [GO] and Kyoto Encyclopedia of Genes and Genomes [KEGG]) was performed, and 12 lncRNAs with statistically significant different expressions (p ≤ 0.05 and q ≤ 1) were selected for further quantitative real-time reverse transcription (qRT-PCR) validation. In HepG2 cells, we identified 62 significantly differentially expressed genes (DEGs) (6,564 transcripts) and 319 lncRNAs (124 known lncRNAs and 195 novel lncRNAs) that were affected by ORF3, which were involved in systemic lupus erythematosus, Staphylococcus aureus infection, signaling pathways pluripotency regulation of stem cells, the peroxisome proliferator-activated receptor (PPAR) signaling pathway, and platinum drug resistance pathways. Cis-target gene prediction identified 45 lncRNAs corresponding to candidate mRNAs, among which eight were validated by qRT-PCR: LINC02476 (two transcripts), RAP2C-AS1, AC016526, AL139099, and ZNF337-AS1 (3 transcripts). Our results revealed that the lncRNA profile in host cells affected by ORF3, swine HEV ORF3, might affect the pentose and glucuronate interconversions and mediate the formation of obstructive jaundice by influencing bile secretion, which will help to determine the function of ORF3 and the infection mechanism and treatment of swine HE.
Collapse
Affiliation(s)
- Hanwei Jiao
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Xuehong Shuai
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Yichen Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Science, Guiyang, China
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Wenjie Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hui Zeng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyi Guo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Xiao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| | - Qingzhou Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Chongqing Veterinary Scientific Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Xu L, Ge F, Hu Y, Yu Y, Guo K, Miao C. Sevoflurane Postconditioning Attenuates Hepatic Ischemia-Reperfusion Injury by Limiting HMGB1/TLR4/NF-κB Pathway via Modulating microRNA-142 in vivo and in vitro. Front Pharmacol 2021; 12:646307. [PMID: 33935744 PMCID: PMC8085516 DOI: 10.3389/fphar.2021.646307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Preconditioning of sevoflurane (Sevo) has been demonstrated to protect the liver from ischemia/reperfusion (I/R) injury. However, it is unknown whether it has hepatoprotective when given at the onset of reperfusion (postconditioning), a protocol with more clinical impact. The present study aimed to explore the hepatoprotective effects of Sevo postconditioning against hepatic IR injury in vivo and in vitro and the possible mechanisms. Using a mouse model of hepatic I/R, Sevo postconditioning significantly improved hepatic injury after reperfusion, as demonstrated by reduced AST, ALT, and LDH serum levels and reduced histologic damage in liver tissues. Furthermore, Sevo postconditioning could suppress the apoptosis, inhibit oxidative stress and inflammatory response in liver tissue of HIRI mice, as well as improve the survival rate of HIRI mice. Through analyzing GSE72314 from the gene expression omnibus (GEO) database, it was demonstrated that microRNA (miR)-142 is downregulated by HIRI, which was reversed by Sevo treatment. Further investigation showed that agomiR-142 injection could enhance the hepatoprotective effects of Sevo postconditioning on I/R injury, while antagomiR-142 reversed these effects in mice. Notably, high mobility group box 1 (HMGB1), an important inflammatory factor, was directly targeted by miR-142 in hepatic cells, and we further found that Sevo could inhibit the expression of HMGB1 through up-regulating miR-142 expression in HIRI mice model. In addition, we found that I/R injury induced the activation of TLR4/NF-κB inflammatory pathway was partially suppressed by Sevo postconditioning, and miR-142 mediated the regulatory role of Sevo postconditioning. In line with the in vivo results, Sevo treatment improved the cell viability, inhibited cell apoptosis, oxidative stress and inflammatory response in vitro HIRI model, while these effects were reversed by antagomiR-142 transfection. Collectively, our findings demonstrated that Sevo postconditioning counteracts the downregulation of miR-142 provoked by I/R, in turn decreased the expression of HMGB1, blocking TLR4/NF-κB pathway activation, thus improving hepatic I/R injury. Our data suggest that Sevo may be a valuable alternative anaesthetic agent in liver transplantation and major liver surgeries.
Collapse
Affiliation(s)
- Liying Xu
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Feng Ge
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
17
|
Ni YA, Chen H, Nie H, Zheng B, Gong Q. HMGB1: An overview of its roles in the pathogenesis of liver disease. J Leukoc Biol 2021; 110:987-998. [PMID: 33784425 DOI: 10.1002/jlb.3mr0121-277r] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant architectural chromosomal protein that has multiple biologic functions: gene transcription, DNA replication, DNA-damage repair, and cell signaling for inflammation. HMGB1 can be released passively by necrotic cells or secreted actively by activated immune cells into the extracellular milieu after injury. Extracellular HMGB1 acts as a damage-associated molecular pattern to initiate the innate inflammatory response to infection and injury by communicating with neighboring cells through binding to specific cell-surface receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation end products (RAGE). Numerous studies have suggested HMGB1 to act as a key protein mediating the pathogenesis of chronic and acute liver diseases, including nonalcoholic fatty liver disease, hepatocellular carcinoma, and hepatic ischemia/reperfusion injury. Here, we provide a detailed review that focuses on the role of HMGB1 and HMGB1-mediated inflammatory signaling pathways in the pathogenesis of liver diseases.
Collapse
Affiliation(s)
- Yuan-Ao Ni
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| |
Collapse
|
18
|
Sun X, Zhu S, Dong X, Strand-Amundsen RJ, Tonnessen TI, Yang R. Ethyl pyruvate supplemented in drinking water ameliorates experimental nonalcoholic steatohepatitis. Biomed Pharmacother 2021; 137:111392. [PMID: 33761609 DOI: 10.1016/j.biopha.2021.111392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 02/09/2023] Open
Abstract
Inflammation and oxidative stress play a significant role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Ethyl pyruvate (EP) is a novel anti-inflammatory agent and a potent reactive oxygen species (ROS) scavenger. Therefore, EP supplemented in drinking water may alleviate experimental NASH in this study (even though 0.3% of EP cannot attenuate the simple non-aggressive fatty liver). The methionine-choline-deficient (MCD) diet was given to the C57BL/6 male mice for 3 weeks to induce NASH. The NASH animals were randomized into 3 treatment groups: animals in the MCD alone group were treated with normal drinking water alone; animals in the delayed EP group were given 3% (v/v) of EP supplemented in normal drinking water, the treatment started 10 days after MCD diet feeding; animals in the early EP therapy group were treated the same as the delayed EP group except that EP treatment started the same day when MCD diet was given; the control mice were fed with normal chow and treated with normal drinking water (n = 10 for each group). Compared to MCD group with normal drinking water, early EP treatment significantly decreased serum ALT and improved NASH histopathology; delayed EP therapy only attenuated NASH in 50% (5/10) of the animals. The beneficial effects were associated with decreased hepatic TNF-a and IL-6 mRNA expression on early 5 days, inhibited NF-kB activation, reduced liver tissue malondialdehyde levels, and decreased intestinal bacterial translocation (BT). In conclusion: EP supplemented in drinking water attenuates experimental NASH.
Collapse
Affiliation(s)
- Xiujing Sun
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xueyu Dong
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Runar J Strand-Amundsen
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, 4950 Nydalen, 0424 Oslo, Norway
| | - Tor Inge Tonnessen
- Department of Emergencies and Critical Care, Oslo University Hospital, 4950 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, 0316 Blindern, Oslo, Norway
| | - Runkuan Yang
- Department of Emergencies and Critical Care, Oslo University Hospital, 4950 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
19
|
Xiao Y, Hang Y, Chen Y, Fang X, Cao X, Hu X, Luo H, Zhu H, Zhu W, Zhong Q, Hu L. A Retrospective Analysis of Risk Factors and Patient Outcomes of Bloodstream Infection with Extended-Spectrum β-Lactamase-Producing Escherichia coli in a Chinese Tertiary Hospital. Infect Drug Resist 2020; 13:4289-4296. [PMID: 33262623 PMCID: PMC7699446 DOI: 10.2147/idr.s269989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The present study assessed risk factors and patient outcomes of bloodstream infection (BSI) caused by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli). Methods A retrospective study was performed to analyze risk factors and patient outcomes of BSI caused by extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) in one Chinese tertiary hospital over a 7.5-year period. The clinical characteristics of patients infected with ESBL-producing and non-ESBL-producing E. coli were compared. Predictors of 30-day mortality in patients with E. coli BSI were also identified in our study. Results The results of drug sensitivity showed that quinolones, aminoglycosides, β-lactam/β-lactamase inhibitor combinations (BLICs) and trimethoprim/sulfamethoxazole exhibited significant differences between the ESBL and non-ESBL groups. Of the 963 patients with E. coli BSI, 57.6% developed ESBL-EC. Multivariate analysis showed that biliary tract infection (BTI) [P<0.001,OR (95% CI):1.798 (1.334–2.425)], urinary tract obstructive disease [P=0.001,OR (95% CI):2.106 (1.366–3.248)], surgery within 3 months [P=0.002,OR (95% CI):1.591 (1.178–2.147)], hospitalization within 3 months [P<0.001,OR (95% CI):2.075 (1.579–2.725)], ICU admission [P=0.011,OR (95% CI):1.684 (1.124–2.522)] and history of cephalosporin use [P=0.006,OR (95% CI):3.097 (1.392–6.891)] were statistically significant. In mortality analysis, aCCI>2 [P=0.016,OR (95% CI): 2.453 (1.179–5.103)], gastrointestinal catheterization [P=0.004, OR (95% CI): 2.525 (1.333–4.782)] were significantly associated with 30-day mortality. According to Kaplan-Meier survival analysis, we found that in SOFA<2 group and SOFA≥2 group, the mortality rate of patients treated with BLICs were lower than that of carbapenems(P<0.05). Conclusion This study showed that BTI, urinary tract obstructive disease, surgery within 3 months, hospitalization within 3 months, ICU admission and cephalosporin exposure were independent risk factors for the emergence of ESBL-EC BSI. Analysis of risk factors for 30-day mortality revealed that the factors independently associated with a higher risk of mortality were aCCI>2, gastrointestinal catheterization. Compared to carbapenems, the BLICs had preferable effect to treat patients with ESBL-EC BSI. Notably, patients with severe illness were inlcined to use carbapenems, which affected the analysis results. Therefore, we suggest that BLICs could be recommended to treat mild patients with ESBL-EC bacteremia.
Collapse
Affiliation(s)
- Yanping Xiao
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yaping Hang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yanhui Chen
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xueyao Fang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xingwei Cao
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiaoyan Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Hong Luo
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Hongying Zhu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wu Zhu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qiaoshi Zhong
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
20
|
Sun X, Zhu S, Tonnessen TI, Yang R. Bile is a promising gut nutrient that inhibits intestinal bacterial translocation and promotes gut motility via an interleukin-6-related pathway in an animal model of endotoxemia. Nutrition 2020; 84:111064. [PMID: 33418232 DOI: 10.1016/j.nut.2020.111064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES People who are critically ill have high rates of endotoxemia that can significantly decrease bile flow and increase bile cytokines, the latter of which might worsen their condition. Bile acids are nutrient-signaling hormones that have a significant impact on gut barrier function and motility, and the gut is considered the origin of systemic inflammation. Therefore, healthy exogenous bile could be a promising gut nutrient for critical illness, so the biomedical role of bile in endotoxemia was investigated in this study. METHODS Twelve rats were injected with lipopolysaccharide (LPS) and randomized into a group with sham operation) and a group with bile external drainage (n = 6 for each group); six rats with sham operation served as the control group. In addition, interleukin-6 (IL-6) knockout mice and macrophages were treated with LPS. RESULTS Compared to the control animals, the group with LPS injection and sham operation had significantly increased levels of gut permeability, gut bacterial translocation, gut mucosal tumor necrosis factor α, IL-6 transcripts, and serum tumor necrosis factor α and IL-6. Compared to group with sham operation and LPS injection, bile external drainage (in LPS-challenged rats) increased gut bacterial translocation by 10 times, and this detrimental effect was associated with prolonged intestinal transit time, increased serum IL-6 concentration, and up-regulated gut mucosal IL-6 transcripts. Moreover, bile selectively inhibited LPS-stimulated macrophages in IL-6 release, which can activate gastrointestinal submucosal neurons to promote motility. Knocking out IL-6 significantly reduced gut bacterial translocation in endotoxemic mice. CONCLUSIONS Bile is a promising gut nutrient that inhibits gut bacterial translocation and promotes gut motility via an IL-6-related pathway in experimental endotoxemia.
Collapse
Affiliation(s)
- Xiujing Sun
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tor Inge Tonnessen
- Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Runkuan Yang
- Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway; Department of Critical Care Medicine, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
21
|
Vijayakumar EC, Bhatt LK, Prabhavalkar KS. High Mobility Group Box-1 (HMGB1): A Potential Target in Therapeutics. Curr Drug Targets 2020; 20:1474-1485. [PMID: 31215389 DOI: 10.2174/1389450120666190618125100] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
High mobility group box-1 (HMGB1) mainly belongs to the non-histone DNA-binding protein. It has been studied as a nuclear protein that is present in eukaryotic cells. From the HMG family, HMGB1 protein has been focused particularly for its pivotal role in several pathologies. HMGB-1 is considered as an essential facilitator in diseases such as sepsis, collagen disease, atherosclerosis, cancers, arthritis, acute lung injury, epilepsy, myocardial infarction, and local and systemic inflammation. Modulation of HMGB1 levels in the human body provides a way in the management of these diseases. Various strategies, such as HMGB1-receptor antagonists, inhibitors of its signalling pathway, antibodies, RNA inhibitors, vagus nerve stimulation etc. have been used to inhibit expression, release or activity of HMGB1. This review encompasses the role of HMGB1 in various pathologies and discusses its therapeutic potential in these pathologies.
Collapse
Affiliation(s)
- Eyaldeva C Vijayakumar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
22
|
Yu X, Chen X, Sun T. MicroRNA-205-5p Targets HMGB1 to Suppress Inflammatory Responses during Lung Injury after Hip Fracture. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7304895. [PMID: 31886244 PMCID: PMC6925689 DOI: 10.1155/2019/7304895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Abstract
Hip fracture is the most common type of injury in elderly people and is associated with a high incidence of complications and risk of mortality. In these patients, subsequent pulmonary infection can contribute to the development of an acute lung injury, a consequence of the systemic inflammatory response induced by hip fracture. Although the crucial role of microRNAs (miRNAs) in inflammatory responses has been established, the functions of miRNAs in the inflammatory responses associated with lung injury after hip fracture remain poorly understood. In this study, we explored the potential role of miR-205-5p in lung injury after hip fracture in an in vivo hip fracture model and in vitro cultures of human pulmonary alveolar epithelial cells (HPAEpiC). An analysis of clinical serum samples revealed increased levels of miR-205-5p and high mobility group box 1 (HMGB1) after hip fracture. A bioinformatics analysis and dual-luciferase reporter assay identified HMGB1 as a potential target of miR-205-5p. The overexpression of miR-205-5p clearly reduced the expression of HMGB1 and inhibited NF-κB signaling, apoptosis, and proinflammatory cytokine production while enabling continued cell proliferation. Our results demonstrate that the upregulation of miR-205-5p suppresses inflammatory responses and promotes cell viability and proliferation by selectively targeting HMGB1 in the context of lung injury after hip fracture. Therefore, miR-205-5p may be an alternative target of therapeutic strategies for lung injury after hip fracture.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Orthopaedics, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaobin Chen
- Chinese PLA General Hospital, Medical Center 7, Department of Orthopedic Surgery, Beijing 100700, China
| | - Tiansheng Sun
- Department of Orthopaedics, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
- Chinese PLA General Hospital, Medical Center 7, Department of Orthopedic Surgery, Beijing 100700, China
| |
Collapse
|