1
|
Pusateri AE, Morgan CG, Neidert LE, Tiller MM, Glaser JJ, Weiskopf RB, Ebrahim I, Stassen W, Rambharose S, Mahoney SH, Wallis LA, Hollis EM, Delong GT, Cardin S. Safety of Bioplasma FDP and Hemopure in rhesus macaques after 30% hemorrhage. Trauma Surg Acute Care Open 2024; 9:e001147. [PMID: 38196929 PMCID: PMC10773430 DOI: 10.1136/tsaco-2023-001147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/03/2023] [Indexed: 01/11/2024] Open
Abstract
Objectives Prehospital transfusion can be life-saving when transport is delayed but conventional plasma, red cells, and whole blood are often unavailable out of hospital. Shelf-stable products are needed as a temporary bridge to in-hospital transfusion. Bioplasma FDP (freeze-dried plasma) and Hemopure (hemoglobin-based oxygen carrier; HBOC) are products with potential for prehospital use. In vivo use of these products together has not been reported. This study assessed the safety of intravenous administration of HBOC+FDP, relative to normal saline (NS), in rhesus macaques (RM). Methods After 30% blood volume removal and 30 minutes in shock, animals were resuscitated with either NS or two units (RM size adjusted) each of HBOC+FDP during 60 minutes. Sequential blood samples were collected. After neurological assessment, animals were killed at 24 hours and tissues collected for histopathology. Results Due to a shortage of RM during the COVID-19 pandemic, the study was stopped after nine animals (HBOC+FDP, seven; NS, two). All animals displayed physiologic and tissue changes consistent with hemorrhagic shock and recovered normally. There was no pattern of cardiovascular, blood gas, metabolic, coagulation, histologic, or neurological changes suggestive of risk associated with HBOC+FDP. Conclusion There was no evidence of harm associated with the combined use of Hemopure and Bioplasma FDP. No differences were noted between groups in safety-related cardiovascular, pulmonary, renal or other organ or metabolic parameters. Hemostasis and thrombosis-related parameters were consistent with expected responses to hemorrhagic shock and did not differ between groups. All animals survived normally with intact neurological function. Level of evidence Not applicable.
Collapse
Affiliation(s)
| | - Clifford G Morgan
- Expeditionary and Trauma Medicine, Naval Medical Research Unit San Antonio, Fort Sam Houston, Texas, USA
| | - Leslie E Neidert
- Expeditionary and Trauma Medicine, Naval Medical Research Unit San Antonio, Fort Sam Houston, Texas, USA
| | - Michael M Tiller
- Expeditionary and Trauma Medicine, Naval Medical Research Unit San Antonio, Fort Sam Houston, Texas, USA
- Department of Surgery, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | - Jacob J Glaser
- Providence Regional Medical Center, Everett, Washington, USA
| | - Richard B Weiskopf
- Department of Anesthesia and Perioperative Medcine, University of California San Francisco, San Francisco, California, USA
| | - Ismaeel Ebrahim
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Willem Stassen
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Sanjeev Rambharose
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Scott H Mahoney
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Lee A Wallis
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Ewell M Hollis
- Naval Medical Research Unit San Antonio, Fort Sam Houston, Texas, USA
| | - Gerald T Delong
- Naval Medical Research Unit San Antonio, Fort Sam Houston, Texas, USA
| | - Sylvain Cardin
- Naval Medical Research Unit San Antonio, Fort Sam Houston, Texas, USA
| |
Collapse
|
2
|
Anand T, Reyes AA, Sjoquist MC, Magnotti L, Joseph B. Resuscitating the Endothelial Glycocalyx in Trauma and Hemorrhagic Shock. ANNALS OF SURGERY OPEN 2023; 4:e298. [PMID: 37746602 PMCID: PMC10513357 DOI: 10.1097/as9.0000000000000298] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/20/2023] [Indexed: 09/26/2023] Open
Abstract
The endothelium is lined by a protective mesh of proteins and carbohydrates called the endothelial glycocalyx (EG). This layer creates a negatively charged gel-like barrier between the vascular environment and the surface of the endothelial cell. When intact the EG serves multiple functions, including mechanotransduction, cell signaling, regulation of permeability and fluid exchange across the microvasculature, and management of cell-cell interactions. In trauma and/or hemorrhagic shock, the glycocalyx is broken down, resulting in the shedding of its individual components. The shedding of the EG is associated with increased systemic inflammation, microvascular permeability, and flow-induced vasodilation, leading to further physiologic derangements. Animal and human studies have shown that the greater the severity of the injury, the greater the degree of shedding, which is associated with poor patient outcomes. Additional studies have shown that prioritizing certain resuscitation fluids, such as plasma, cryoprecipitate, and whole blood over crystalloid shows improved outcomes in hemorrhaging patients, potentially through a decrease in EG shedding impacting downstream signaling. The purpose of the following paragraphs is to briefly describe the EG, review the impact of EG shedding and hemorrhagic shock, and begin entertaining the notion of directed resuscitation. Directed resuscitation emphasizes transitioning from macroscopic 1:1 resuscitation to efforts that focus on minimizing EG shedding and maximizing its reconstitution.
Collapse
Affiliation(s)
- Tanya Anand
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| | | | - Michael C. Sjoquist
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
| | - Louis Magnotti
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| | - Bellal Joseph
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| |
Collapse
|
3
|
Tan L, She H, Zheng J, Peng X, Guo N, Zhang B, Sun Y, Ma C, Xu S, Bao D, Zhou Y, Li Q, Mao Q, Liu L, Hu Y, Li T. Effects of Malate Ringer's solution on myocardial injury in sepsis and enforcement effects of TPP@PAMAM-MR. J Transl Med 2022; 20:591. [PMID: 36514103 PMCID: PMC9746071 DOI: 10.1186/s12967-022-03811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myocardial dysfunction played a vital role in organ damage after sepsis. Fluid resuscitation was the essential treatment in which Lactate Ringer's solution (LR) was commonly used. Since LR easily led to hyperlactatemia, its resuscitation effect was limited. Malate Ringer's solution (MR) was a new resuscitation crystal liquid. Whether MR had a protective effect on myocardial injury in sepsis and the relevant mechanism need to be studied. METHODS The cecal ligation and puncture (CLP) inducing septic model and lipopolysaccharide (LPS) stimulating cardiomyocytes were used, and the cardiac function, the morphology and function of mitochondria were observed. The protective mechanism of MR on myocardial injury was explored by proteomics. Then the effects of TPP@PAMAM-MR, which consisted of the mitochondria- targeting polymer embodied malic acid, was further observed. RESULTS Compared with LR, MR resuscitation significantly prolonged survival time, improved the cardiac function, alleviated the damages of liver, kidney and lung following sepsis in rats. The proteomics of myocardial tissue showed that differently expressed proteins between MR and LR infusion involved oxidative phosphorylation, apoptosis. Further study found that MR decreased ROS, improved the mitochondrial morphology and function, and ultimately enhanced mitochondrial respiration and promoted ATP production. Moreover, MR infusion decreased the expression of apoptosis-related proteins and increased the expression of anti-apoptotic proteins. TPP@PAMAM@MA was a polymer formed by wrapping L-malic acid with poly amido amine (PAMAM) modified triphenylphosphine material. TPP@PAMAM-MR (TPP-MR), which was synthesized by replacing the L-malic acid of MR with TPP@PAMAM@MA, was more efficient in targeting myocardial mitochondria and was superior to MR in protecting the sepsis-inducing myocardial injury. CONCLUSION MR was suitable for protecting myocardial injury after sepsis. The mechanism was related to MR improving the function and morphology of cardiomyocyte mitochondria and inhibiting cardiomyocyte apoptosis. The protective effect of TPP-MR was superior to MR.
Collapse
Affiliation(s)
- Lei Tan
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China ,grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Han She
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China ,grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Jie Zheng
- grid.190737.b0000 0001 0154 0904School of Medicine, Chongqing University, Chongqing, 400044 China
| | - Xiaoyong Peng
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Ningke Guo
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Bindan Zhang
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yue Sun
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Chunhua Ma
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Shenglian Xu
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Daiqin Bao
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yuanqun Zhou
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Qinghui Li
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Qingxiang Mao
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Liangming Liu
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yi Hu
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Tao Li
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| |
Collapse
|
4
|
Miller DL, Dou C, Raghavendran K, Dong Z. The Impact of Hemorrhagic Shock on Lung Ultrasound-Induced Pulmonary Capillary Hemorrhage. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:787-794. [PMID: 32856724 PMCID: PMC7914277 DOI: 10.1002/jum.15463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 05/06/2023]
Abstract
OBJECTIVES Lung ultrasound (LUS) exposure can induce pulmonary capillary hemorrhage (PCH), depending on biological and physical exposure parameters. This study was designed to investigate the variation in the LUS induction of PCH due to hemorrhagic shock, which itself can engender pulmonary injury. METHODS Male rats were anesthetized with isoflurane in air. Shock was induced by withdrawal of 40% of the blood volume and assessed by the blood pressure detected by a femoral artery catheter and by blood glucose tests. B-mode ultrasound was delivered at 7.3 MHz with a low output (-20 dB) for aiming and with the maximal output (0 dB) for exposure. Pulmonary capillary hemorrhage was quantified by an assessment of comet tail artifacts in the LUS images and by measurement of PCH areas on the surface of fresh lung samples. RESULTS Tests without shock or catheterization surgery gave results for PCH similar to those of previous studies using different methods. Exposure before hemorrhagic shock gave a mean PCH area ± SE of 24.8 ± 9.2 mm2 on the ultrasound scan plane, whereas exposure after shock gave 0 PCH (P < .001; n = 7). CONCLUSIONS The presence of hemorrhagic shock significantly reduces the occurrence of LUS-induced PCH.
Collapse
Affiliation(s)
- Douglas L. Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor MI 48109
| | - Chunyan Dou
- Department of Radiology, University of Michigan Health System, Ann Arbor MI 48109
| | | | - Zhihong Dong
- Department of Radiology, University of Michigan Health System, Ann Arbor MI 48109
| |
Collapse
|